The invention relates to the predictive detection of driving situations located ahead for motor vehicles.
The unpublished application DE 10 2005 040 179.1 by the Applicant proposes a device for predictively determining a gear transmission ratio, wherein a correcting module is given a first proposed gear, drive/vehicle data as well as environment information about the current and anticipated driving environment. The environment data may be navigation data from navigation systems, by which a driving situation ahead is detected. Furthermore, the environment data may also be determined by environment sensors. In the correcting module, a driving situation is determined in a driving situation module from the data that is received. A driving situation corresponds, for example, to a curve ahead, the degree of curviness within a path ahead, a road gradient located ahead or a long straight path ahead. The application, however, does not explain how the driving situation located ahead is detected.
It is, therefore, the object of the present invention to enable a method for the predictive detection of a driving situation ahead.
This object is achieved with a method for detecting an anticipated driving situation in keeping with the characterizing features of the main claim; advantageous embodiments will be apparent from the dependent claims. With the help of the detected driving situation, advantageously electronic and/or mechanical vehicle systems can be influenced. In an advantageous embodiment, the method is used to influence a gear ratio in an electronically controlled transmission.
The method, according to the invention, presupposes a satellite-based navigation system. This system is either based on maps or comprises elsewhere electronically stored, location-specific data, such as that determined, for example, by learning systems. This location-specific data, also referred to as environment data, comprises information about the geometry of the road ahead, which is to say about the course of the road ahead or it comprises data from which information about the course of the road ahead can be calculated. Furthermore, it is necessary for the method that vehicle data, such as the vehicle speed and/or a signal which can be used to calculate the vehicle speed, is determined and made available.
The road course data describes, for example, the horizontal and/or vertical course of the path ahead. Taking this road course data and the vehicle data, particularly the vehicle speed, as well as the current degree of sportiness into consideration, the method through a function detects an anticipated driving situation, located ahead, within a variable path length of travel ahead for which the anticipated driving situation is supposed to be determined.
For this purpose, a function is defined for predictively determining the variable distance length of travel ahead, which is dependent at least upon the current vehicle speed and the current degree of sportiness. As a function of the current vehicle speed and the current degree of sportiness, the distance length of travel ahead can thus take on different values. The degree of sportiness typically provides information about the driving style of the driver. The degree of sportiness can be calculated either by an electronic system or it is defined by the driver through input, via a control element.
In one embodiment, additionally the validity of the present road course data is verified. The road course data is determined as a function of the variable distance length ahead and, furthermore, as a function of the environment data. If the present road course data is not valid, it is marked as invalid or is deleted.
In the event that either a relevant curve ahead or relevant curviness ahead is supposed to be detected as a relevant driving situation located ahead, advantageously the following criteria are taken into consideration. This means that either it is verified, in criterion 1, whether a projected future driving acceleration fulfills a transverse acceleration function, or it is verified, in criterion 2, whether the detected environment data fulfills a road course function. From the transverse acceleration function, an allowable transverse acceleration value is calculated as a function of the degree of sportiness and the vehicle speed. From the road course function, for example, a curve radius value is calculated as a function of the degree of sportiness and the vehicle speed. A curve is detected as being relevant if it meets one of the two criteria mentioned above.
In the event that a relevant curve ahead is supposed to be detected using the method, in one embodiment, a verification is carried out in a further step to determine whether the possible driving situation, detected by the function for detecting a driving situation, is in fact met. This function is referred to as a curve detection function, in this case. Whether the curve detection function is met will be verified as a function of the possible driving situation ahead, the vehicle speed and the road course data. If this is the case, the “curve detected” status is determined. In a further embodiment, a plausibility check of this verification can additionally be carried out with the help of further vehicle data.
For detecting a relevant curve ahead within the variable distance length of travel ahead, the curve detection function determines either the first, the tightest or the last curve within the variable distance length of travel ahead by way of criterion 1 or criterion 2.
During the verification to determine whether the conditions for a predictively determined curve in fact exist, advantageously the following steps are carried out. Starting from a first state, in which no curve is detected, it is evaluated whether the curve detection function is met. If this is the case, a second state is specified, which describes the situation that a curve ahead has been detected. In a subsequent step, it is then evaluated whether the second state has been specified, however the curve detection function is no longer met. If this is the case, a third state is specified, which prepares an exit from the second state. This exit is prepared such that a path, to be determined, is defined and must be followed. While following this path, that is to be determined, it is evaluated again whether the curve detection function is again met. If this is the case, the second status is specified again. If this is not the case, the first status is specified.
Optionally, the following further steps may be carried out. If the second state has been specified, however the curve ahead is evaluated as being invalid, a fourth state is assumed, which describes the situation that the detected curve is invalid. Thereafter, a safety path is determined, which the vehicle must follow and whereupon always the first state is specified. While following the safety path, the second state can no longer be specified. It is also possible to determine from the second state that a detected curve is invalid. Thereupon the fourth state is also specified, whereupon, as described above, the first state is always specified.
In the event that the method, according to the invention, is supposed to be used to detect the curviness of the path ahead, in a further embodiment all relevant curves within the variable length of travel ahead are determined with the corresponding function for detecting the upcoming driving situation. This function is referred to as a curviness function, in this case. The degree of curviness is derived from the sum of all detected relevant curves. The detected curves can be weighted in the order in which they were detected.
In a further embodiment, the degree of sportiness can also be represented by a fixed value. In one embodiment, the variable length of travel ahead, within which the anticipated driving situation is supposed to be determined, is limited toward the top and/or the bottom by at least one threshold value.
To further illustrate the method according to the invention, figures are attached to demonstrate the course of the method.
Reference Numerals
Number | Date | Country | Kind |
---|---|---|---|
10 2006 030 527.2 | Jul 2006 | DE | national |