The present invention relates to a method of designing a redox flow battery system including a redox flow battery to force electrolytic solution to be fed to and discharged from its cells. Particularly, the present invention relates to a method of designing a redox flow battery system that can reduce a battery system loss.
It is inherent in the electric power supply that power supply conforming to electricity consumption, what is called “simultaneous supply of equivalent electricity” is required. Meanwhile, developments of new energy resources, including power generation by wind and solar photovoltaic power generation, have been made increasingly in recent years. However, the power generation by wind, the solar photovoltaic power generation, and the like are all power sources which are irregular in output of power generation, due to which these power sources cannot serve as a satisfactory power supply source by themselves. Consideration is now being made on combination with some storage battery to stabilize the output of power generation. JP Laid-open (Unexamined) Patent Publication No. Sho 61-218070 describes the technique using a redox flow battery as the storage battery.
This publication describes that a lead storage battery, which does not need any moving parts, such as a pump and the like, is further annexed to the redox flow battery, in order to reduce a pump power loss and a loss caused by a shunt current, which contributes to reduction of combined efficiency of the redox flow battery, in response to input power.
In general, the redox flow battery is used for equalization of load or for countermeasure to voltage sag.
Positive electrode: V4+→V5++e−(Charge)V4+←V5++e−(Discharge)
Negative electrode: V3++e−→V2+(Charge)V3++e−←V2+(Discharge)
However, the annex of the lead storage battery for the purpose of improving reduction of efficiency caused by weak power generation or load power at the time of electric charge or discharge or preventing increase of a system loss at the time of electric charge or discharge, as in the technique disclosed in the publication above, causes the problems of not only increase in production costs but also increase in scale of facilities.
Driving the pump for feeding and discharging the electrolyte to and from the cells is absolutely necessary for the redox flow battery. Due to this, the conventional employs the annex of the lead storage battery to the power source which is irregular in output of power generation, while suffering from the disadvantages of increase in production costs and others.
In general, a system loss means a total of a battery loss and a converter loss. The technique described in the publication cited above takes a pump power loss and a shunt current loss into consideration as factors of the battery loss, but takes no thought of an efficiency loss caused by a battery resistance (cell resistance). In view of this, the system that can provide further reduced loss is being desired.
Meanwhile, there are some conventional facilities in which only the redox flow battery is combined with the power source which is irregular in output of power generation, without the lead storage battery annexed thereto, taking no thought of the reduction of efficiency caused by weak generated power or load power at the time of electric charge or discharge. In these facilities, no study is made on how great magnitude the storage battery should be for combination with the magnitude (output of power generation, variation in output of power generation, etc.) of the power source which is irregular in output of power generation, such as power generation by wind and solar photovoltaic power generation, and no design guideline thereof is provided. In the circumstances above, the redox flow battery is practically operated, combining with the storage battery of a reasonable magnitude, or specifically, a magnitude of output about one half the total output of power generation, but this operation induces a great system loss, leading to deterioration of system efficiency.
Also, it is common that no study is made on how great the magnitude of the converter should be for combination with the magnitude (output of power generation, variation in output of power generation, etc.) of the power source which is irregular in output of power generation, such as power generation by wind and solar photovoltaic power generation, and no design guideline thereof is provided. For this, the redox flow battery combined with the power source irregular in output of power generation takes no thought of the converter loss.
Further, no study has been made on the design guideline that can provide further reduction of the system loss for the redox flow battery used for equalization of load power or countermeasure to irregular variation in power consumption, such as voltage sag, as well as for the redox flow battery used for stabilization of output of power source which is irregular in output of power generation.
Additionally, a method of designing an optimum redox flow battery considering not only the system loss but also reduction of production costs and scale of the facilities is being desired.
It is a primary object of the present invention to provide a method of designing a redox flow battery that can provide a more optimal operation for the redox flow battery which is irregularly operated for stabilization of an output of power generation of a power source which is unstable in generated power, as well as for control of supply and demand of electricity.
It is another object of the present invention to provide a method of designing a redox flow battery system that can reduce a system loss caused by weak generation power or load power at the time of electric charge or discharge, without using the lead storage battery.
The present invention is defined on the basis of the knowledge given below.
The present invention is directed to a novel method of designing a redox flow battery system comprising a redox flow battery to force electrolytic solution to be fed to and discharged from its cells, comprising the steps of: first, determining an external parameter given by an operating condition of the redox flow battery a designer cannot choose voluntarily; then, determining an internal parameter given by a design condition of the redox flow battery the designer can design voluntarily; then, determining an average value of variables of the external parameter and standard deviation; and determining an optimum value of the internal parameter based on at least either of the resulting average value and the resulting standard deviation.
It has been thought to be impossible hitherto to take an improvement in increase of loss caused by weak generation power or load power at the time of electric charge or discharge, without using the lead storage battery annexed to a power source which is irregular in output of power generation. Also, there has been no knowledge of an optimum method for designing a redox flow battery which is irregularly operated not only for stabilization of output of that power source but also for control of supply and demand of electricity. After having studied the possibilities of improvement from various angles, the inventors have found that the characteristics of the battery system above (reduction in system loss) can be optimized by determining magnitudes (specified output, number of cells, etc.) of the redox flow battery, magnitudes (specified output, etc.) of the DC/AC converter, such as an inverter, and other operating conditions (flow rate of electrolyte for each cell, temperature of electrolyte, etc.) by the specified method mentioned above, leading to the accomplishment of the present invention. In the following, the present invention will be explained in further detail.
The external parameter is defined here as a parameter given by the operating condition of the redox flow battery the designer cannot choose voluntarily. The operating condition is properly varied depending on e.g. an atmosphere around the installation location of the redox flow battery, an intended application and purpose of the same battery, a user's demand, etc. To be more specific, for example, an outside air temperature at the installation location of the redox flow battery is an example of the parameter the designer cannot choose voluntarily. The others include the smoothing of an output of power generation of the generating equipment, such as power generation by wind and solar photovoltaic power generation, which varies irregularly in output of power generation, the equalization of load, and the countermeasure to voltage sag. These are the parameters which are determined depending on the user's demand for the intended applications and purposes, and the power generation and the power consumption in those applications and purposes can hardly be determined by the designer. Accordingly, related parameters to the parameters cited above, such as, for example, the battery output for smoothing the power generation of the generating equipment that varies irregularly in output of power generation, and the battery output for smoothing the power consumption of the load that varies irregularly in power consumption, are also the parameters the designer cannot determine voluntarily. Further, kW capacity and kWh of the redox flow battery are the parameters which are determined by the user's demand and cannot be determined by the designer voluntarily.
The external parameters that may be used include a parameter that takes a value that varies depending on a natural phenomenon, such as an outside air temperature at the installation location; a parameter that takes a value that depends on an irregular or stochastic phenomenon, such as, for example, a parameter that takes a value that varies temporarily, such as a battery output for smoothing irregular power generation or power consumption; and a parameter, such as kW capacity, that takes a fixed value. Thus, the external parameter may be only a parameter that takes a value that depends on a stochastic phenomenon, only a parameter that takes a fixed value, and, of course, a parameter that takes both of them, depending on the choice of the external parameter. Also, the external parameter may be used along or in combination of two or more.
The present invention defines, in particular, the external parameters including at least one of the parameters that take values that depend on the stochastic phenomenon as recited above. The external parameter may additionally include a parameter that takes a fixed value. It is assumed that the parameter that takes a value that depends on the stochastic phenomenon is given an average value and standard deviation (or variance). For example, when the battery output for smoothing the output of the power generation of the generating equipment that varies irregularly in output of power generation or the battery output for smoothing the power consumption of the load that varies irregularly in power consumption is chosen as the external parameter, the average value and the standard deviation can be determined from individual outputs that vary temporarily. The term of “individual outputs that vary temporarily” is intended to include, for example, a battery output (kW) at a point in time in a date, a sequent battery output (kW) at +one second after that, a further sequent battery output (kW) another +one second after, . . . . For example, when an outside air temperature at the installation location is chosen as the external parameter, the average and the standard deviation can be determined from individual ambient temperatures that vary temporarily. The term of “individual ambient temperatures that vary temporarily” is intended to include, for example, a temperature (K) at a point in time in a date, a sequent temperature (K) at +one second after that, a further sequent temperature (K) another +one second after, when examined at K (Kelvin) by the minute.
The external parameter having the average and the standard deviation as chosen for the application and purpose include, for example, those cited below. A battery output for smoothing the output of power generation of the generating equipment which varies irregularly in output of power generation can be cited as an external parameter for the application and purpose of smoothing the output of power generation of the generating equipment, such as power generation by wind and solar photovoltaic power generation, which varies irregularly in output of power generation. A battery output for smoothing the power consumption of the load that varies irregularly in power consumption can be cited as an external parameter for the application and purpose of equalizing the load power. An outside air temperature at the installation location can be cited as an external parameter for the application and purpose of countermeasure to voltage sag.
The phase of “smoothing the output of power generation” used herein is intended to mean that when an output of power generation exceeds a threshold as is preset for the output of power generation, the surplus output exceeding the threshold is charged in the battery, while on the other hand, when an output of power generation is less than the threshold, the output corresponding to the shortage is discharged from the battery. Also, the phase of “smoothing the power consumption” used herein is intended to mean that when power consumption exceeds a threshold as is also preset for the power consumption, the output corresponding to the shortage caused by the power consumption exceeding the threshold is discharged from the battery, while on the other hand, when power consumption is less than the threshold, the surplus output is charged in the battery. The same or different thresholds may be used for charging and discharging the battery. Also, the thresholds may be varied depending on the time required for the power generation and the output situation thereof.
The internal parameter is defined here as a parameter given by the design condition of the redox flow battery the designer can design voluntarily. To be more specific, the internal parameters that may be used include, for example, a specified output of the battery, the number of batteries, the number of cells, a fluid volume of an electrolytic solution reservoir tank, a flow rate of the electrolytic solution for each cell, a temperature of the electrolytic solution, a specified output of a DC/AC converter for converting the battery output, and the number of DC/AC converters for converting the battery output. Thus, the internal parameter is a parameter that takes a fixed value, differently from the external parameter. The internal parameter may be used alone or in combination of two or more.
Now, a method of calculating an optimum value of the internal parameter is explained concretely.
<1> The case where the external parameter is only a parameter that takes a fixed value:
Let the external parameter be represented as x1, x2, . . . x1, x2, . . . are all taken as fixed values different from each other: for example, x1: kW capacity, x2: k Wh capacity, . . . .
Let the internal parameter be represented as y1, y2, . . . y1, y2, are taken as the parameters different from each other: for example, y1: a specified output of battery, y2: a specified output of a DC/AV converter, . . . .
Let the characteristic function to evaluate the system be represented as f(x1, x2, . . . , y1, y2, . . . ). fincludes, for example, a system loss (efficiency), cost, and size. f includes at least one of these parameters.
Then, f is optimized when f takes a local extreme value, i.e., when ∂f/∂yi=0 or when yi takes a maximum value or a minimum value in a variable range. In the latter case, a value at a boundary of the variable range can be cited as a possible maximum value or a possible minimum value.
Hence, when the external parameter is a parameter that takes a fixed value, the optimum value of f can be easily determined by partial differentiation as mentioned above.
<2> The case where the external parameter includes a parameter that takes a value that depends on an irregular or stochastic phenomenon:
Let the internal parameter be represented as y1, y2, . . . in the same manner as in the above.
Then, if the characteristic function to evaluate the system f(x1, x2, . . . , y1, y2, . . . ) can be rewritten in the form of a new characteristic function g(x1, x2, . . . , xk1 ave, σxk12, xk2 ave, σxh22, . . . , xi ave, σxi2, y1, y2, . . . ) considering the average xi ave and the variance σxi2 of the external parameter xi, then g can be optimized when g takes a local extreme value, when ∂f/∂yi=0, or when yi takes a maximum value or a minimum value in a variable range.
Consequently, a possible condition for allowing f(x1, x2, . . . , y1, y2, . . . ) to be rewritten in the form g(x1, x2, . . xk1 ave, σxk12, xk2 ave, σxk22, . . . , xi ave, σxi2, y1, y2, . . . ) is set up, first.
Here, the parameter xi of the external parameters is assumed to have a value that depends on an irregular or stochastic phenomenon and also have an average value xiave and a variance σxi2. Then, it is assumed that xi can obtain individual temporarily variable values xi1, xi2, . . . , xiN.
Then, it is assumed that the average xi ave can be given by Eq. 1.1 and the variance σxi2 can be given by Eq. 1.2.
When the individual temporarily variable values xi1, xi2, . . . , xiN are rewritten in the form of xi1=xi ave+Δ1, xi2=xi ave+Δ2, . . . , xiN=xi ave+ΔN using an average xi ave and the difference Δj from the average xi ave, they can be rewritten as the following Eq. 1.3 and Eq. 1.4.
Then, when the characteristic function f(x1, x2, . . . , y1, y2, . . . ) to evaluate the system is expanded around xi ave, or with respect to xi ave+Δ, using Taylor expansion, Eq. 1.5 is given.
When expected values fave of the characteristic function f with respect to the individual values xi1, xi2, xiN of the external parameter xi are determined by using Eq. 1.5 above, Eq. 1.6 is obtained.
When Eq. 1.3 and Eq. 1.4 are substituted for Eq. 1.6 above, Eq. 1.7 is obtained.
Hence, it is derived from Eq. 1.7 that when third or more order derivatives of f(x1, x2, . . . xi, y1, y2, . . . ) at xi becomes zero, i.e., when the following Eq. 1.8 is satisfied, it is made possible to rewrite f(x1, x2, . . . , xi, Y1, y2, . . . ) in the form of g(x1, x2, . . . , xi ave, σxi2, y1, y2, . . . ).
This is the case where f(x1, x2, . . . , xi, y1, y2, . . . ) is in the form of a quadratic equation with respect to xi. Specifically, when
This indicates that the condition for allowing f(x1, x2, . . . , y1, y2, . . . ) to be rewritten in the form of g(x1, x2, . . . , xk1 ave, σxk12, xk2 ave, σxk22, . . . , xi ave, σxi2, y1, y2, . . . ) is obtained when f(x1, x2, . . . , xi, y1, y2, . . . ) comes to be in the form of quadratic equation with the external parameter xi having the average and the variance.
It should be noted that if f(x1, x2, . . . , xi, y1, y2, . . . ) does not exactly comes to be in the form of quadratic equation with respect to xi but comes near the quadratic equation, then second order derivatives will also be taken into consideration. Practically, there seems to be many cases where the quadratic equation is sufficient to approximate the actual properties. But, it is derived from Eq. 1.7 that a cubic or more equation can also be used to approximate the actual properties, considering the effect of terms higher than a quadratic term, specifically:
To give actual examples in the following:
(1) The case where f comes to be in the form of linear expression with respect to xi:
f=a·xi+b→g=a·xi ave+b
Hence, g has an optimum value obtained by the average xi ave.
(2) The case where f comes to be in the form of quadratic expression with respect to xi:
f=a·xi2+b·xi+c→g=a·xi ave2+b·xi ave+c+a·σxi2
Hence, g has an optimum value obtained by the average xi ave and the variance σxi2.
(3) The case where f comes to be in the form of cubic expression with respect to xi:
Hence, g has an optimum value obtained by the average xi ave, the variance σxi2, and
Although the case where a single external parameter having a value that depends on an irregular or stochastic phenomenon or a single parameter to which average and standard deviation are given is chosen among the external parameters has been described above, there may be the case where two or more external parameters are chosen among the external parameters. In this case, f can be rewritten in the form of quadratic expression concerning those parameters. Take the case where two external parameters to which average and standard deviation are given are chosen, for instance.
Let the external parameters to which average and standard deviation are given be represented as x, y. Also, let their averages and variants be represented as xave, yave, σx2, σy2, respectively. It is assumed that these parameters x, y are not correlated with each other.
Then, assuming that the characteristic function f(x, y) can be arranged in the form of quadratic function with two unknowns with respect to x and y, and letting a coefficient be represented as aij, it can be rewritten as follows.
When rearranging this in the form of x=xave+Δx, y=yave+Δy by using difference Δ between the individual temporarily variable values and the average and then substituting them for the function f,
When the terms of the function f above are expanded by using Taylor expansion, consideration of the effects of the averages and variants of the external parameters must be given to the expanded terms including Δx, Δy, Δx2, Δy2, ΔxΔy, ΔxΔy2, Δx2Δy, Δx2Δy2 as the coefficients.
The following change of variables is given to the respective expanded terms of the function f.
Δx→0 Δy→0 Δx2→σx2 Δy2→σy2 ΔxΔy→0 {circle over (1)}
ΔxΔy2→0 Δx2Δy→0 Δx2Δy2→σx2σy2 {circle over (2)}
In the change of variables {circle over (1)}, Δx→0, Δy→0, Δx2→σx2, Δy2→σy2 are determined from the definitions of the averages and the variances. ΔxΔy→0 is determined from the definition of “non-correlated”. As to the change of variables {circle over (2)}, it is assumed that the same change as above is given.
f(x, y) may be rewritten in the form of g(xave, yave, σx2, σy2) by using the change of variables of {circle over (1)} and {circle over (2)} above.
Following the sequences above, the calculation is made for optimization of the system. Particularly, when at least one of a specified output of battery, number of batteries, a specified output of DC/AC converter for converting the battery output, and number of DC/AC converters for converting the battery output is obtained from the battery output of the redox flow battery for smoothing output of power generation of generating equipment which varies irregularly in output of power generation, the following procedures may be taken. First, standard deviation of output distribution of the redox flow battery used for smoothing output of power generation of the generating equipment which varies irregularly in output of power generation is determined. Then, based on the resulting standard deviation, the at least one of the specified output of battery, the number of batteries, the specified output of DC/AC converter, and the number of DC/AC converters is determined.
It is preferable that the specified output of the DC/AC converter is in the range of not less than 1 time to not more than 4 times, or preferably in the range of not less than 1 time to not more than 2.5 times, of the standard deviation of the output distribution of the battery with respect to the smoothed output of power generation. Also, it is preferable that the specified output of the battery is in the range of not less than 0.7 time to not more than 2 times, or preferably in the range of not less than 0.9 time to not more than 1.5 times, of the standard deviation above. When the specified output of the converter or that of the redox flow battery satisfies the value specified above, the system loss can be reduced further, leading to further improvement in system efficiency. The specified output of the battery can be changed by changing area or dimension of the electrode, changing the number of cells arranged in series/parallel, and so on. The specified output of the converter can be changed by changing capacity of a semiconductor device used in the converter, changing the number of devices arranged in series/parallel, and so on.
In the following, an embodiment of the present invention is described.
(Outline of a Calculation Method of an Optimum Value of Internal Parameter)
(1) Choose x1, x2 as external parameter. Choose y1, y2 as internal parameter.
It is assumed that the external parameter x1 depends on an irregular or stochastic phenomenon and an average value x1ave and a variance σx12 are given. It is also assumed that the external parameter x2 is given a fixed value.
(2) A characteristic function to evaluate the system f (x1, x2, y1, y2) is determined and f is arranged in the form of quadratic equation with respect to x1.
f=a(x2, y1, y2)x12+b(x2, y1, y2)x1+c(x2, y1, y2)
(3) A new characteristic function g considering an average value x1ave and a variance σx12 of the external parameter x1 is given as follows.
g=a(x2, y1, y2)x1ave2+b(x2, y1, y2)x1ave+c(x2, y1, y2)+a(x2, y1, y2) σx12
(4) yi when the new characteristic function g takes an extreme value, i.e., yi when ∂f/∂yi=0, or a maximum value or a minimum value in a variable range of yi is a candidate for optimizing g. Then, yi to optimize g is an optimum value of the internal parameter.
In the following, the external parameter, the internal parameter, and the characteristic function f are respectively explained concretely. In the example, reference is made to a calculation method of an optimum value of the internal parameter that can optimize the system efficiency for the purpose of smoothing of an output of power generation of the generating equipment, such as the power generation by wind and the solar photovoltaic power generation, which varies irregularly in output of power generation.
(The Case Where an Output of Battery is Constant to a Smoothed Output of Electricity)
An output of battery (hereinafter it is referred to as battery output) for the smoothed output of power generation is chosen as the external parameter. Here, the battery output is considered to be constant. Also, a specified output of the redox flow battery, a specified output of the converter, a flow rate of electrolyte, and a temperature of the electrolyte are taken as the internal parameter.
With the system efficiency at the time of electric charge or discharge defined by {circle over (1)} battery output/(battery output+loss) and {circle over (2)} (battery output−loss)/battery output, and a loss rate defined by {circle over (3)} loss/battery output, the condition for maximizing the system efficiency or the condition for minimizing the loss rate is determined with respect to each definition. In any case, the system efficiency and the loss rate are partial-differentiated with respect to the battery output and the internal parameter to determine the condition for maximizing the system efficiency or the condition for minimizing the loss rate {circle over (1)} is described below, first.
Let the battery output be represented as x, the internal parameter as y, the loss as f(x, y), and the system efficiency at the time of electricity charge or discharge as η=x/(x+f). When the system efficiency is maximized, the efficiency takes a local extreme value. Hence, the condition for maximizing the system efficiency is ∂ η/∂ x=0, ∂ η/∂ y=0, or leads to the following equations 2.1 and 2.2:
It follows from the denominator (x+f)2>0 in Eq. 2.1 and Eq. 2.2 that the numerator=0. Hence, with respect to {circle over (1)}, the condition for maximizing the system efficiency is given when satisfying the following equations 2.3 and 2.4.
The same calculation was made to determine the conditions with respect to {circle over (2)} and {circle over (0)}. It was found therefrom that the conditions derived from the fact that when the system efficiency is maximized, the efficiency takes a local extreme value, or when the loss rate is minimized, the loss rate takes a local extreme value are both the same as the condition above. To be specific, those conditions also satisfied Eq. 2.3 and Eq. 2.4. This means that even when the definitions of the system efficiency are different and the figures themselves of the efficiency are different, or even when considering from the viewpoint of the loss rate, the system efficiency is maximized (the loss rate is minimized) with the same battery output and internal parameter. Hence, the loss rate can be determined by doing a mathematical simulation of the relation between the loss and the output and internal parameter of the redox flow battery and then dividing the resulting loss by the output of the AC end-cell battery. Shown in
As shown in
From the foregoing, it can be seen that in the case where the battery output is constant, the battery output and the internal parameter that can allow maximization of the system efficiency (minimization of the loss rate) or can allow minimization of the system loss can be determined.
(The Case Where the Battery Output Depends on a Stochastic Phenomenon)
Next, consideration will be given to the case where the output of power generation varies irregularly, or specifically, the case where the battery output has a probability distribution. Let the battery output at a regular time interval (Δt) be represented as x1, x2, . . . , xn, the internal parameter as y, the loss as f(x1,y),f(x2,y), . . . ,f(xn,y), and the system efficiency at the time of charge or discharge of electricity as η. The battery output x1, x2, . . . , xn has a probability distribution, so the average xave gives Eq. 3.1 and the variance σ2 gives Eq. 3.2. Then, when f(xi,y) is expanded around xave, using Taylor expansion, Eq. 3.3 is given.
It follows from Eq. 3.1 that Σxi=n·xave (Eq. 3.4) and from Eq. 3.3 that Σ f(xi,y) leads to Eq. 3.5.
Here, if n·xave of Eq. 3.4 is taken as x in the case where the battery output is constant and the corresponding part of Eq. 3.5 to Eq. 3.6 given below is taken as f(x,y), then the case where the battery output has a probability distribution can also be dealt with in the same manner as in the case where the battery output is constant.
Then, if f(x,y) is taken as a function with x, and the loss characteristic of the battery and that of the converter are practically taken as quadratic functions, then third or more order derivatives can be taken as substantially zero. To be specific, in the case where the probability distribution is considered, the loss characteristic which is to be dealt with by f(x)=a·x2+b·x+c (Eq. 3.7) with respect to a constant battery output x can be dealt with by g(xave, σ2)=a·xave2+b·xave+c+a·σ2 (Eq. 3.8) with respect to the battery output's average xave and variance σ2,
A redox flow battery system including generating equipment that varies irregularly in output of power generation, a redox flow battery for smoothing the irregular output of power generation, and a DC/AC converter for converting the battery output was produced, and the loss characteristic of the battery and that of the converter were examined.
A power generation by wind having a maximum output of power generation of 400 kW (specified output of power generation: 275 kW) was used as the generating equipment. A redox flow battery having the construction shown in
Distribution characteristic of charged/discharged power at the time of smoothing of output of power generation:
Then, the loss characteristic of the DC/AC converter was determined (by factory test). The results are shown in
The internal parameter that can keep the loss characteristic of the converter of the specified output of 275 kW is discussed further concretely. For example, the case where n converters of the specified output of 275 kW are arranged in parallel is considered as the internal parameter. Then, the output for each converter is 1/n. Then, the expected value of the loss characteristic for each converter is f(x)=1.22×10−4·(x/n)2−1.74×10−6·(x/n)+4.58. Then, the expected value of the total loss characteristics in the case where n converters of the specified output of 275 kW are arranged in parallel is f(x,n)=1.22×10−4/n·x2−1.74×10−6·x+4.58·n. Hence, g(xave, σ2,n)=1.22×10−4/n·(xave2+σ2)−1.74×10−6·xave+4.58·n. It follows from average: xave=0.9, variance σ2=54.12 that g(n)=1.22×10−4/n·(0.92+54.12)−1.74×10−6·0.9+4.58·n≈0.3572/n−1.57×10−6+4.58·n. Then, when finding n such that ∂ g/∂ n=0, −0.3572/n2+4.58=0, so n≈0.28.
A variable range of n is 0≦n≦∞. Then, 0 can be cited as a possible minimum value n, and infinity can be cited as a possible maximum value, but when n→0, g→∞, and when n→∞, g→∞, so n≈0.28 cited above is an optimum value.
This means that when 0.28 converter of the specified output of 275 kW is used, the loss can be minimized. In other words, when a converter of a specified output of 275×0.28≈77 kW is used, the loss can be minimized.
It can be seen from
(Determination of Number of Batteries and Flow Rate Per Unit Time)
Then, the loss characteristic of the redox flow battery was determined. The results are shown in
The loss characteristic of the battery can be determined from an approximated curve shown in
The internal parameter that can keep the loss characteristic of the battery of the specified output of 170 kW is discussed further concretely. For example, the case where n batteries of the specified output of 170 kW are arranged in parallel is considered as the internal parameter. Also, the flow rate of electrolyte per unit time for each cell is also determined for the operating condition. Then, the output for each battery is 1/n. Then, the loss characteristic for each battery is f(x)=a(x/n)2+b(x/n)+c. Then, the expected value of the total loss characteristics in the case where n batteries are arranged in parallel is f(x,n)=ax2/n+bx+cn. Coefficients a, b, c of f(x,n) are derived from an approximate expression shown in
The graph of
Then, it follows from FIGS. 5 and 6 that f(x,n,L)={(−1.673 L+6.0418)×10−4}/n·x2+{(−0.073 L+2.3918)×10−2}·x+{(1.3622 L−0.1795)×101}·n, where L(liter/min.) is a flow rate of the electrolyte for each cell.
Hence, g(xave, σ2, n,L)={(−1.672 L+6.0418)×10−4}/n·(xave2+σ2)+{(−0.073 L+2.3918)×10−2}·xave+{(1.3622 L=0.1795)×101}·n. It follows from average xave=0.9, variance σ2=54.12 that g(n,L)=(−0.490 L+1.769)/n+(−0.0657 L+2.153)×10−2+{(1.3622 L−0.1795)×101}·n. Then, when finding n such that ∂ g/∂ n=0, ∂ g/∂ n=−(−0.490 L+1.769)/n2+(13.622 L−1.795)=0, so, n={square root}{square root over ( )}{(−0.490 L+1.769)/(13.622 L−1.795)}.
Also, when finding n such that ∂ g/∂ L=0, ∂ g/∂ L=−0.490/n−0.000657+13.622·n=0. Then, it follows from n>0 that n≈0.19. Then, it follows from 0.19={square root over ( )}{(−0.490 L+1.769)/(13.622 L−1.795)} that L≈1.87(liter/min.).
Here, if the flow rate of electrolyte of the redox flow battery shown in this example is assumed to have a possible range of 0.8 to 1.15 liter/min., then L≈1.87 is a value outside the possible range. Hence, a possible optimum vale in the variable range of L is:
By substituting the value above for g(xave,σ2,n,L), an optimum value is obtained when (n,L)=(0.39,0.8).
This means that when 0.39 battery of the specified output of 170 kW is used and the flow rate of electrolyte is set at 0.8 liter/min., the loss can be minimized. In other words, when a battery of a specified output of 170×0.39≈66.3 kW is used, the loss can be minimized.
It can be seen from
From the foregoing, it was found that when the system charges or discharges electricity irregularly, with the average value of the charged/discharged power of the system of substantially zero, for stabilization of the power generation by wind and the like, the design of the internal parameters, such as the specified output of the battery, the specified output of the DC/AC converter, and the flow rate of the electrolyte, can be determined from the basic statistic, using the average value and the variance of the parameters of the battery output and so on which a designer cannot choose voluntarily. It was also confirmed that when at least either of the specified output of battery and the specified output of converter is determined taking the standard deviation into consideration, the system loss can be reduced. It was found to be particularly preferable that the specified output of battery is set to be in the range from not less than 0.7 time to not more than 2 times of standard deviation and the specified output of converter is set to be in the range from not less than 1 time to not more than 4 times of the standard deviation. This is because when the specified output of battery and the specified output of converter are in these ranges, respectively, the system loss is reduced further, leading to further improved system efficiency.
In the system of this example, if variation is smoothed to be about 1.5 times to about 2 times as in the example by e.g. increasing the number of windmills and time windows to be smoothed, then it is estimated that the converter loss will be reduced (5−2.5)/5=about 50% (Cf.
(Test Sample)
The system loss was examined, varying the specified output of the redox flow battery and the specified output of the DC/AC converter used in the example mentioned above. In the test, the power generation by wind was used for all samples, with its maximum output set at 400 kW and its specified output of power generation set at 285 kW. The specified outputs of the redox flow battery and converter used in the test, and the loss of the battery system used in the test are shown in TABLE 1.
In the samples No. 2 and No. 3, the specified output of the redox flow battery and the specified output of the DC/AC converter were determined from the standard deviation of the battery output determined in the example mentioned above. In the sample No. 2, the specified output of the battery was increased by 1.6 times of the standard deviation of 54.1 kW and the specified output of the converter was increased by 2.7 times of the standard deviation of the same. In the sample No. 3, the specified output of the battery was increased by 1.1 times of the standard deviation of 54.1 kW and the specified output of the converter was increased by 3.7 times of the standard deviation of the same. On the other hand, in the sample No. 1, the specified output of the battery and that of the converter were determined without any particular consideration of the standard deviation of the battery output. It was found from the test results that the samples No. 2 and No. 3 reduced the battery system loss to approximately half of the sample No. 1.
As explained above, the method of designing a redox flow battery system of the present invention can provide the advantageous result that the characteristic function to evaluate the system can be optimized by determining an optimum value of the internal parameter based on the average value of the external parameter and the standard deviation.
Particularly by determining the specified output of the battery and that of the DC/AC converter based on the average value of the battery output and the standard derivation, the system loss can be reduced. This enables the battery system loss to be reduced without annexing the lead storage battery to the system, as the related art does. This can provide a reduced scale of the hardware of the system and thus a more economic system, as compared with the related art. Further, since no lead storage battery is required, production costs can be reduced.
Number | Date | Country | Kind |
---|---|---|---|
2002-120157 | Apr 2002 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP03/05059 | 4/21/2003 | WO |