1. Field of the Invention
The invention relates to detecting abnormality in a fabric treatment appliance having a steam generator.
2. Description of the Related Art
Some fabric treatment appliances, such as a washing machine, a clothes dryer, and a fabric refreshing or revitalizing machine, use steam generators for various reasons. The steam from the steam generator can be used to, for example, heat water, heat a load of fabric items and any water absorbed by the fabric items, dewrinkle fabric items, remove odors from fabric items, sanitize the fabric items, and sanitize components of the fabric treatment appliance.
A common problem associated with steam generators involves the formation of deposits, such as scale and sludge, within the steam generation chamber. Water supplies for many households may contain dissolved substances, such as calcium and magnesium, which can lead to the formation of deposits in the steam generation chamber when the water is heated. Scale and sludge are, respectively, hard and soft deposits; in some conditions, the hard scale tends to deposit on the inner walls of the structure forming the steam generation chamber, and the soft sludge can settle to the bottom of the steam generator. In addition to calcification of the steam generator, other problems associated with steam generators can include blockage or leaking of hoses coupling a water supply to the steam generator and coupling the steam generator to a fabric treatment receptacle, such as a tub of a washing machine, a closed or blocked water tap or water supply, and undervoltage of the steam generator heater, which can lead to low steam generating efficiency. If undetected, such problems can irritate users of the fabric treatment appliance and/or reduce operational life of the steam generator.
A method according to one embodiment of the invention of controlling the operation of a steam generator in a fabric treatment appliance comprises controlling the operation of the steam generator in response to a rate of temperature change of the steam generator.
In the drawings:
Referring now to the figures,
The tub 14 and/or the drum 16 may be considered a receptacle, and the receptacle may define a treatment chamber for receiving fabric items to be treated. While the illustrated washing machine 10 includes both the tub 14 and the drum 16, it is within the scope of the invention for the fabric treatment appliance to include only one receptacle, with the receptacle defining the treatment chamber for receiving the fabric items to be treated.
Washing machines are typically categorized as either a vertical axis washing machine or a horizontal axis washing machine. As used herein, the “vertical axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally vertical axis relative to a surface that supports the washing machine. Typically, the drum is perforate or imperforate and holds fabric items and a fabric moving element, such as an agitator, impeller, nutator, and the like, that induces movement of the fabric items to impart mechanical energy to the fabric articles for cleaning action. However, the rotational axis need not be vertical. The drum can rotate about an axis inclined relative to the vertical axis. As used herein, the “horizontal axis” washing machine refers to a washing machine having a rotatable drum that rotates about a generally horizontal axis relative to a surface that supports the washing machine. The drum may be perforated or imperforate, holds fabric items, and typically washes the fabric items by the fabric items rubbing against one another and/or hitting the surface of the drum as the drum rotates. In horizontal axis washing machines, the clothes are lifted by the rotating drum and then fall in response to gravity to form a tumbling action that imparts the mechanical energy to the fabric articles. In some horizontal axis washing machines, the drum rotates about a horizontal axis generally parallel to a surface that supports the washing machine. However, the rotational axis need not be horizontal. The drum can rotate about an axis inclined relative to the horizontal axis, with fifteen degrees of inclination being one example of inclination.
Vertical axis and horizontal axis machines are best differentiated by the manner in which they impart mechanical energy to the fabric articles. In vertical axis machines, the fabric moving element moves within a drum to impart mechanical energy directly to the clothes or indirectly through wash liquid in the drum. The clothes mover is typically moved in a reciprocating rotational movement. In horizontal axis machines mechanical energy is imparted to the clothes by the tumbling action formed by the repeated lifting and dropping of the clothes, which is typically implemented by the rotating drum. The illustrated exemplary washing machine of
With continued reference to
The washing machine 10 of
The exemplary washing machine 10 may further include a steam generation system. The steam generation system may include a steam generator 60 that may receive liquid from the water supply 29 through a second supply conduit 62, optionally via a reservoir 64. The inlet valve 34 may control flow of the liquid from the water supply 29 and through the second supply conduit 62 and the reservoir 64 to the steam generator 60. The inlet valve 34 may be positioned in any suitable location between the water supply 29 and the steam generator 60. A steam conduit 66 may fluidly couple the steam generator 60 to a steam inlet 68, which may introduce steam into the tub 14. The steam inlet 68 may couple with the tub 14 at any suitable location on the tub 14 and is shown as being coupled to a rear wall of the tub 14 in
An optional sump heater 52 may be located in the sump 38. The sump heater 52 may be any type of heater and is illustrated as a resistive heating element for exemplary purposes. The sump heater 52 may be used alone or in combination with the steam generator 60 to add heat to the chamber 15. Typically, the sump heater 52 adds heat to the chamber 15 by heating water in the sump 38. The tub 14 may further include a temperature sensor 54, which may be located in the sump 38 or in another suitable location in the tub 14. The temperature sensor 54 may sense the temperature of water in the sump 38, if the sump 38 contains water, or a general temperature of the tub 14 or interior of the tub 14. The tub 14 may alternatively or additionally have a temperature sensor 56 located outside the sump 38 to sense a general temperature of the tub or interior of the tub 14. The temperature sensors 54, 56 may be any type of temperature sensors, which are well-known to one skilled in the art. Exemplary temperature sensors for use as the temperature sensors 54, 56 include thermistors, such as a negative temperature coefficient (NTC) thermistor.
The washing machine 10 may further include an exhaust conduit (not shown) that may direct steam that leaves the tub 14 externally of the washing machine 10. The exhaust conduit may be configured to exhaust the steam directly to the exterior of the washing machine 10. Alternatively, the exhaust conduit may be configured to direct the steam through a condenser prior to leaving the washing machine 10. Examples of exhaust systems are disclosed in the following patent applications, which are incorporated herein by reference in their entirety: U.S. patent application Ser. No. 11/464,506, titled “Fabric Treating Appliance Utilizing Steam,” U.S. patent application Ser. No. 11/464,501, titled “A Steam Fabric Treatment Appliance with Exhaust,” U.S. patent application Ser. No. 11/464,521, titled “Steam Fabric Treatment Appliance with Anti-Siphoning,” and U.S. patent application Ser. No. 11/464,520, titled “Determining Fabric Temperature in a Fabric Treating Appliance,” all filed Aug. 15, 2006.
The steam generator 60 may be any type of device that converts the liquid to steam. For example, the steam generator 60 may be a tank-type steam generator that stores a volume of liquid and heats the volume of liquid to convert the liquid to steam. Alternatively, the steam generator 60 may be an in-line steam generator that converts the liquid to steam as the liquid flows through the steam generator 60. As another alternative, the steam generator 60 may utilize the sump heater 52 or other heating device located in the sump 38 to heat liquid in the sump 38. The steam generator 60 may produce pressurized or non-pressurized steam.
Exemplary steam generators are disclosed in U.S. patent application Ser. No. 11/464,528, titled “Removal of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” U.S. patent application Ser. No. 11/450,836, titled “Prevention of Scale and Sludge in a Steam Generator of a Fabric Treatment Appliance,” and U.S. patent application Ser. No. 11/450,714, titled “Draining Liquid From a Steam Generator of a Fabric Treatment Appliance,” all filed Jun. 9, 2006, in addition to U.S. patent application Ser. No. 11/464,509, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance,” U.S. patent application Ser. No. 11/464,514, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Weight Sensor,” and U.S. patent application Ser. No. 11/464,513, titled “Water Supply Control for a Steam Generator of a Fabric Treatment Appliance Using a Temperature Sensor,” all filed Aug. 15, 2006, which are incorporated herein by reference in their entirety.
In addition to producing steam, the steam generator 60, whether an in-line steam generator, a tank-type steam generator, or any other type of steam generator, may heat water to a temperature below a steam transformation temperature, whereby the steam generator 60 produces heated water. The heated water may be delivered to the tub 14 and/or drum 16 from the steam generator 60. The heated water may be used alone or may optionally mix with cold or warm water in the tub 14 and/or drum 16. Using the steam generator 60 to produce heated water may be useful when the steam generator 60 couples only with a cold water source of the water supply 29. Optionally, the steam generator 60 may be employed to simultaneously supply steam and heated water to the tub 14 and/or drum 16.
The liquid supply and recirculation system and the steam generation system may differ from the configuration shown in
Other alternatives for the liquid supply and recirculation system are disclosed in U.S. patent application Ser. No. 11/450,636, titled “Method of Operating a Washing Machine Using Steam;” U.S. patent application Ser. No. 11/450,529, titled “Steam Washing Machine Operation Method Having Dual Speed Spin Pre-Wash;” and U.S. patent application Ser. No. 11/450,620, titled “Steam Washing Machine Operation Method Having Dry Spin Pre-Wash,” all filed Jun. 9, 2006, which are incorporated herein by reference in their entirety.
Referring now to
Many known types of controllers may be used for the controller 70. The specific type of controller is not germane to the invention. It is contemplated that the controller is a microprocessor-based controller that implements control software and sends/receives one or more electrical signals to/from each of the various components (inlet valve 34, detergent dispenser 32, steam generator 60, pump 44, motor 22, control panel 80, and temperature sensors 54, 56) to effect the control software. As an example, proportional control (P), proportional integral control (PI), and proportional derivative control (PD), or a combination thereof, a proportional integral derivative control (PID control), may be used to control the various components.
With continued reference to
The steam generator 60 may be employed for steam generation during operation of the washing machine 10, such as during a wash operation cycle, which can include prewash, wash, rinse, and spin steps, during a washing machine cleaning operation cycle to remove or reduce biofilm and other undesirable substances, like microbial bacteria and fungi, from the washing machine, during a refresh or dewrinkle operation cycle, or during any other type of operation cycle. The steam generator may also be employed for generating heated water during operation of the washing machine 10. The steam generator 60 may also be employed to clean itself, and an example of a method for cleaning the steam generator 60 is disclosed in the U.S. patent application titled “Method for Cleaning a Steam Generator,” having reference number 71354-0576/US20070340, which is incorporated herein by reference in its entirety.
As the degree of calcification of the steam generator 60 increases, the steam generator 60 or associated hoses, such as the steam conduit 66 (
For detection of at least one of the abnormalities based on the temperature variation of the steam generator 60, the controller 70 monitors the actual temperature of the steam generator 60, which may be determined by the temperature sensors 122 or other temperature detection devices, and determines the rate of change of the actual temperature (i.e., the slope of the actual temperature as a function of time, also referred to as a temperature gradient). Based on the rate of change of the actual temperature, the controller 70 may determine whether an abnormality has occurred. For example, the controller 70 may compare the rate of change of the actual temperature to one or more predetermined limits or values and, based on the comparison, determine whether an abnormality has occurred. Identification of an abnormality may be made, for example, if the rate of change exceeds the predetermined limit and/or if the rate of change exceeds the predetermined limit for a predetermined period of time. The predetermined limits may be empirically determined and may be dependent on the operational phase of the steam generator. For example, the predetermined limit may be employed during the entire operation of the steam generator 60 or during only one or more phases of the steam generator 60, such as during the steam generation phase but not the initial phase as the actual temperature typically rapidly increases during the initial phase. The controller 70 may detect the operational phase based on the actual temperature of the steam generator 60 for determining the predetermined limits to be employed. For example, when the actual temperature is below a predetermined temperature, the controller 70 may conclude that the current operational phase is the initial phase. The controller 70 may perform any desirable action in response to detection of an abnormality, and the action may depend on the type of abnormality detected. For example, the controller 70 may shut off power to the steam generator 70 and/or may communicate to the user that an abnormality has occurred, such as via the control panel 80.
Referring now to
For detection of at least one of the abnormalities based on the temperature variation of the receptacle or tub 14, the controller 70 monitors the temperature of the tub 14, which may be determined by at least one of the temperature sensors 54, 56 or other temperature detection devices, and determines the rate of change of the temperature (i.e., the slope of the temperature as a function of time, also referred to as a temperature gradient). Based on the rate of change of the temperature, the controller 70 may determine whether an abnormality has occurred. For example, the controller 70 may compare the rate of change of the temperature to a predetermined limit or value and, based on the comparison, determine whether an abnormality has occurred. Identification of an abnormality may be made, for example, if the rate of change does not reach or exceed the predetermined limit within a predetermined period of time, thereby indicating that an abnormality prevents steam from the steam generator 60 from heating the tub 14, the interior of the tub 14, and/or wash water in the tub 14. The predetermined limit and predetermined period of time may be empirically determined. The controller 70 may perform any desirable action in response to detection of an abnormality, and the action may depend on the type of abnormality detected. For example, the controller 70 may shut off power to the steam generator 70 and/or may communicate to the user that an abnormality has occurred, such as via the control panel 80.
The methods described above for detection of abnormalities of the washing machine 10 and/or the steam generator 60 may be employed individually or together in various combinations. Further, the methods may be utilized in various types of fabric treatment appliances having various types of steam generators and are not limited for use with the washing machine 10 and the steam generator 60 described above and shown in the figures.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.