Method for deriving shape information

Information

  • Patent Grant
  • 9439608
  • Patent Number
    9,439,608
  • Date Filed
    Friday, April 18, 2008
    16 years ago
  • Date Issued
    Tuesday, September 13, 2016
    7 years ago
Abstract
A method for deriving shape information of a person's skull and dentition, including the steps of: taking an impression of the person's dentition, taking a first scan of the person's head, while the person is wearing the impression, taking a second scan of the impression alone, combining the scans, deriving the shape information from the combined scans. Advantageously the method further includes the step of taking a third scan of the person's head alone without the impression.
Description
RELATED APPLICATIONS

This application is a U.S. National Phase of International Application No.: PCT/EP2008/003135, filed Apr. 18, 2008, designating the U.S. and published in English on Oct. 30, 2008 as WO 2008/128720, which claims the benefit of European Application No. 07106650.0, filed Apr. 20, 2007.


FIELD OF THE INVENTION

The present invention relates to methods for assessing the shape of the skull and dentition that are applicable in the field of orthognathic surgery.


BACKGROUND OF THE INVENTION

In maxillofacial surgery, the skull and dentition is surgically remodeled or restored. This surgical discipline encompasses surgical interventions of repair, in particular, of a mis-positioning of the jaws with respect to one another, called orthognathic surgery. Typically, orthognathic surgery involves osteotomies of the maxilla and/or mandible to reposition these bone fragments correctly with respect to the rest of the skull and to create a good occlusion. Osteotomies are surgical operations whereby a bone is cut to shorten, lengthen or change its alignments. With ‘occlusion’ is meant the manner in which the teeth from upper and lower arches come together when the mouth is closed.


Today's procedure to prepare orthognathic surgery mainly consists of the following steps:

    • 1. Acquisition of 2D cephalograms and performing measurements on them (the latter process is called ‘tracing the 2D cephalogram’),
    • 2. Measuring critical distances directly on the patient's face,
    • 3. Taking impressions of the upper and lower dental arch in order to produce plaster casts of the dentition. Taking a wax bite registration in order to relate the plaster casts of the upper and lower dentition in order to know the actual occlusion of the patient and to install the casts in an articulator,
    • 4. Based on the results of step 1 and 2, and on additional information derived of a clinical evaluation of the patient, the plaster models are repositioned in order to optimize the occlusion. The plaster models might be cut during this step.
    • 5. A new facial lateral profile is estimated and drawn on top of the traced 2D cephalogram.
    • 6. An acrylic surgical splint is manually created in order to be able to do the same repositioning of the dental arches during surgery.


With the emergence of 3D technologies, methods to carry out the measurement virtually in three dimensions have been established. As a data input, single or multi-slice CT scans were originally applied. With the emergence of cone-beam CT imaging (CBCT) for dental application, acquisition of 3D scan data becomes common sense in the field.


However, no system is available that visualizes the dentition of the patient in a detailed way using a protocol that is clinically feasible without distorting the facial soft tissues. Such a system would allow detailed occlusion planning possibly even including prediction of soft tissue implication and offer the possibilities to create intra-operative tools to establish the planned solution and to maintain it postoperatively.


WO 2006/000063 describes a method to perform a 3D cephalometric analysis of hard and soft tissues and to derive anatomically relevant movements to reposition bone fragments. It also mentions the possibility to enhance the visualization by fusing a scan of plaster models on the basis of a 3D splint with equipped with at least four markers. An important drawback of said approach is that the 3D splint always disturbs the facial profile.


WO 03/028577 describes a method to generate a surgical splint. The key component in this method is the usage of some markers relative to the patient's dentition identifiable in both the digital dental computer model and the computed tomography computer model to visualize the patient's dentition in detail. The registration method is based on point-based matching. However, this method has as fundamental drawback that the markers are disturbing the natural facial expression during the patient scan. This method to create a visualization of the dentition can be seen as a straightforward extension of the work in the field of dental implant planning (see e.g. ‘An image-guided planning system for endosseous oral implants’, Verstreken et al., IEEE Trans Med Imaging 1998, 17, pp. 842-852).


U.S. Pat. No. 6,152,731 describes a method for using digital dental models in a digital articulator. It is a digital analogue for the traditional articulator with plaster dental casts. However, this method has as fundamental drawback that the relationship with the anatomy of the patient's head is lost since only the teeth are visible.


AIMS OF THE INVENTION

The present invention aims to provide a method to derive information from an augmented skull model that offers a detailed visualization of the dentition whereby the use of markers is avoided. In a second aspect the invention aims to provide a method for deriving orthognathic planning information. A further aim of the invention is to provide methods for producing intra- and postoperative tools wherein said method to derive information is applied.


SUMMARY OF THE INVENTION

The present invention relates to a method for deriving shape information of a person's skull and dentition, comprising the steps of:

    • taking an impression of the person's dentition,
    • taking a first scan of the person's head, while the person is wearing the impression,
    • taking a second scan of the impression alone,
    • combining the scans,
    • deriving the shape information from the combined scans.


      A major advantage of the method of the present invention is that it is easily applicable in clinical practice and offers the possibility to image the soft tissues in their natural positions. Even more importantly, the method of the invention avoids the need for any fiducial marker (as in WO 03/028577) which yields the substantial advantage that the facial soft tissues are not distorted while performing the method.


Preferably the step of taking the impression is performed with a predefined occlusion.


In a preferred embodiment the method further comprises the step of taking a third scan of the person's head alone without the impression. In that case said step of taking the first scan is performed with a dose less than 45 μSv. The third scan comprises the person's maxillofacial complex. The third scan is taken with a predefined occlusion and facial expression.


Advantageously the second scan is taken with said impression being positioned on a foam-like material. The step of taking the impression is preferably performed with alginate or silicone as impression material. The impression may be taken by means of a wax-bite. In an advantageous embodiment the impression of the person's dentition is a double-sided impression. Preferably the step of taking the impression is performed in a CT scanner.


In a preferred embodiment the method further comprises the step of computing the mandibular autorotation.


In a second aspect the invention relates to a method for deriving orthognathic planning information for repositioning a bone fragment wherein information of a person's skull and dentition is derived with the method as previously described.


The invention further relates to a method for designing and producing an intraoperative splint for transferring a planned occlusion to the surgical field, wherein the splint is designed according to shape information derived from the method as set out above.


The invention also relates to a method for designing and producing a fixation structure for connecting upper and lower dentition, such that a planned occlusion is can be transferred, whereby said fixation structure is designed according to shape information derived from the method for deriving shape information as described. The fixation structure advantageously comprises a set of dental brackets on the lower and upper dentition and a structure for connecting said brackets together in such a way that the planned occlusion is transferred.


In yet another aspect the invention relates to a method for designing and producing customised osteosynthesis plates, designed according to shape information derived from the method as previously described.


The invention further presents a method for designing and producing a postoperative retention tool for preserving a surgically achieved setting, whereby shape information is applied, derived with the method as above described.


The invention also relates to a software program, executable on a programmable device containing instructions, which when executed, perform any of the methods as described.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 represents the data flow of the double scan procedure.



FIG. 2 represents the data flow of the triple scan procedure.



FIG. 3A is a top view an example of a double sided impression.



FIG. 3B is a side view an example of a double sided impression.



FIG. 4 represents the step of taking a scan of the patient's dentition while he is wearing the impression.



FIG. 5 represents a scan setup for the high resolution scan of the impression.



FIG. 6 represents a scan setup for the optional scan of the patient's maxillofacial complex with the occlusion that the doctor wants to examine.



FIG. 7 represents an example of a wax-bite.



FIG. 8A shows the data of the patient scan.



FIG. 8B shows a closer view of the data of the patient scan of FIG. 8A.



FIG. 8C shows the data of the patient scan with the detailed surface of the dentition.



FIG. 8D shows closer view of the data of the patient scan with the detailed surface of the dentition of FIG. 8C.



FIG. 8E shows the model of FIG. 8C with the textured skin surface showing the results of an augmented model.



FIG. 8F shows a side view of the model of FIG. 8C with the textured skin surface showing the results of an augmented model.



FIG. 9A represents the method to optimize the occlusion by repositioning of the jawbones showing the bone fragments in first position.



FIG. 9B represents the method to optimize the occlusion by repositioning of the jawbones showing the bone fragments in second position.



FIG. 10A represents the digital design of a splint based on the planning on the augmented model. An intermediate splint can be designed in a similar way.



FIG. 10B is another view of a representation the digital design of a splint based on the planning on the augmented model. An intermediate splint can be designed in a similar way.



FIG. 10C is another view of a representation of the digital design of a splint based on the planning on the augmented model. An intermediate splint can be designed in a similar way.



FIG. 10D is a digital representation of a splint based on the digital design of one or more of FIGS. 10A, 10B and 10C.



FIG. 11 represents the produced splint for the planning shown in FIG. 10.



FIG. 12A represents the produced splint for the planning shown in FIG. 10 in a patient's mouth.



FIG. 12B is another view representing the produced splint for the planning shown in FIG. 10 in a patient's mouth.



FIG. 12C is another view representing the produced splint for the planning shown in FIG. 10 in a patient's mouth.



FIG. 12D is another view representing the produced splint for the planning shown in FIG. 10 in a patient's mouth.





DETAILED DESCRIPTION OF EMBODIMENT(S)

To plan orthognathic surgery and to perform orthognathic surgery according to the planning three main clinical requirements are obvious:

    • 1. Detailed visualization of the patient's dentition combined with image data of the head and optionally with segmented surfaces out of this image volume. This data set is called an augmented model.
    • 2. Easy and fast planning tool to optimize the occlusion, but also the overall skeletal relationships and soft tissue harmony,
    • 3. Effective intraoperative support to perform surgery as planned.


      Possibly postoperative devices to maintain the surgically achieved solution may be needed.


To meet these clinical requirements, technical requirements are derived:

    • 1. Image acquisition protocol allowing for detailed visualization of dentition, optionally without disturbing the soft tissue profile
    • 2. Appropriate tools to move bone fragments into the right occlusion, preserving the skeletal and soft tissue harmony
    • 3. Tools to design and visualize the ideal skin surface for the patient. This ideal skin surface is a target skin surface for simulation. With tools to simulate soft tissue deformation based on bone fragment movements, on soft tissue surgery, on bone fragment sculpting, on implant insertion, etc. . . . , it is checked how well the ideal skin surface can be approximated. Alternatively, movements of bone fragments can be computed to meet the ideal skin surface.
    • 4. Generation of intra-operative tools to perform surgery as planned, and optionally postoperative tools to maintain the surgical result.


Furthermore, economical requirements are defined:

    • 1. The patient handling to obtain the augmented model should be straightforward and fast (this means at least as fast as traditional impression taking and plaster model production and handling),
    • 2. The generation of the surgical (and postsurgical) tools needs to be a (semi-) automatic and cheap procedure.


      The present invention features all these requirements.


The proposed image acquisition protocol supports the generation of an augmented model possibly without the soft tissue deformation, without the need to position markers, in a fairly easy and realistic clinical setting. The usage of plaster casts of the patient's dentition is not necessary anymore.


The planning protocol extends the anatomically relevant movements of bone fragments with occlusal planning optimization based on the augmented model. Optionally it includes soft tissue simulation and the design of an ideal 3D soft tissue profile.


Next, these planning results are transferred to the operative field by means of a computer-generated surgical splint, or an anchorage system between the brackets on the upper and lower dental arch, or by customized osteosynthesis plates.


Possibly postoperative tools are generated to preserve the surgical result.


The patient can be imaged in two ways: without preservation of the soft tissues in natural rest position (the so-called double-scan procedure) (see FIG. 1), or with preservation of the soft tissues in natural rest position (the so-called triple-scan procedure) (see FIG. 2).


The double-scan procedure is now described. First an impression of the patient's dentition is produced (see (1) in FIG. 1). Preferably, this impression contains a double-sided impression. It contains the shape information of upper and lower dental arches. As an impression material, all dental impression materials (such as alginate, silicone, . . . among others) or rather thick wax-bites (possibly mixed with barium-sulphate to increase the CT-number (i.e. the gray value)) are applicable. The impression materials can be applied in a double impression tray (see FIG. 3). Wax-bites can be modelled on their own (see FIG. 7). Ideally, the gray values of the impression material are different from those of soft tissues so that the impression can be differentiated from the soft and hard tissues. In the double-scan procedure, it is advantageous that the occlusion of the impression is well controlled and corresponds to the clinically desired occlusion for orthognathic surgery planning.


Next the patient is scanned while wearing the impression (see (2) in FIG. 1). The region of interest of the patient's head is scanned. Ideally, the step of impression taking (step 1 in FIG. 1) is performed in the CT-scanner. In this case, the patient does not need to bite twice in the same impression (as it would be difficult to bite a second time in exactly the same way in the impression). It should be carefully checked that the impression completely covers the cuspids of all teeth.


Further, a second high-resolution scan of the impression alone is acquired (see step (4) in FIG. 1 and the illustration in FIG. 5). For reasons of segmentation, the impression should ideally show itself on the CT image data as if it was flying in the air. To accomplish this, the impression can for example be positioned on a foam-like material, such as a sponge.


The various scans are then combined in the following way (step (6) in FIG. 1):

    • 1. Voxel-based rigid registration (i.e. alignment of position and orientation) of the impression scan (4) to the patient+impression scan (2),
    • 2. Image fusion of the detailed impression scan (4) to the maxillofacial complex scan to obtain the augmented model.


      Voxel-based rigid registration methods optimize a functional measuring the similarity of all geometrically corresponding voxel pairs for some feature. The voxel-based rigid registration method can be performed by maximization of mutual information, as explained in the paper ‘Multimodality image registration by maximization of mutual information’ (Maes et al., IEEE Trans. Medical Imaging, vol. 16, no. 2, pp. 187-198, April 1997).


      The image fusion of the scans can be done using surface models extracted from these scans, or within the image volume, or by a combination of both.


In a preferred embodiment the method as set out above comprises an additional step, typically carried out between the steps (2) and (4) of FIG. 1. Step (2) is thereby slightly modified. The data flow scheme of FIG. 2 is then obtained. This is called the triple-scan procedure.


Now during step (1), the occlusion while biting into the impression material is not important and can be randomly chosen. Technically, also single sided impressions could be applied. However this would require an extra patient scan in a further step, which needs to be avoided as much as possible from a clinical point of view.


Step 2 is a scan of the patient wearing the impression (see (2) in FIG. 2). A very low dose scan of the dentition is enough (see FIG. 4) given that this scan only yields intermediate results. This very low dose can be understood as less than 45 μSv. Ideally, the step of impression taking (Step 1 in FIG. 2) is performed in the CT-scanner. In this case, the patient does not need to bite twice in the same impression. It should be carefully checked that the impression completely covers the cuspids of all teeth.


In the additional step, the patient is scanned again, but now without the impression (see (3) in FIG. 2). The region of interest of the head is scanned. This is typically the maxillofacial complex. Special attention is paid to the occlusion of the patient and to the facial expression. The occlusion needs to be the occlusion that the doctor wants to examine. This might be controlled by a physician directly during the scan. Alternatively, it can be controlled by a tiny wax bite guiding the patient into the right occlusion. Also the facial expression needs to be the expression that the doctor wants to analyse. Typically this is a central occlusion and a neutral, relaxed facial expression.


Further, a third high-resolution scan of the impression alone is acquired (see step (4) in FIG. 2 and the illustration in FIG. 5) in the same way as step (4) in FIG. 1.


These various scans are then combined in the following way:

    • 1. Voxel-based rigid registration of the impression scan (4) to the patient+impression scan (2),
    • 2. Voxel-based rigid registration of the upper jaw of the patient+impression scan (2) to the upper jaw in the patient scan (3),
    • 3. Voxel-based rigid registration of the lower jaw of the patient+impression scan (2) to the lower jaw in the patient scan (3),
    • 4. Image fusion of the detailed impression scan (4) into the maxillofacial complex scan to obtain the augmented model.


      Voxel-based rigid registration methods optimize a functional that measures the similarity of all geometrically corresponding voxel pairs for some feature. The voxel-based rigid registration method can be performed by maximization of mutual information, as already mentioned.


      The image fusion of the scans can be done using surface models extracted from these scans, or within the image volume. A combination of both can be envisaged as well.


In the triple-scan procedure, the patient is imaged twice (patient scan and patient+impression scan). In those scans, the patient has a different mouth opening. From these two scans, the rotational axis which defines the movement of the mandible during initial mouth opening and closing can be estimated in the 3D space. This estimated rotational axis can be used for example during the planning of orthognathic surgical procedures: after maxillary impaction surgery the mandible will reposition itself according to this axis. To compute this mandibular movement, first both scans are aligned based on the anatomy of the maxilla. In a second step, the mandible of the second registered scan is aligned with the mandible of the first scan. The alignment can be computed using voxel-based registration, marker-based registration or surface-based registration. The resulting transformation matrix describes the mandibular movement. Out of this transformation matrix, the rotation axis is computed in the 3D space. The initial mouth opening/closing is a rotation around that rotation axis.


As an extra guideline for orthognathic surgery planning, the ideal skin surface based on the current skin surface of the patient can be designed.


A first method to design the ideal skin surface is based on clinical relevant parameters, including functional as well as aesthetic parameters, such as the degree of malocclusion or cephalometric measures, and/or body property parameters (such as body mass index, age, racial properties, gender, etc. . . . ).


A second method to design the ideal skin surface is based on the repositioning of points of the skin surface. These points can be important anatomical landmarks. Based on the new positions of these points, a new skin surface is computed.


As a computational strategy for these methods, a statistical model, based on an extensive database of skin surfaces on a large group of persons, is built. These skin surfaces can be acquired by 3D photography, or extracted from CT or MR imaging. The latter allows also including volumetric data into the statistical model. In this case the relation to the bony structures can also be included in the model. For the first method, the model is parameterized according to said parameters. The initial skin surface is altered according to the changes of the parameter values. For the second method, a statistically relevant skin surface is derived from the initial skin surface adapted according to the repositioned points.


Also a combination of both methods is possible.


The ideal skin surface can be set as a target for surgery planning. In order to evaluate how close the surgical plan meets the ideal skin surface, the differences between both surfaces need to be visualised. This can be done by computing a distance map between both surfaces. Ideally, this distance map is based on the distance between anatomically related points. When the differences between both the ideal skin surface and the expected skin surface are minimal, a pleasing surgical plan is obtained.


Orthognathic Surgery Planning


After virtual osteotomies the bone fragments need to be moved to the correct position. Bone fragments are moved with respect to the other skeletal features, to match a desirable occlusion and to obtain an acceptable facial skin surface.


Typically, a bone fragment (e.g. the maxilla) or a group of bone fragments is moved to the appropriate position using anatomical relevant directions, reference planes and anatomical landmarks. Next, bone fragments are moved to optimize the dental occlusion. In the approach according to the present invention, the bone fragments are moved together by spring forces, taking into account the collisions. This technique is called solid body simulation. Finally, further adjustments of the position of bone fragments or groups thereof can be performed.


While doing so, the soft tissue deformation can be simulated and compared with the ideal skin surface.


Intraoperative Tools


To transfer the virtual planning into the surgical field, several approaches are possible. With the intraoperative tools, the planned occlusion can be transferred to the patient. Possibly also the correct position of the bone fragments (like the maxilla) with respect to the skull base and the ascending ramus of the mandible with respect to the TMJ fossa (TMJ means the temporomandibular joint) can be transferred.


A first method to transfer the virtual planning is to produce a surgical splint based on the digital planning data. The splint is designed from the planning data and produced by rapid prototyping techniques or milling techniques (see FIGS. 10, 11 and 12). This method transfers the correct occlusion.


A second method is to produce a fixation structure that connects the upper and lower brackets or the archbars that are wired to the teeth, in order to create the planned occlusion. This method transfers the correct occlusion.


A third method is to produce personalized osteosynthesis plates. When the osteosynthesis plates are in the correct position and the bone fragments are fixed against these plates, the planned bone fragment positions are obtained during surgery. The plates are entered into the correct position based on anatomical features or based on bone anchors that are positioned before patient scanning and segmented from image data obtained from the patient+impression scan in the double-scan method or from the patient scan in the triple-scan method.


Postoperative Tools


In order to stabilize and preserve the surgical result, a postoperative splint might be needed. Also this personalized part can be produced from the results of the planning software.


The advantages of the proposed approach can be summarised as follows. No plaster casts are needed any more, nor the usage of a 3D splint with markers since a different registration concept is applied. This substantially increases the clinical applicability. Moreover, the invention allows having an accurate visualization of the teeth in combination with a natural soft tissue profile, which is a prerequisite to do correct soft tissue deformation prediction.


Also in the field of the planning process, this improved visualization of the teeth enables accurate occlusion planning and the production of intra- and postoperative tools.


Although the present invention has been illustrated by reference to specific embodiments, it will be apparent to those skilled in the art that the invention is not limited to the details of the foregoing illustrative embodiments, and that the present invention may be embodied with various changes and modifications without departing from the spirit and scope thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. In other words, it is contemplated to cover any and all modifications, variations or equivalents that fall within the spirit and scope of the basic underlying principles and whose essential attributes are claimed in this patent application. It will furthermore be understood by the reader of this patent application that the words “comprising” or “comprise” do not exclude other elements or steps, that the words “a” or “an” do not exclude a plurality, and that a single element, such as a computer system, a processor, or another integrated unit may fulfil the functions of several means recited in the claims. Any reference signs in the claims shall not be construed as limiting the respective claims concerned. The terms “first”, “second”, third”, “a”, “b”, “c”, and the like, when used in the description or in the claims are introduced to distinguish between similar elements or steps and are not necessarily describing a sequential or chronological order. Similarly, the terms “top”, “bottom”, “over”, “under”, and the like are introduced for descriptive purposes and not necessarily to denote relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances and embodiments of the invention are capable of operating according to the present invention in other sequences, or in orientations different from the one(s) described or illustrated above.

Claims
  • 1. A method for deriving shape information of a person's skull and dentition without using any fiducial markers, comprising: taking an impression of said person's dentition,taking a first scan of said person's head, while the person is wearing said impression,taking a second scan, via computed tomography (CT) and without use of fiducial markers, of said impression alone outside said person's head,combining said scans, whereby a voxel-based rigid registration method is applied to said scans, andderiving said shape information from said combined scans.
  • 2. The method for deriving shape information as in claim 1, wherein said taking an impression is performed with a predefined occlusion.
  • 3. The method for deriving shape information as in claim 1, wherein said second scan is taken with said impression being positioned on a foam-like material.
  • 4. The method for deriving shape information as in claim 1, wherein said step of taking an impression is performed with alginate or silicone as impression material.
  • 5. The method for deriving shape information as in claim 1, wherein said taking an impression is performed by means of a wax-bite.
  • 6. The method for deriving shape information as in claim 1, wherein said impression of said person's dentition is a double-sided impression.
  • 7. The method for deriving shape information as in claim 1, wherein said taking an impression is performed in a CT scanner.
  • 8. The method for deriving shape information as in claim 1, further comprising computing the mandibular autorotation.
  • 9. The method for deriving shape information as in claim 1, further comprising taking a third scan of said person's head alone without said impression.
  • 10. The method for deriving shape information as in claim 9, wherein said taking a first scan is performed with a dose less than 45 μSv.
  • 11. The method for deriving shape information as in claim 9, wherein said third scan comprises said person's maxillofacial complex.
  • 12. The method for deriving shape information as in claim 9, wherein said third scan is taken with a predefined occlusion and facial expression.
  • 13. The method for deriving shape information as in claim 1, wherein said first scan is a computed tomography (CT) scan.
  • 14. The method for deriving shape information as in claim 13, wherein said second scan is a computed tomography (CT) scan.
  • 15. A method for deriving shape information of a person's skull and dentition without using any fiducial markers, comprising: taking an impression of said person's dentition,taking a first scan of said person's head, while the person is wearing said impression,taking a second scan, via computed tomography (CT) and without use of fiducial markers, of said impression alone outside said person's head,combining said scans, andderiving said shape information from said combined scans; and further comprising taking a third scan of said person's head alone without said impression.
  • 16. The method for deriving shape information as in claim 15, wherein said taking a first scan is performed with a dose less than 45 μSv.
  • 17. The method for deriving shape information as in claim 15, wherein said third scan comprises said person's maxillofacial complex.
  • 18. The method for deriving shape information as in claim 15, wherein said third scan is taken with a predefined occlusion and facial expression.
  • 19. The method for deriving shape information as in claim 15, wherein said first scan is a computed tomography (CT) scan.
  • 20. The method for deriving shape information as in claim 19, wherein said second scan is a computed tomography (CT) scan.
  • 21. A method for deriving orthognathic planning information for repositioning a bone fragment, the method comprising: taking an impression of a person's dentition;taking a first scan of said person's head without using any fiducial markers, while the person is wearing said impression;taking a second scan, via computed tomography (CT) and without use of fiducial markers, of said impression alone outside said person's head;combining said scans, whereby a voxel-based rigid registration method is applied to said scans;deriving, via a programmable device, shape information of said person's skull and dentition from said combined scans; andderiving, via a programmable device, orthognathic planning information for repositioning a bone fragment based at least on the shape information.
  • 22. A method for designing and producing an intraoperative splint for transferring a planned occlusion to a surgical field based on shape information of a person's skull and dentition derived without using any fiducial markers, the method comprising: taking an impression of a person's dentition;taking a first scan of said person's head, while the person is wearing said impression;taking a second scan, via computed tomography (CT) and without use of fiducial markers, of said impression alone outside said person's head;combining said scans, whereby a voxel-based rigid registration method is applied to said scans;deriving, via a programmable device, shape information of said person's skull and dentition from said combined scans; anddesigning, via a programmable device, an intraoperative splint for transferring a planned occlusion to the surgical field, wherein said splint is designed according to the shape information; andproducing the intraoperative splint.
  • 23. A program, executable on a programmable device containing instructions, which when executed, derives shape information of a person's skull and dentition without using any fiducial markers, and cause the programmable device to: receive results of taking a first scan of said person's head, while the person is wearing an impression of said person's dentition;receive results of taking a second scan, via computed tomography (CT) and without use of fiducial markers, of said impression alone outside said person's head;combine said scans, whereby a voxel-based rigid registration method is applied to said scans; andderive said shape information from said combined scans.
Priority Claims (1)
Number Date Country Kind
07106650 Apr 2007 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2008/003135 4/18/2008 WO 00 11/30/2010
Publishing Document Publishing Date Country Kind
WO2008/128720 10/30/2008 WO A
US Referenced Citations (212)
Number Name Date Kind
4155163 Schwartz May 1979 A
4836778 Baumrind et al. Jun 1989 A
5066231 Oxman et al. Nov 1991 A
5338198 Wu et al. Aug 1994 A
5690631 Duncan et al. Nov 1997 A
5800174 Andersson Sep 1998 A
5851115 Carlsson et al. Dec 1998 A
5975893 Chishti et al. Nov 1999 A
6015289 Andreiko et al. Jan 2000 A
6049743 Baba Apr 2000 A
6068482 Snow May 2000 A
6099314 Kopelman et al. Aug 2000 A
6120289 Cleary et al. Sep 2000 A
6152731 Jordan et al. Nov 2000 A
6206693 Hultgren Mar 2001 B1
6217325 Chishti et al. Apr 2001 B1
6217334 Hultgren Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6261098 Persson Jul 2001 B1
6318994 Chishti et al. Nov 2001 B1
6322359 Jordan et al. Nov 2001 B1
6371761 Cheang et al. Apr 2002 B1
6386878 Pavlovskaia et al. May 2002 B1
6398548 Muhammad et al. Jun 2002 B1
6406292 Chishti et al. Jun 2002 B1
6450807 Chishti et al. Sep 2002 B1
6457972 Chishti et al. Oct 2002 B1
6463344 Pavloskaia et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6551611 Elliesen et al. Apr 2003 B2
6579095 Marshall et al. Jun 2003 B2
6582229 Miller et al. Jun 2003 B1
6602070 Miller et al. Aug 2003 B2
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6633789 Nikolskiy et al. Oct 2003 B1
6640130 Freeman Oct 2003 B1
6640150 Persson et al. Oct 2003 B1
6665570 Pavloskaia et al. Dec 2003 B2
6682346 Chishti et al. Jan 2004 B2
6685469 Chishti et al. Feb 2004 B2
6688886 Hughes et al. Feb 2004 B2
6697164 Babayoff et al. Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6726478 Isiderio et al. Apr 2004 B1
6729876 Chishti et al. May 2004 B2
6730091 Pfefferle et al. May 2004 B1
6767208 Kaza Jul 2004 B2
6783360 Chishti Aug 2004 B2
6786721 Chishti et al. Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6940611 Babayoff et al. Sep 2005 B2
6948936 Miller et al. Sep 2005 B2
6960211 Pfefferle et al. Nov 2005 B1
6979196 Nikolskiy et al. Dec 2005 B2
7030383 Babayoff et al. Apr 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7074038 Miller Jul 2006 B1
7092107 Babayoff et al. Aug 2006 B2
7092784 Simkins Aug 2006 B1
7101178 Diesso Sep 2006 B2
7118375 Durbin et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7140877 Kaza Nov 2006 B2
7140887 Poh et al. Nov 2006 B2
7145661 Hitzenberger Dec 2006 B2
7160110 Imgrund et al. Jan 2007 B2
7202466 Babayoff et al. Apr 2007 B2
7214946 Babayoff et al. May 2007 B2
7220122 Chishti May 2007 B2
7230725 Babayoff et al. Jun 2007 B2
7241142 Abolfathi et al. Jul 2007 B2
7252507 Tesini Aug 2007 B2
7255558 Babayoff et al. Aug 2007 B2
7273367 Hughes et al. Sep 2007 B2
7286954 Kopelman et al. Oct 2007 B2
7319529 Babayoff Jan 2008 B2
7320592 Chishti et al. Jan 2008 B2
7326051 Miller Feb 2008 B2
7331783 Chishti et al. Feb 2008 B2
7333874 Taub et al. Feb 2008 B2
7347690 Jordan et al. Mar 2008 B2
7357634 Knopp Apr 2008 B2
7361020 Abolfathi et al. Apr 2008 B2
7362890 Scharlack et al. Apr 2008 B2
7373286 Nikolskiy et al. May 2008 B2
7377778 Chishti et al. May 2008 B2
7428481 Nikolskiy et al. Sep 2008 B2
7433810 Pavloskaia et al. Oct 2008 B2
7435083 Chishti et al. Oct 2008 B2
7442040 Kuo Oct 2008 B2
7452207 Miller et al. Nov 2008 B2
7474307 Chishti et al. Jan 2009 B2
7476100 Kuo Jan 2009 B2
7477402 Babayoff et al. Jan 2009 B2
7511829 Babayoff Mar 2009 B2
7536234 Kopelman et al. May 2009 B2
7547873 Babayoff et al. Jun 2009 B2
7555403 Kopelman et al. Jun 2009 B2
20010002310 Chishti et al. May 2001 A1
20010006770 Chishti et al. Jul 2001 A1
20010008751 Chishti et al. Jul 2001 A1
20010009753 Chishti et al. Jul 2001 A1
20020064747 Chishti et al. May 2002 A1
20020064748 Chishti et al. May 2002 A1
20020094509 Durbin et al. Jul 2002 A1
20020119423 Chishti et al. Aug 2002 A1
20020150855 Shishti et al. Oct 2002 A1
20020177108 Pavlovskaia et al. Nov 2002 A1
20030003416 Chishti et al. Jan 2003 A1
20030008259 Kuo et al. Jan 2003 A1
20030009252 Pavlovskaia et al. Jan 2003 A1
20030064345 Chishti et al. Apr 2003 A1
20030139834 Nikolskiy et al. Jul 2003 A1
20030198917 Miller et al. Oct 2003 A1
20030207227 Abolfathi Nov 2003 A1
20030232302 Babayoff et al. Dec 2003 A1
20030235803 Nikolskiy et al. Dec 2003 A1
20040023183 Miller et al. Feb 2004 A1
20040023188 Pavlovskaia et al. Feb 2004 A1
20040090638 Babayoff et al. May 2004 A1
20040096799 Hughes et al. May 2004 A1
20040110110 Chishti et al. Jun 2004 A1
20040128010 Pavlovskaia et al. Jul 2004 A1
20040137400 Chishti et al. Jul 2004 A1
20040137408 Embert et al. Jul 2004 A1
20040166456 Chishti et al. Aug 2004 A1
20040170941 Phan et al. Sep 2004 A1
20040170943 Chishti et al. Sep 2004 A1
20040172150 Perot et al. Sep 2004 A1
20040175671 Jones et al. Sep 2004 A1
20040191719 Kaza Sep 2004 A1
20040197740 Amar Oct 2004 A1
20040224286 Kaza et al. Nov 2004 A1
20040241606 Diesso Dec 2004 A1
20040243361 Steuben et al. Dec 2004 A1
20040259051 Brajnovic Dec 2004 A1
20050019721 Chishti Jan 2005 A1
20050026102 Miller Feb 2005 A1
20050048432 Choi et al. Mar 2005 A1
20050055118 Nikolskiy et al. Mar 2005 A1
20050079468 Chishti et al. Apr 2005 A1
20050080328 Vass et al. Apr 2005 A1
20050106528 Abolfathi et al. May 2005 A1
20050106529 Abolfathi et al. May 2005 A1
20050159522 Bublewitz Jul 2005 A1
20050186524 Abolfathi et al. Aug 2005 A1
20050191593 Knopp Sep 2005 A1
20050192835 Kuo et al. Sep 2005 A1
20050196724 Miller et al. Sep 2005 A1
20050208449 Abolfathi et al. Sep 2005 A1
20050244782 Chishti et al. Nov 2005 A1
20050264828 Babayoff et al. Dec 2005 A1
20060003292 Lauren et al. Jan 2006 A1
20060097178 Babayoff et al. May 2006 A1
20060158665 Babayoff et al. Jul 2006 A1
20060212260 Kopelman et al. Sep 2006 A1
20060263738 Kuo Nov 2006 A1
20060275736 Wen et al. Dec 2006 A1
20060286501 Chishti et al. Dec 2006 A1
20070003907 Chishti et al. Jan 2007 A1
20070031791 Cinader et al. Feb 2007 A1
20070092850 Kaza Apr 2007 A1
20070109559 Babayoff et al. May 2007 A1
20070128573 Kuo Jun 2007 A1
20070128574 Kuo et al. Jun 2007 A1
20070129991 Kuo Jun 2007 A1
20070134613 Kuo et al. Jun 2007 A1
20070134617 Babayoff et al. Jun 2007 A1
20070141527 Kuo et al. Jun 2007 A1
20070145248 Babayoff et al. Jun 2007 A1
20070164203 Babayoff et al. Jul 2007 A1
20070168152 Matov Jul 2007 A1
20070190481 Schmitt Aug 2007 A1
20070197902 Schutyser Aug 2007 A1
20070203663 Kopelman et al. Aug 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20080002869 Scharlack et al. Jan 2008 A1
20080015727 Dunne et al. Jan 2008 A1
20080024768 Babayoff Jan 2008 A1
20080038684 Keating et al. Feb 2008 A1
20080038688 Kopelman et al. Feb 2008 A1
20080057466 Jordan et al. Mar 2008 A1
20080064008 Schmitt Mar 2008 A1
20080085487 Kuo et al. Apr 2008 A1
20080131832 Miller Jun 2008 A1
20080131841 Taub et al. Jun 2008 A1
20080159608 Suetens et al. Jul 2008 A1
20080166676 Chishti et al. Jul 2008 A1
20080182220 Chishti et al. Jul 2008 A1
20080182221 Chishti et al. Jul 2008 A1
20080187879 Chishti et al. Aug 2008 A1
20080206705 Kaza et al. Aug 2008 A1
20080248443 Chishti et al. Oct 2008 A1
20080259411 Karlsson Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080288289 Sah Nov 2008 A1
20080300716 Kopelman et al. Dec 2008 A1
20080305452 Sterental et al. Dec 2008 A1
20080305453 Kitching et al. Dec 2008 A1
20080306724 Kitching et al. Dec 2008 A1
20080316209 Wen Dec 2008 A1
20090148807 Babayoff et al. Jun 2009 A1
20090148809 Kuo et al. Jun 2009 A1
20090153858 Babayoff Jun 2009 A1
20090153879 Babayoff et al. Jun 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090191503 Matov et al. Jul 2009 A1
20090246726 Chelnokov et al. Oct 2009 A1
20090286196 Wen et al. Nov 2009 A1
20090316966 Marshall Dec 2009 A1
Foreign Referenced Citations (19)
Number Date Country
3522196 Feb 1986 DE
1 542 165 Jun 2002 EP
2368498 Sep 2011 EP
2005-161053 Jun 2005 JP
2005-261440 Sep 2005 JP
2006-051359 Feb 2006 JP
2006-506153 Feb 2006 JP
2006-512960 Apr 2006 JP
2007-061592 Mar 2007 JP
2007-509033 Apr 2007 JP
WO 9959106 Nov 1999 WO
WO 03028577 Apr 2003 WO
WO 03028577 Apr 2003 WO
WO 2004047025 Jun 2004 WO
WO 2004063990 Jul 2004 WO
WO 2005094436 Oct 2005 WO
WO 2006000063 Jan 2006 WO
WO 2007011314 Jan 2007 WO
WO 2007026598 Mar 2007 WO
Non-Patent Literature Citations (12)
Entry
“Radiation Dose Considerations in CT Imaging” by Jeffrey T. Seabourn, M.D. from Gem State Radiology—http://bluecoat-02/?cfru=aHR0cDovL3d3dy5pbWlyYWQubmV0L1BSRVNFTIRBVEIPTIMvUkFESUFUSU9OJTIwRE9TRSUyMENPTINJREVSQVRJT05TJTIwSUfIMjBDVCUyMEINQUdJTkcIMjAyMDEwLnBwdA==.
“Medical Image Registration” by J. Michael Fitzpatrick from the Dept of Electrical Engineering and Computer Science at Vanderbilt Univertiy, Nashville, TN—Published on Nov. 3, 2008—http://bluecoat-02/?cfru=aHR0cDovL2VIY3MudmFuZGVyYmIsdC5IZHUvcGVvcGxIL21pa2VmaXR6cGF0cmljay9wYXBIcnMvcmVnaXN0cmF0aW9uX292ZXJ2aWV3LnBwdA==.
“Medical Image Registration” by J. Michael Fitzpatrick from the Dept of Electrical Engineering and Computer Science at Vanderbilt Univertiy, Nashville, TN—Published on Nov. 3, 2008—http://bluecoat-02/?cfru=aHR0cDovL2V1Y3MudmFuZGVyYmIsdC5IZHUvcGVvcGxIL21pa2VmaXR6cGF0cmIjay9wYXBIcnMvcmVnaXN0cmF0aW9uX292ZXJ2aWV3LnBwdA==.
“Medical Image Registration” by J. Michael Fitzpatrick from the Dept of Electrical Engineering and Computer Science at Vanderbilt Univertiy, Nashville, TN—Published on Nov. 3, 2008—http://bluecoat-02/?cfru=aHR0cDovL2VIY3MudmFuZGVyYmIsdC51ZHUvcGVvcGxIL21pa2VmaXR6cGF0cmIjay9wYXBIcnMvcmVnaXN0cmF0aW9uX292ZXJ2aWV3LnBwdA==.
Schutyser et al., “Robust Visualization of the Dental Occlusion by a Double Scan Procedure,” MICCAI 2005, pp. 368-374, LNCS 3749, Springer-Verlag, Berlin Heidelberg.
Verstreken et al., “A Double Scanning Procedure for Visualisation of Radiolucent Objects in Soft Tissues: Application to Oral Implant Surgery Planning,” MICCAI 1998, pp. 985-995, LNCS 1496, Springer-Verlag, Berlin Heidelberg.
International Search Report for International Application No. PCT/EP2008/003135, mailed on Feb. 4, 2009, in 3 pages.
International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/EP2008/003135, issued on Oct. 20, 2009, in 7 pages.
Extended European Search Report for European Patent Application No. 07106650.0 dated Nov. 9, 2007, in 8 pages.
Maes, et al. “Multimodality image registration by maximilization of mutual information”. IEEE Transaction on Medical Imageing, vol. 16, No. 2, pp. 187-198.
Omura, et al., “Two Cases of Skeletal Class II Maklocclussion with Sever Ostoeorthrosis of TMJs Treated by Orthognatic Surgery”. The Japanese Society for Jaw Deformities, Japan, vol. 16, No. 1, p. 23-32. Apr. 2006.
Japanese Office Action, dated Jul. 17, 2015.
Related Publications (1)
Number Date Country
20110059413 A1 Mar 2011 US