The present application is related to and claims the priority benefit of German Patent Application No. 10 2017 100 269.3, filed on Jan. 9, 2017 and International Patent Application No. PCT/EP2017/082038, filed on Dec. 8, 2017, the entire contents of which are incorporated herein by reference.
The invention relates to a method for detecting an error state of an FMCW-based fill level measuring device, and to a fill level measuring device suitable for carrying out this method.
In automation technology—in particular, in process automation technology—field devices serving to detect and/or modify process variables are frequently used. In order to detect process variables, sensors are used, which are, for example, used in fill level measuring devices, flow rate measuring devices, pressure and temperature measuring devices, pH redox potential measuring devices, conductivity measuring devices, etc. They detect the respective process variables, such as the fill level, flow rate, pressure, temperature, pH value, redox potential, or conductivity. A variety of such field devices is manufactured and marketed by the Endress+Hauser company.
Contactless measuring methods have become established for the fill level measurement of filling materials in containers, since they are robust and low-maintenance (the term “containers” in the context of the invention also means non-sealed containers, such as, for example, basins, lakes or flowing bodies of water). Another advantage of contactless measuring methods lies in their ability to measure the fill level (L) virtually continuously, in other words, at a very high resolution. Accordingly, radar-based measuring methods are predominantly used for this purpose. An established measuring principle is the FMCW measuring principle (“frequency-modulated continuous wave”). It is based on the fact that a continuous radar transmission signal is emitted and the reflected radar received signal, which is reflected at the surface of the filling material, is compared with the instantaneous frequency of the transmission signal. Here the frequency of the radar transmission signal lies within a fixed frequency band in the range of a standardized center frequency (f0). The standard frequency bands used here are those in the 6 GHz band, the 26 GHz band, or the 79 GHz band. Characteristic of the FMCW method here is that the transmission frequency is not constant, but changes periodically within a frequency band. The change may in this case be linear and have a sawtooth or triangular shape; however, a sinusoidal change can also be used depending on the application.
In the case of the FMCW-based fill level measuring method, a particular challenge is to be certain of distinguishing the measurement signal from interference signals. Erroneous measured values can be generated due to interference signals from corresponding sources of error, due to which the operability of the filling level measuring device is impaired. A major cause in this case is the reception of interference signals which are caused by the transmission signal being reflected on disturbing bodies, such as agitators or internal fittings in the container. However, interference signals can also occur within devices, if, for example, the source of error is feedback in the antenna unit.
In the meantime, in the case of FMCW-based fill level measurement many technical approaches now exist for filtering interference signals in order to make correction of the received signal possible. International publication WO 2012/139852 A1 accordingly discloses a method for calibrating FMCW-based fill level measuring devices in which a unique reference measurement signal can be generated—even during normal measuring operation—by means of an oscillating reference reflector which is positioned between measuring device and filling material.
German patent application DE 10 2008 050 117 A1 describes a method for correcting internal interference signals of the fill level measuring device. The method described therein is based on measuring a reference measurement signal in a maximally absorbent test environment, and then generating a correction curve on the basis of the reference signal.
Although interference signals can possibly be compensated by means of the said methods, aging or contamination of the fill level measuring device changes the interference signals over time. It is, therefore, interesting to carry out the correction during ongoing operation and in the event of a change in the compensation values to conclude an error state is present. The detection of such an error state is particularly desirable in the case of fill level measuring devices which are used in critical process equipment for which a high degree of reliability is required. The necessary requirements for such an application are described, for example, in the IEC/EN 61508 standard for functional safety (also known as the safety integrity level or SIL).
The object of the invention is therefore to provide a method by means of which an error state in FMCW-based fill level measuring devices can be detected.
The invention solves this problem by a method for detecting an error state in an FMCW-based fill level measuring device. It comprises at least the following method steps:
Within the context of the invention, an error state is defined as a state of the fill level measuring device in which it is not ensured that the fill level measuring device is determining a correct fill level L. Within the context of the invention, the reference measurement signal (sref1, sZF1, sref2, sZF2) in principle is to be understood as any signal which under at least one defined reference condition is transmitted, received and processed by the fill level measuring device in order to determine the fill level L.
The method according to the invention thus makes it possible to detect any error state in the fill level measuring device. In this way it is ensured that the fill level measuring device can be used even in critical process equipment with the high degree of reliability required.
Depending on how the characteristic parameter is defined, according to the invention various interference signals from potential sources of error, which can result in the error state, can be detected. It is not relevant in the context of the invention whether the characteristic parameter results from an internal or from an external (interference) signal of the fill level measuring device. Accordingly, within the context of the invention, it is possible to determine as a characteristic parameter in particular an amplitude (Apeak) and/or a frequency (fpeak) of a signal maximum (speak) of the respective reference measurement signal (sref1, sref2), and/or an envelope of the amplitude (AHüll), a phase position (ϕ) or a frequency of a low-frequency interference (fmean) the respective intermediate frequency reference measurement signal (sZF1, sZF2).
Within the context of the invention, a known minimum fill level (Lmin) (or its reaching) (or its attainment) can, for example, be defined as the reference measurement condition. A comparable, likewise conceivable reference measurement condition is that the reference measurement signal is determined as part of a calibration using a defined remote reference object. Alternatively, the reference measurement condition could also be a fully emptied container such that the reference measurement signal does not represent any fill level measured value but only for the most part external interference signals from outside the fill level measuring device. A further conceivable reference measurement condition, in which only internal sources of error of the fill level measuring device are reproduced, is to measure in a test environment in which any electromagnetic waves of the fill level measuring device are absorbed.
A development of the invention provides that, at least on the basis of the at least one characteristic value (Apeak, AHüll, fpeak, fmean, ϕ) and its change (ΔApeak, ΔAHüll, Δfpeak, Δfmean, Δϕ), an at least temporal change function (e.g. dApeak/dt) is created. Here, for the case whereby the change in the at least one characteristic value (ΔApeak, ΔAHüll, Δfpeak, Δfmean, Δϕ) does not exceed the predefined maximum change in characteristic value (e.g. ΔApeak,max), a remaining operating duration (Δtr) before the predefined maximum change in characteristic value (e.g. ΔApeak,max) is exceeded is calculated on the basis of the temporal change function (e.g. dApeak/dt).
This development is in other words based on the idea of approximating a remaining time period Δtr by determining the change in at least one specific characteristic parameter via at least two or more reference measurements, up to the duration at which the respective maximum change in characteristic value is likely to be exceeded and the error state of the fill level measuring device will thus occur. A precondition for this is that the change in the corresponding characteristic parameter at the time of the last reference measurement has not yet exceeded the maximum change in characteristic value.
By means of this development of the invention, an error state can thus already be predicted in advance in accordance with the principle of “predictive maintenance”. Here, one possibility for determining the change function (e.g. dApeak/dt) is to use a regression, in the simplest case a linear regression. In general, however, the choice of a suitable regression type (i.e. exponential, logarithmic, etc. as well) within the meaning of the invention is not limited to linear regression, but rather depends on the individual course of the change in a particular characteristic parameter. Accordingly, the method of least squares can be used to perform the regression and/or to determine a suitable regression type.
In particular, in order to determine a change function (e.g. dApeak/dt) more accurately, it is advantageous according to the invention if in each case not only a second, but additionally a further reference measurement signal (sref3−srefn) is determined as soon as the at least one predefined reference measurement condition prevails again.
Within the context of the invention it is also possible to create a first correction curve by means of the first reference measurement signal (sref1, sZF1) and a second correction curve by means of the second reference measurement signal (sref2, sZF2). By means of the respective correction curve, the measurement signal, on the basis of which the fill level L is determined in the regular measuring operation, could be corrected by the interferences appearing in the reference signals (sref1, sZF1, sref2, sZF2).
In this case, it is also possible, according to the invention, to determine the change in the at least one characteristic value (ΔApeak, ΔAHüll, Δfpeak, Δfmean, Δϕ) not (exclusively) on the basis of the reference measurement signals (sref1, sref2 sZF1, sZF2), but (possibly additionally) on the basis of the first correction curve and the second correction curve.
The object underlying the invention is achieved analogously to the method according to the invention by a fill level measuring device which is suitable for carrying out the method described above in at least one of these variants. Accordingly, it comprises at least:
The invention will be explained in more detail below with reference to the following figures. The following is shown:
To assist in understanding the method according to the invention, a typical arrangement of a fill level measuring device 1 on a container 2 and operating according to the FMCW measuring principle is shown first in
The fill level measuring device 1 is arranged on the container 2 in such a way that in the direction of the surface of the filling material 3 it emits a radar transmission signal sHF typical of FMCW. After reflection of the radar transmission signal sHF at the filling material surface (or undesirably at a disruptive body inside the container 2, such as, for example, an inflow pipe 21 projecting into the container), the fill level measuring device 1 receives a radar received signal EHF. In this case, as is characteristic of FMCW, the frequency difference between the currently emitted radar transmission signal sHF and the radar received signal EHF is dependent on the distance d=h−L to the filling material surface.
As a rule, the fill level measuring device 1 is connected via a bus system, such as “PROFIBUS”, “HART” or “Wireless HART” to a superordinate unit 4, such as a process control system. Information about a possible error state of the fill level measuring device can on the one hand be communicated via this. On the other hand information about the fill level L can also be transmitted in order to control any inflows 21 and/or outflows 22 that may be present on the container 2.
The periodicity of the (sawtooth-shaped) change can here be, as is typical of the FMCW method, in an order of up to several 100 MHz. The frequency difference of the high-frequency signal sHF is preferably to be dimensioned as large as possible in this case, since the resolution of the level measurement can be increased by increasing the bandwidth. A generally higher frequency of the high-frequency signal sHF is thus advantageous with regard to the resolution since at higher frequencies a greater—as seen in absolute terms—frequency difference can be implemented.
Once it has been generated the high-frequency signal sHF is fed via a signal splitter 12 (and optionally a transmission amplifier 13) to a transmitting antenna 14. There, the high-frequency electrical signal sHF is converted into the actual radar transmission signal sHF and emitted accordingly.
During measurement operation, a radar received signal EHF is generated by the reflection of the radar transmission signal sHF at the surface of the filling material 3 (and/or at a disruptive body 21 inside the container 2, such as an inflow pipe 21 projecting into the container; see
The radar received signal EHF is received at a receiving antenna 15 of the fill level measuring device 1 and converted back into an electrical signal (which in turn can be optionally amplified by a receiving amplifier 16). This is subsequently mixed with the radio-frequency signal sHF, by means of a receiving mixer 17, wherein the high-frequency signal sHF is for this purpose branched off from a signal splitter 12. As a result, an intermediate frequency signal sZF1, sZF2 typical of the FMCW method is generated in each case whose frequency Fpeak is dependent on the distance d and thus enables measurement of the fill level L. If a suitable transmitting/receiving switch is used, it would of course also alternatively be possible to use a single transmitting/receiving antenna instead of a separate transmitting antenna 14 and receiving antenna 15. This could be realized in a classic manner as a horn antenna. Towards higher frequencies, or if the transmitting and receiving antennas 14, 15 are realized separately, a design as a planar antenna, in particular as a patch antenna or fractal antenna, is however advantageous.
In order to determine its frequency fpeak (or, if the radar transmission signal is possibly also reflected at disruptive bodies, a plurality of frequencies fpeak), the intermediate frequency signal sZF1, sZF2 will usually be subjected by a digitizing unit 18 to a (fast) Fourier transform and thus transferred into easily evaluable (reference) measurement signals sref1, sref2. At the same time an A/D conversion may also be carried out. The frequency spectra hereby resulting are shown schematically in
The frequency spectra in each case represent the signal strength or the amplitude A of a corresponding (reference) measurement signal sref1, sref2 as a function of the frequency f. The two frequency spectra shown in
It can be seen from the comparison of the two reference measurement signals sref1, sref2 in
One reason for an attenuation ΔApeak of the amplitude Apeak over the time interval between the two reference measurements could be, for example, a gradual formation of a crust on the transmitting antenna 14 and/or the receiving antenna 15 due to dusty filling material 3. A frequency change Δfpeak, on the other hand, could be attributed to an internal source of error of the fill level measuring device 1, for example, a detuning of the mixer 17.
By carrying out a reference measurement at least twice at a temporally appropriate interval, according to the invention, therefore, not only the at least one characteristic parameter (e.g. the frequency fpeak or the amplitude Apeak of the signal maximum speak) itself but also its (their) change(s) ΔApeak,Δfpeak over the time interval between the reference measurements are detected.
The core of the invention is that the change in characteristic value, for example, that of the amplitude ΔApeak, is compared with at least one predefined maximum change in characteristic value ΔApeak,max, Δfpeak,max, which is assigned to the respective characteristic value. In this case, the maximum change in characteristic value ΔApeak,max, Δfpeak,max represents a threshold value, after which a reliable level measurement is no longer possible and thus an error state of the fill level measuring device 1 has occurred.
In the case of a maximum amplitude change ΔApeak,max, this could be that amplitude value above which the amplitude Apeak of the signal maximum speak in a (reference) measurement signal has dropped down to a minimum amplitude Apeak,min, from which the signal maximum speak can no longer be unequivocally recognized on account of the signal-to-noise ratio. If, however, a maximum change in frequency Δfpeak,max is defined as the maximum change in characteristic value, this could be a maximum permitted change in frequency, up to which a defined minimum resolution of fill level measurement is guaranteed and accordingly no error state yet triggered.
If, on the other hand, the maximum change in characteristic value ΔApeak,max, Δfpeak,max is exceeded, this will be detected by a corresponding evaluation unit 19 (see
That, within the meaning of the invention, not only the intermediate frequency signals sZF1 sZF2, transformed into frequency spectra can be used for the determination of the characteristic parameter Apeak, fpeak in reference measurement but also “raw” intermediate frequency signals sZF1 sZF2 themselves, can be seen from
In
In general, however, the choice of a suitable regression type (i.e. exponential, logarithmic, etc. as well) within the meaning of the invention is not limited to linear regression, but is rather made to depend on the individual course of the change in a particular characteristic parameter (to find a suitable regression type and/or to perform the actual regression, for example, the least square method could be used).
Following the creation of the change function dApeak/dt, the expected remaining operating duration Δtr is thereby approximated (on the basis of the amplitude Apeak at the time of the last reference measurement) until the amplitude change ΔApeak becomes so great that the amplitude Apeak will have fallen below the minimum amplitude Apeak,min. By means of this development of the invention, therefore, an error state according to the principle of “predictive maintenance” can already be detected in advance.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 100 269.3 | Jan 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/082038 | 12/8/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/127356 | 7/12/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6684919 | Gaiser | Feb 2004 | B2 |
20090013778 | Schroth | Jan 2009 | A1 |
20090273506 | Delin | Nov 2009 | A1 |
20130213132 | Wegemann | Aug 2013 | A1 |
20160245909 | Aslett et al. | Aug 2016 | A1 |
20160292893 | Wennerberg | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
1535374 | Oct 2004 | CN |
101825486 | Sep 2010 | CN |
10255288 | Jul 2004 | DE |
102005003152 | Jul 2006 | DE |
102005049500 | May 2007 | DE |
102015202448 | Aug 2016 | DE |
2442129 | Apr 2012 | EP |
2631612 | Aug 2013 | EP |
1328776 | Feb 2016 | EP |
2009134202 | Nov 2009 | WO |
Entry |
---|
Porter et al., “Savitzky-Golay interpolation for smoothing values and derivatives”, Vector, the Journal of the British APL Association, vol. 25, No. Nov. 4, 2012 p. 107 (Year: 2012). |
Number | Date | Country | |
---|---|---|---|
20190360853 A1 | Nov 2019 | US |