Inkjet printing can be used to form single or multi-material coatings and three dimensional objects useful in many applications. Current inkjet printing systems, however, are limited to deposition onto generally planar workpieces, due to the size of the deposition chamber and the design of inkjet arrays. Thus, the need exists for a method of inkjet printing onto surfaces of various sizes with both simple and complex geometries.
An additively manufactured component includes a planar sheet and a coating applied to the planar sheet to form the component. The component is configured for attachment to a non-planar surface of a workpiece.
A method of applying a coating to a workpiece includes applying the coating to a planar sheet to form a component, and attaching the component to a non-planar surface of the workpiece.
A method of applying an inkjet printed coating to a non-planar surface is described herein. The method includes applying a single or multi-material coating to a planar carrier sheet. The coating can also include three dimensional structures. The coating and sheet are attached to the non-planar surface, and the sheet can optionally be removed. This method provides a simple and cost effective way of printing components onto non-planar workpieces.
Coating 14 can be a single layer, as shown, and can be formed from homogenous or heterogeneous materials, depending on the application. Such materials include polymers, metals, alloys, ceramics, chemicals, and other suitable coating materials. Coating 14 can have a thickness TC ranging from a sub-nanometer thickness to 0.500 in, with a more common range of 0.002 in to 0.100 in.
In the embodiment shown, coating 14 is being applied to sheet 12 such that it covers sheet 12 from end to end. In other embodiments, coating 14 may cover only a portion of sheet 12, and can be formed as a variety of shapes, textures, and patterns. Indexing marks can also be printed onto sheet 12 along with coating 14 to allow operators to orient component 10 on the workpiece. Once coating 14 is applied to sheet 12, the coating can optionally be cured before component 10 is attached to the workpiece. Alternatively, coating 14 can be cured after component 10 is attached to the workpiece. The materials chosen for sheet 12 and coating 14 can be based upon such factors as operating environment conditions and chemical compatibility.
Depending on the curvature or other geometric features of workpiece 28, stretching and/or conformal draping of component 10 may be required during attachment. In such cases, local thickening of coating 14 can be performed during the application of coating 14 compensate for thinning caused by stretching or deforming component 10. Protrusion 124 of
The disclosed method allows for the application of a printed coating to workpiece surfaces having both simple and complex geometries. The use of carrier sheets also allows for the application of printed coatings on large and small workpieces alike. Potential applications for the resultant coating include electrical circuits, electrical insulation coatings, RF components, antennae, sensors, strain gauges, filters, anti-corrosion coatings, anti-microbial coatings, mold-resistant coatings, stealth/camouflage coatings, erosion strips, flame retardant coatings, thermal insulation coatings, reflective coatings, anti-ice coatings, decorative coatings, decals, stickers, adhesive-faced laminates, and more.
The following are non-exclusive descriptions of possible embodiments of the present invention.
An additively manufactured component includes a planar sheet and a coating applied to the planar sheet to form the component. The component is configured for attachment to a non-planar surface of a workpiece.
The component of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
The planar sheet includes at least one layer formed from a material selected from the group consisting of polymers, metals, metal alloys, and combinations thereof.
The at least one layer includes a first layer and a second layer.
The first layer or the second layer is an adhesive layer.
A thickness of the planar sheet ranges from about 0.005 in to about 0.030 in.
A total area of the planar sheet is between 1.00 in2 to 60 ft2.
The coating includes a three-dimensional portion.
The coating includes a first material and a second material.
The coating is formed from a material selected from the group consisting of polymers, metals, metal alloys, ceramics, chemicals, and combinations thereof.
A thickness of the coating ranges from about 0.002 in. to about 0.100 in.
A method of applying a coating to a workpiece includes applying the coating to a planar sheet to form a component, and attaching the component to a non-planar surface of the workpiece.
The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
Applying the coating includes depositing at least one material onto the planar sheet using a material jetting technique.
The at least one material is selected from the group consisting of polymers, metals, metal alloys, ceramics, chemicals, and combinations thereof.
The coating further includes a three-dimensional portion.
The method further includes curing the coating prior to attaching the component to the non-planar surface.
The planar sheet includes at least one layer formed from a material selected from the group consisting of polymers, metals, metal alloys, and combinations thereof.
The at least one layer comprises a first layer and a second layer.
The first layer or the second layer is an adhesive layer.
Attaching the component to the non-planar surface includes adhering or thermoforming.
The method further includes separating the planar sheet from the coating after attaching the component to the non-planar surface, such that the coating remains attached to the non-planar surface.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a divisional of U.S. application Ser. No. 15/661,448 filed Jul. 27, 2017 for “METHOD FOR DEPOSITION OF MULTI-MATERIAL COATINGS ON A CARRIER SHEET” by W. Twelves, Jr. and D. Furrer.
Number | Date | Country | |
---|---|---|---|
Parent | 15661448 | Jul 2017 | US |
Child | 16779119 | US |