The present disclosure pertains generally to methods of operating water heaters with a main gas valve and more particularly to methods of detecting a non-closing main gas valve in a water heater.
Water heaters are used in homes, businesses and just about any establishment having the need for heated water. A conventional water heater typically has at least one heating element or “heater,” such as a gas-fired burner and/or an electric resistive element. Each water heater also typically has at least one thermostat or controller for controlling the heater. The controller often receives signals related to the temperature of the water within the water heater, oftentimes from a temperature sensor that is thermally engaged with the water in the water heater. In some instances, a water heater may operate in accordance with a first temperature set point and a second temperature set point. When temperature signals from the temperature sensor indicate that the water temperature is below a first set point, the controller turns on the gas burner by opening a gas valve and the water within the water heater begins to heat. After some time, the water temperature within the water heater will increase to a second set point, at which point the controller typically causes the gas burner to reduce its heat output by partially closing the gas valve or, alternatively, causes the gas burner to turn off by closing the gas valve. This heat cycle begins again when the water temperature within the water heater drops below the first set point. In some cases, the gas valve may not completely close. A need remains for improved methods for detecting when the gas valve does not completely close.
The disclosure relates generally to systems for monitoring the performance, and hence the health, of a plurality of water heaters that may be distributed between a plurality of different buildings. In an example of the present disclosure, a water heater system includes a water tank and a main gas burner that is disposed proximate the water tank and is configured to heat water within the water tank. A main gas valve is configured to control a flow of gas to the main burner. A pilot gas burner is disposed proximate the main gas burner such that the pilot gas burner is positioned to ignite the main gas burner. A water temperature sensor is thermally coupled to water within the water tank and outputs a water temperature signal that is representative of a sensed water temperature within the water tank. A thermopile has a first portion that is positioned proximate a pilot flame that is produced by the pilot gas burner and a second portion that is positioned proximate a main burner flame that is produced by the main gas burner. The thermopile outputs a thermopile signal that is representative of a temperature difference between the first portion of the thermopile and the second portion of the thermopile. A controller is operably coupled with the main gas valve and is configured to receive the thermopile signal from the thermopile and the water temperature signal from the water temperature sensor. The controller is configured to cycle the main gas burner ON when the sensed water temperature falls to a temperature set point minus a dead band, and to cycle the main gas burner OFF when the sensed water temperature reaches the temperature set point. After the sensed water temperature reaches the temperature set point, and the controller cycles the main gas burner OFF, the controller is configured to monitor for a possible main gas valve non-closure condition where: (1) the sensed water temperature continues to rise; and (2) the thermopile signal from the thermopile reaches a stable state, and when the possible main gas valve non-closure condition is detected, the controller is configured to toggle the main gas valve ON and determine whether the thermopile signal from the thermopile changes from the stable state or not by at least a predetermined amount.
Another example of the present disclosure is a heating assembly for use with a water heater having a water tank. The heating assembly includes a main gas burner that is configured to heat water within the water tank and a main gas valve that is configured to control a flow of gas to the main gas burner. A pilot gas burner is disposed proximate the main gas burner such that the pilot gas burner is positioned to ignite the main gas burner. A water temperature sensor is configured to be thermally coupled to water within the water tank and outputs a water temperature signal representative of a sensed water temperature within the water tank. A thermopile has a first portion positioned that is proximate a pilot flame produced by the pilot gas burner and a second portion that is positioned proximate a main burner flame produced by the main gas burner and outputs a thermopile signal that is representative of a temperature difference between the first portion of the thermopile and the second portion. A controller is operably coupled with the main gas valve and is configured to receive the thermopile signal from the thermopile and the water temperature signal from the water temperature sensor. The controller is configured to cycle the main gas burner ON when the sensed water temperature falls to a temperature set point minus a dead band, and to cycle the main gas burner OFF when the sensed water temperature reaches the temperature set point. After the sensed water temperature reaches the temperature set point, and the controller cycles the main gas burner OFF, the controller is configured to monitor for a possible main gas valve non-closure condition where: (1) the sensed water temperature continues to rise; and (2) the thermopile signal from the thermopile reaches a stable state, and when the possible main gas valve non-closure condition is detected, the controller is configured to toggle the main gas valve ON and determine whether the thermopile signal from the thermopile changes from the stable state or not by at least a predetermined amount.
Another example of the present disclosure is a control module for a heating assembly of a water heater with a water tank, wherein the heating assembly includes a main gas burner configured to heat water within the water tank, a main gas valve configured to control a flow of gas to the main gas burner, a pilot gas burner disposed proximate the main gas burner such that the pilot gas burner is positioned to ignite the main gas burner, a water temperature sensor configured to be thermally coupled to water within the water tank, the water temperature sensor outputting a water temperature signal representative of a sensed water temperature within the water tank, and a thermopile having a first portion positioned proximate a pilot flame produced by the pilot gas burner and a second portion positioned proximate a main burner flame produced by the main gas burner, the thermopile outputting a thermopile signal that is representative of a temperature difference between the first portion of the thermopile and the second portion. The control module includes an output that is configured to provide control signals to the main gas valve, a first input that is configured to receive the thermopile signal from the thermopile and a second input that is configured to receive the water temperature signal from the water temperature sensor. A controller is operably coupled to the output, the first input and the second input and is configured to cycle the main gas burner ON via the output when the sensed water temperature falls to a temperature set point minus a dead band, and to cycle the main gas burner OFF via the output when the sensed water temperature reaches the temperature set point. After the sensed water temperature reaches the temperature set point, and the controller cycles the main gas burner OFF, the controller is configured to monitor for a possible main gas valve non-closure condition where: (1) the sensed water temperature continues to rise; and (2) the thermopile signal from the thermopile reaches a stable state. When the controller detects the possible main gas valve non-closure condition, the controller is configured to toggle the main gas valve ON via the output and determine whether the thermopile signal from the thermopile changes from the stable state or not by at least a predetermined amount.
The preceding summary is provided to facilitate an understanding of some of the features of the present disclosure and is not intended to be a full description. A full appreciation of the disclosure can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments of the disclosure in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements. The drawings, which are not necessarily to scale, are not intended to limit the scope of the disclosure. In some of the figures, elements not believed necessary to an understanding of relationships among illustrated components may have been omitted for clarity.
All numbers are herein assumed to be modified by the term “about”, unless the content clearly dictates otherwise. The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include the plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is contemplated that the feature, structure, or characteristic may be applied to other embodiments whether or not explicitly described unless clearly stated to the contrary.
In some cases, the water heater 10 may include a controller 30 that is operably coupled with the main gas valve 18 such that the controller 30 may regulate operation of the gas control unit. In some cases, the water heater 10 may include a thermopile 32 that is operably coupled to a flame produced by the main burner 24 as well as a flame produced by the pilot burner 34. It will be appreciated that the thermopile 32 may output a voltage that is related to a temperature difference across the thermopile 32. While shown schematically, the thermopile 32 may be positioned such that one end or portion of the thermopile 32 may be heated by a flame produced by the main burner 24 while another end or portion of the thermopile 32 may be heated by a flame produced by the pilot burner 34. Accordingly, and in some cases, when the main burner 24 and the pilot burner 34 are both producing a flame, there will be a relatively smaller temperature difference across the thermopile 32, and thus a relatively lower voltage produced by the thermopile 32. Conversely, when for example the pilot burner 34 is producing a flame but the main burner 24 is not, there will be a relatively larger temperature difference across the thermopile 32, and thus a relatively higher voltage produced by the thermopile 32. The thermopile 32 may provide a thermopile signal to the controller 30. In some cases, the thermopile signal may be a voltage signal, for example.
In some cases there may be a desire to confirm that the main burner 24 is actually completely OFF, as in some instances the main gas valve 18 may not completely stop gas flow to the main burner 24 when in the OFF position. For example, sediment may impair operation of a valve within the main gas valve 18. In some instances, flocculants within the water tank 12 may become heated, and then circulate within the water. If the heated flocculants contact the temperature sensor 28, a false temperature reading may occur. In operation, the controller 30 may be configured to cycle the main burner 24 ON by opening the main gas valve 18 when a sensed water temperature falls to a temperature set point minus a dead band, and to cycle the main burner 24 OFF by closing the main gas valve 18 when the sensed water temperature reaches the temperature set point. A dead band is used to prevent the main burner 24 from cycling on and off repeatedly in response to minor water temperature differences reported to the controller 30 via the water temperature sensor 28.
Once the sensed water temperature has reached the temperature set point, and the controller 30 has cycled the main burner 24 OFF in response to reaching the temperature set point, the controller 30 may be configured to monitor for a possible main gas valve non-closure condition in which the sensed water temperature continues to rise and the thermopile signal from the thermopile 32 reaches a stable state as this may indicate that the main burner 24 is still producing heat. This can be an indication that the main gas valve 18 did not completely close when directed to do so by the controller 30. When a possible main gas valve non-closure condition is detected, the controller 30 may be configured to toggle the main gas valve 18 ON and determine whether the thermopile signal from the thermopile 32 changes from the stable state or not by at least a predetermined amount. The value of the predetermined amount may be factory set, for example, and may represent a change in the thermopile signal from the thermopile 32 that varies by more than ten percent, more than twenty percent, and so on.
If the main gas valve 18 is working properly, toggling the main gas valve 18 ON will cause the water temperature within the water tank 12 to increase, and will cause the thermopile signal from the thermopile 32 to indicate a decreased temperature differential across the thermopile 32. If the main gas valve 18 is stuck open, togging the main gas valve 18 ON will have little or no effect on either the water temperature or the thermopile output from the thermopile 32.
In some cases, when the controller 30 detects a possible main gas valve non-closure condition, the controller 30 may be configured to toggle the main gas valve 18 ON for a predetermined period of time before toggling the main gas valve 18 OFF. The controller 30 may be configured to toggle the main gas valve 19 ON for a predetermined period of time, regardless of whether there is a call for heat before toggling the main gas valve 18 OFF. The pilot burner 34 may be a pilot light that is burning at all times. In some instances, the pilot burner 34 may instead be an intermittent pilot that is turned ON when the controller 30 is monitoring for a possible main gas valve non-closure condition. When a possible main gas-valve non-closure condition is detected, the controller 30 may be configured to issue an alert. This may be as simple as triggering a flashing light error code on the water heater 10 itself. In some cases, if the controller 30 is able to communicate with other devices such as via Bluetooth or WiFi, the controller 30 may transmit an alert to another device such as a homeowner's cell phone, for example.
In some cases, if the thermopile signal from the thermopile 32 changes from the stable state by the predetermined amount, the controller 30 may be configured to take one or more actions in response. For example, the controller 30 may lower a temperature set point. The controller 30 may increase a temperature cutoff temperature (TCO) at which point the controller 30 shuts down the main gas valve 18 after the sensed water temperature reaches the TCO. The controller 30 may increase the time that the sensed water temperature must remain above the TCO before the controller 30 shuts down the main gas valve 18. When the thermopile signal from the thermopile 32 does not change from the stable state by the predetermined amount, the controller 30 may be configured to shut down the main gas valve 18.
In some cases, the controller 30 may be further configured to store a steady state ON value for the thermopile signal at a time when the main gas burner 18 is ON for an extended time and to store a steady state OFF value for the thermopile signal at a time when the main gas burner is 18 OFF for an extended time with only the pilot gas burner 18 ON. The controller 30 may be configured to use the steady state OFF value and the steady state ON value to interpolate and/or extrapolate to a current position of the main gas valve 18 based on the current thermopile signal. The controller 30 may be further configured to periodically update the steady state ON value and the steady state OFF value in order to compensate for water heater performance changes over time.
The controller 30 is operably coupled with the main gas valve 18 and is configured to receive the thermopile signal from the thermopile 32 and the water temperature signal from the water temperature sensor 28. In some instances, the controller 30 may be configured to cycle the main gas burner 18 ON when the sensed water temperature falls to a temperature set point minus a dead band, and to cycle the main gas burner 18 OFF when the sensed water temperature reaches the temperature set point. The controller 30 may be configured to monitor for a possible main gas valve non-closure condition in which the sensed water temperature continues to rise while the thermopile signal from the thermopile reaches a stable state. When this occurs, the controller 30 is configured to toggle the main gas valve 18 ON and determine whether the thermopile signal from the thermopile 32 changes from the stable state or not by at least a predetermined amount.
Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2331718 | Newton | Oct 1943 | A |
2920126 | Hajny | Jan 1960 | A |
3272432 | Davidson | Sep 1966 | A |
3759279 | Smith, Jr. | Sep 1973 | A |
3833428 | Snyder et al. | Sep 1974 | A |
3847350 | Thompson | Nov 1974 | A |
3849350 | Matsko | Nov 1974 | A |
3909816 | Teeters | Sep 1975 | A |
3948439 | Heeger | Apr 1976 | A |
4127380 | Straitz, III | Nov 1978 | A |
4131413 | Ryno | Dec 1978 | A |
4204833 | Kmetz et al. | May 1980 | A |
4221557 | Jalics | Sep 1980 | A |
4305547 | Cohen | Dec 1981 | A |
4324207 | Leuthard | Apr 1982 | A |
4324944 | Weihrich et al. | Apr 1982 | A |
RE30936 | Kmetz et al. | May 1982 | E |
4333002 | Kozak | Jun 1982 | A |
4421062 | Pallida, Sr. | Dec 1983 | A |
4438728 | Fracaro | Mar 1984 | A |
4467178 | Swindle | Aug 1984 | A |
4483672 | Wallace et al. | Nov 1984 | A |
4507938 | Hama et al. | Apr 1985 | A |
4508261 | Blank | Apr 1985 | A |
4511790 | Kozak | Apr 1985 | A |
4568821 | Boe | Feb 1986 | A |
4588875 | Kozak et al. | May 1986 | A |
4638789 | Ueki et al. | Jan 1987 | A |
4655705 | Shute et al. | Apr 1987 | A |
4692598 | Yoshida et al. | Sep 1987 | A |
4696639 | Bohan, Jr. | Sep 1987 | A |
4734658 | Bohan, Jr. | Mar 1988 | A |
4742210 | Tsuchiyama et al. | May 1988 | A |
4770629 | Bohan, Jr. | Sep 1988 | A |
4778378 | Dolnick et al. | Oct 1988 | A |
4830601 | Dahlander et al. | May 1989 | A |
4834284 | Vandermeyden | May 1989 | A |
4906337 | Palmer | Mar 1990 | A |
4965232 | Mauleon et al. | Oct 1990 | A |
4977885 | Herweyer et al. | Dec 1990 | A |
4984981 | Pottebaum | Jan 1991 | A |
4986468 | Deisinger | Jan 1991 | A |
5007156 | Hurtgen | Apr 1991 | A |
5037291 | Clark | Aug 1991 | A |
5077550 | Cormier | Dec 1991 | A |
5103078 | Boykin et al. | Apr 1992 | A |
5112217 | Ripka et al. | May 1992 | A |
5125068 | McNair et al. | Jun 1992 | A |
5126721 | Butcher et al. | Jun 1992 | A |
5222888 | Jones et al. | Jun 1993 | A |
5232582 | Takahashi et al. | Aug 1993 | A |
5236328 | Tate et al. | Aug 1993 | A |
5280802 | Comuzie, Jr. | Jan 1994 | A |
5312036 | Trotter | May 1994 | A |
5317670 | Elia | May 1994 | A |
5391074 | Meeker | Feb 1995 | A |
5424554 | Marran et al. | Jun 1995 | A |
5442157 | Jackson | Aug 1995 | A |
5567143 | Servidio | Oct 1996 | A |
5622200 | Schulze | Apr 1997 | A |
5660328 | Momber | Aug 1997 | A |
5779143 | Michaud et al. | Jul 1998 | A |
5791890 | Maughan | Aug 1998 | A |
5797358 | Brandt et al. | Aug 1998 | A |
5857845 | Paciorek | Jan 1999 | A |
5896089 | Bowles | Apr 1999 | A |
5968393 | Demaline | Oct 1999 | A |
5971745 | Bassett et al. | Oct 1999 | A |
5975884 | Dugger | Nov 1999 | A |
6053130 | Shellenberger | Apr 2000 | A |
6059195 | Adams et al. | May 2000 | A |
6069998 | Barnes et al. | May 2000 | A |
6075923 | Wu | Jun 2000 | A |
6080971 | Seitz et al. | Jun 2000 | A |
6129284 | Adams et al. | Oct 2000 | A |
6208806 | Langford | Mar 2001 | B1 |
6212894 | Brown et al. | Apr 2001 | B1 |
6236321 | Troost, IV | May 2001 | B1 |
6261087 | Bird et al. | Jul 2001 | B1 |
6271505 | Henderson | Aug 2001 | B1 |
6286464 | Abraham et al. | Sep 2001 | B1 |
6293471 | Stettin et al. | Sep 2001 | B1 |
6299433 | Gauba et al. | Oct 2001 | B1 |
6350967 | Scott | Feb 2002 | B1 |
6351603 | Waithe et al. | Feb 2002 | B2 |
6363218 | Lowenstein et al. | Mar 2002 | B1 |
6371057 | Henderson | Apr 2002 | B1 |
6375087 | Day et al. | Apr 2002 | B1 |
6390029 | Alphs | May 2002 | B2 |
RE37745 | Brandt et al. | Jun 2002 | E |
6410842 | McAlonan | Jun 2002 | B1 |
6455820 | Bradenbaugh | Sep 2002 | B2 |
6553946 | Abraham et al. | Apr 2003 | B1 |
6560409 | Troost, IV | May 2003 | B2 |
6606968 | Iwama et al. | Aug 2003 | B2 |
6629021 | Cline et al. | Sep 2003 | B2 |
6631622 | Ghent et al. | Oct 2003 | B1 |
6633726 | Bradenbaugh | Oct 2003 | B2 |
6684821 | Lannes et al. | Feb 2004 | B2 |
6701874 | Schultz et al. | Mar 2004 | B1 |
6732677 | Donnelly et al. | May 2004 | B2 |
6794771 | Orloff | Sep 2004 | B2 |
6795644 | Bradenbaugh | Sep 2004 | B2 |
6835307 | Talbert et al. | Dec 2004 | B2 |
6845110 | Gibson | Jan 2005 | B2 |
6861621 | Ghent | Mar 2005 | B2 |
6880493 | Clifford | Apr 2005 | B2 |
6920377 | Chian | Jul 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
6936798 | Moreno | Aug 2005 | B2 |
6955301 | Munsterhuis et al. | Oct 2005 | B2 |
6959876 | Chian et al. | Nov 2005 | B2 |
6967565 | Lingemann | Nov 2005 | B2 |
6973819 | Ruhland et al. | Dec 2005 | B2 |
6995301 | Shorrosh | Feb 2006 | B1 |
7032542 | Donnelly et al. | Apr 2006 | B2 |
7065431 | Patterson et al. | Jun 2006 | B2 |
7076373 | Munsterhuis et al. | Jul 2006 | B1 |
7088238 | Karaoguz et al. | Aug 2006 | B2 |
7103272 | Baxter | Sep 2006 | B2 |
7117825 | Phillips | Oct 2006 | B2 |
7137373 | Seymour, II et al. | Nov 2006 | B2 |
7162150 | Welch et al. | Jan 2007 | B1 |
7167813 | Chian et al. | Jan 2007 | B2 |
7221862 | Miller et al. | May 2007 | B1 |
7252502 | Munsterhuis | Aug 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7298968 | Boros et al. | Nov 2007 | B1 |
7314370 | Chian et al. | Jan 2008 | B2 |
7317265 | Chian et al. | Jan 2008 | B2 |
7346274 | Bradenbaugh | Mar 2008 | B2 |
7373080 | Baxter | May 2008 | B2 |
7380522 | Krell et al. | Jun 2008 | B2 |
7432477 | Teti | Oct 2008 | B2 |
7434544 | Donnelly et al. | Oct 2008 | B2 |
7469550 | Chapman, Jr. et al. | Dec 2008 | B2 |
7497386 | Donnelly et al. | Mar 2009 | B2 |
7506617 | Paine | Mar 2009 | B2 |
7526539 | Hsu | Apr 2009 | B1 |
7561057 | Kates | Jul 2009 | B2 |
7603204 | Patterson et al. | Oct 2009 | B2 |
7613855 | Phillips et al. | Nov 2009 | B2 |
7623771 | Lentz et al. | Nov 2009 | B2 |
7634976 | Gordon et al. | Dec 2009 | B2 |
7672751 | Patterson et al. | Mar 2010 | B2 |
7712677 | Munsterhuis et al. | May 2010 | B1 |
7744007 | Beagen et al. | Jun 2010 | B2 |
7744008 | Chapman, Jr. et al. | Jun 2010 | B2 |
7770807 | Robinson et al. | Aug 2010 | B2 |
7798107 | Chian et al. | Sep 2010 | B2 |
7804047 | Zak et al. | Sep 2010 | B2 |
7818095 | Hotton et al. | Oct 2010 | B2 |
7902959 | Yamada et al. | Mar 2011 | B2 |
7932480 | Gu et al. | Apr 2011 | B2 |
7934662 | Jenkins | May 2011 | B1 |
7970494 | Fima | Jun 2011 | B2 |
7974527 | Adler | Jul 2011 | B1 |
8061308 | Phillips | Nov 2011 | B2 |
8074894 | Beagen | Dec 2011 | B2 |
8083104 | Roetker et al. | Dec 2011 | B2 |
8111980 | Bradenbaugh | Feb 2012 | B2 |
8165726 | Nordberg et al. | Apr 2012 | B2 |
8204633 | Harbin et al. | Jun 2012 | B2 |
8245987 | Hazzard et al. | Aug 2012 | B2 |
8322312 | Strand | Dec 2012 | B2 |
8360334 | Nold et al. | Jan 2013 | B2 |
8367984 | Besore | Feb 2013 | B2 |
8422870 | Nelson et al. | Apr 2013 | B2 |
8485138 | Leeland | Jul 2013 | B2 |
8498527 | Roetker et al. | Jul 2013 | B2 |
8600556 | Nesler et al. | Dec 2013 | B2 |
8606092 | Amiran et al. | Dec 2013 | B2 |
8660701 | Phillips et al. | Feb 2014 | B2 |
8667112 | Roth et al. | Mar 2014 | B2 |
8726789 | Clark | May 2014 | B2 |
8770152 | Leeland et al. | Jul 2014 | B2 |
9080769 | Bronson et al. | Jul 2015 | B2 |
9122283 | Rylski et al. | Sep 2015 | B2 |
9195242 | Zobrist et al. | Nov 2015 | B2 |
9228746 | Hughes et al. | Jan 2016 | B2 |
9249986 | Hazzard et al. | Feb 2016 | B2 |
9268342 | Beyerle et al. | Feb 2016 | B2 |
9310098 | Buescher et al. | Apr 2016 | B2 |
9435566 | Hill | Sep 2016 | B2 |
9797600 | Barels | Oct 2017 | B2 |
10151484 | Prichard | Dec 2018 | B2 |
10345007 | Hill | Jul 2019 | B2 |
20020099474 | Khesin | Jul 2002 | A1 |
20030093186 | Patterson et al. | May 2003 | A1 |
20040042772 | Whitford et al. | Mar 2004 | A1 |
20040079749 | Young et al. | Apr 2004 | A1 |
20060027571 | Miyoshi et al. | Feb 2006 | A1 |
20060272830 | Fima | Dec 2006 | A1 |
20070023333 | Mouhebaty et al. | Feb 2007 | A1 |
20070210177 | Karasek | Sep 2007 | A1 |
20070292810 | Maiello et al. | Dec 2007 | A1 |
20080003530 | Donnelly et al. | Jan 2008 | A1 |
20080023564 | Hall | Jan 2008 | A1 |
20080048046 | Wagner et al. | Feb 2008 | A1 |
20080197206 | Murakami et al. | Aug 2008 | A1 |
20090117503 | Cain | May 2009 | A1 |
20090191495 | Guzorek | Jul 2009 | A1 |
20100065764 | Canpolat | Mar 2010 | A1 |
20100163016 | Pan | Jul 2010 | A1 |
20110254661 | Fawcett et al. | Oct 2011 | A1 |
20110259322 | Davis et al. | Oct 2011 | A1 |
20110277706 | Arnold et al. | Nov 2011 | A1 |
20110305444 | Pussell | Dec 2011 | A1 |
20120060771 | Brian et al. | Mar 2012 | A1 |
20120060829 | DuPlessis et al. | Mar 2012 | A1 |
20120276488 | Virag et al. | Nov 2012 | A1 |
20130104814 | Reyman | May 2013 | A1 |
20140202549 | Hazzard et al. | Jul 2014 | A1 |
20140203093 | Young et al. | Jul 2014 | A1 |
20140212821 | Banu et al. | Jul 2014 | A1 |
20150083384 | Lewis, Jr. et al. | Mar 2015 | A1 |
20150120067 | Wing et al. | Apr 2015 | A1 |
20150276268 | Hazzard et al. | Oct 2015 | A1 |
20150277463 | Hazzard et al. | Oct 2015 | A1 |
20150354833 | Kreutzman | Dec 2015 | A1 |
20160260312 | Hazzard et al. | Sep 2016 | A1 |
20160305827 | Heil et al. | Oct 2016 | A1 |
20160342163 | Hazzard et al. | Nov 2016 | A1 |
20180100672 | Smith et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2158120 | Mar 1997 | CA |
201772614 | Mar 2011 | CN |
201909441 | Jul 2011 | CN |
102213489 | Oct 2011 | CN |
203203717 | Sep 2013 | CN |
0356609 | Mar 1990 | EP |
0531072 | Mar 1993 | EP |
0699316 | Jul 1999 | EP |
0967440 | Dec 1999 | EP |
1148298 | Oct 2004 | EP |
1621814 | Feb 2006 | EP |
1178748 | Oct 2006 | EP |
2108140 | Jun 2012 | EP |
2820206 | Aug 2002 | FR |
2211331 | Jun 1989 | GB |
07269854 | Oct 1995 | JP |
08264469 | Oct 1996 | JP |
2005283039 | Oct 2005 | JP |
2006084322 | Mar 2006 | JP |
2008008548 | Jan 2008 | JP |
2011220560 | Apr 2011 | JP |
1431223 | Mar 2014 | TW |
9718417 | May 1997 | WO |
2008102263 | Aug 2008 | WO |
2009022226 | Feb 2009 | WO |
2009061622 | May 2009 | WO |
2011104592 | Sep 2011 | WO |
Entry |
---|
“Results and Methodology of the Engineering Analysis for Residential Water Heater Efficiency Standards,” 101 pages, Oct. 1998. |
AO Smith, “IComm Remote Monitoring System, Instruction Manual,” 64 pages, Jun. 2009. |
U.S. Appl. No. 14/964,392, filed Dec. 9, 2015. |
Filibeli et al., “Embedded Web Server-Based Home Appliance Networks,” Journal of Network and Computer Applications, vol. 30, pp. 499-514, 2007. |
Halfbakery.com, “Hot Water Alarm,” 2 pages, Sep. 4, 2002. |
Heat Transfer Products Inc., “Specification for Heat Transfer Products, Inc., Vision 3 System,” 2 pages, Mar. 17, 2006. |
Hiller, “Dual-Tank Water Heating System Options,” ASHRAE Transactions: Symposia, pp. 1028-1037, Downloaded Nov. 16, 2012. |
Honeywell International Inc., “CS8800 General Assembly, Drawing No. 50000855,” 2 pages, Oct. 24, 2008. |
Honeywell International Inc., “Thermopile Assembly, Drawing No. 50006821,” 1 page, Jun. 18, 2010. |
Honeywell International Inc., “Thermopile Element, Drawing No. 50010166,” 1 page, Apr. 1, 2005. |
Honeywell International Inc., “Thermopile General Assembly, Drawing No. 50006914,” 1 page, Jan. 12, 2006. |
Honeywell International Inc., Photograph of a CS8800 Thermocouple Assembly, 1 page, saved Oct. 9, 2014. |
http://nachi.org/forum/f22/dual-water-heater-installations-36034/, “Dual Water Heater Installation,” 10 pages, printed Oct. 1, 2012. |
http://www.whirlpoolwaterheaters.com/learn_more/energysmartelectricwaterheateroperation.aspx, link no longer functions, “Energy Smart Electric Water Heater Operation,” 3 pages, prior to Nov. 13, 2012. |
http://www.whirlpoolwaterheaters.com/learn-more/eletric-water-heaters/6th-sense%E2% . . . , “Whirlpool Energy Smart Electric Water Heater, Learn More,” 3 pages, printed Jan. 15, 2015. |
Industrial Controls, “Basics of PID Control (Proportional+Integral+Derivative),” downloaded from https://web.archive.org/web/20110206195004/http://wwww.industrialcontrolsonline.com /training/online/basics-pid-control-proportionalintegralderivative, 4 pages, Feb. 6, 2011. |
InspectAPedia, “Guide to Alternative Hot Water Sources,” 6 pages, printed Oct. 1, 2012. |
Johnson Controls, “K Series BASO Thermocouples, Heating Line Product Guide 435.0, Thermocouples Section, Product Bulletin K Series,” 8 pages, Oct. 1998. |
Lennox, “Network Control Panel, User's Manual,” 18 pages, Nov. 1999. |
Moog, “M3000 Control System, RTEMP 8, Remote 8-Channel Temperature Controller with CanOpen Interface,” 6 pages, Nov. 2004. |
Process Technology, “Troubleshooting Electric Immersion Heaters,” downloaded from http://www.processtechnology.com/troubleshootheaters.html, 3 pages, Mar. 22, 2010. |
Raychem, “HWAT-ECO,” Tyco Thermal Control, 4 pages, 2012. |
Reliance Water Heaters, “Service Handbook for Standard Residential FVIR Gas Water Heaters, Models: G/LORT, G/LORS, G/LBRT, G/LBRS, G/LBCT, G/LBCS, G/LKRT, G/LKRS, G/LKCT, G/LART, G/LARS, G/LXRT, GLQRT—Series 200/201 and Series 202/203,” 44 pages, Nov. 2009. |
Techno Mix, “Installation-Series and Parallel,” downloaded from www.chinawinds. co.uk/diy_tips/installation_series_and_parallel.html, 5 pages, printed Oct. 1, 2012. |
Triangle Tube, “Prestige Solo Condensing High Efficiency Gas Boiler,” 4 pages, revised Apr. 30, 2012. |
International Search Report and Written Opinion for PCT Application No. PCT/US2017/055446, dated Jan. 4, 2018. |
U.S. Appl. No. 14/689,896, filed Apr. 17, 2015. |
U.S. Appl. No. 15/061,520, filed Mar. 4, 2016. |
U.S. Appl. No. 15/166,110, filed May 26, 2016. |
Number | Date | Country | |
---|---|---|---|
20200386446 A1 | Dec 2020 | US |