This patent application claims priority from Italian patent application no. 102020000027546 filed on 17 Nov. 2020, the entire disclosure of which is incorporated herein by reference.
The present invention concerns a method for detecting and/or quantifying a metal element in a biological liquid (whole blood, serum, plasma, urine, saliva, sweat, breast milk), preferably selected from the group consisting of blood, plasma and serum, comprising contacting the biological liquid with at least one fluorinated acid substance and detecting by means of an electroanalytical sensor a current signal proportional to the amount of metal element in the biological liquid.
The possibility of detecting and quantifying metal ions in biological liquids such as, for example, blood, plasma and serum, in a simple and inexpensive manner is of fundamental importance in diagnostics both in the context of systems for “out of the lab” diagnosis (point-of-care devices for home care, or in pharmacies and surgeries), and in diagnostic laboratories.
Sensor technologies with electrochemical detection modes designed specifically for measuring metals, in particular iron, in the blood are currently not widely available on the market. Due to the physical-chemical characteristics of iron, however, an electrochemical method would guarantee a higher accuracy with respect to the colorimetric methods currently in use. For the determination of iron, in fact, the gold standard used in the laboratory is by atomic absorption or, more frequently, with the colorimetric method that uses the Ferene technique (most widespread). The method with Ferene-based colorimetric technique was described for the first time in 1984 (Serum Iron Determination Using Ferene Triazine—Frank E. Smith and John Herbert). This method uses at least two reagents and an ionophore substance (Ferene) binding the iron to perform the colorimetric measurement. It is therefore a complex method that requires time and costly machines, with low-specificity results and poor sensitivity.
There is therefore the need to develop a method that allows detection and quantification of the metal elements in biological liquids that can be applied both outside the laboratory and in the laboratory in emergency situations or in the case of small poorly equipped facilities. In particular, there is a strong demand for a method that is less costly, quicker and simpler, specific and selective and adaptable to non-specialized laboratories and environments in diagnostic terms. This demand is particularly felt in the case of the metal element iron.
Electrochemical sensors have been developed which can be made on polyester or cellulose supports, in particular paper, that represent both an inexpensive and environment-friendly solution. However, these sensors still require optimization, in particular for use in complex matrices like blood.
One object of the present invention is therefore to provide a method for detecting and/or quantifying a metal element, in particular iron, in a biological liquid preferably selected from the group consisting of blood, plasma and serum, which allows the above-mentioned problems to be solved simply and efficiently.
This object is achieved by means of the present invention relative to a method as defined in claim 1.
A further object of the present invention is to provide the use of a fluorinated acid substance, in particular trifluoroacetic acid (TFA), to detect and/or quantify a metal element in a biological liquid by means of an electroanalytical sensor as defined in claim 12.
The method for detecting and/or quantifying a metal element in a biological liquid, preferably selected from the group consisting of blood, plasma and serum, according to the present invention comprises the following steps: contacting the biological liquid with at least a fluorinated acid substance, applying the biological liquid and the fluorinated acid substance to an electroanalytical sensor or to a polarograph; detecting by means of the electroanalytical sensor or polarograph a current signal proportional to the quantity of metal element in the biological liquid.
Preferably, the method according to the present invention comprises the following steps: —contacting the biological liquid with at least a fluorinated acid substance; separating a protein-containing fraction of the biological liquid from a fraction of the biological liquid comprising the metal element and the at least one fluorinated acid substance; applying the fraction of the biological liquid comprising the metal element and the fluorinated acid substance to an electroanalytical sensor or to a polarograph; detecting by means of the electroanalytical sensor or polarograph a current signal proportional to the quantity of metal element in the biological liquid.
The method works with any type of electrochemical detection. In addition to the technique used in the examples (square wave voltammetry) it is possible to use other electrochemical techniques, specifically linear sweep voltammetry (LSV), normal pulse voltammetry (NPV) or differential pulse voltammetry. In the first case the potential applied varies linearly over time, increasing in a linear proportional manner over time. In the second case, pulses are applied with amplitude gradually increasing over time. Lastly, in the DPV, to generate the potential signal, a series of fixed amplitude pulses are used, along a linear scale. Lastly, stripping techniques can be used, namely techniques in which a fixed reduction (or oxidation) potential is firstly applied to pre-concentrate and deposit the metal in question on the surface of the working electrode. Subsequently a potential is applied in the form of one of the previously described voltammetry techniques for detecting the metal. The electroanalytical method can also be applied to polarographic systems that use adsorption working electrodes (graphite).
The metal element is preferably selected from the group consisting of iron, copper, selenium, zinc, manganese, caesium, rubidium, lead, cadmium and mercury. More preferably, the metal element is iron or copper. Even more preferably the metal element is iron. In particular, the method according to the invention allows detection and quantification of both the Fe2+ and the Fe3+.
The at least one fluorinated acid substance can be trifluoroacetic acid (TFA), trifluoropropionic acid, monofluoroacetic acid (MFA) or difluoroacetic acid (DFA). Preferably it is trifluoroacetic acid (TFA).
According to the present invention it has been shown for the first time that trifluoroacetic acid (TFA), like the trifluoropropionic acid, monofluoroacetic acid (MFA) and difluoroacetic acid (DFA), can be used effectively to detect and/or quantify a metal element in a biological liquid selected from the group consisting of blood, plasma and serum by means of an electroanalytical sensor.
When TFA is used, the concentration of TFA in the biological liquid preferably ranges from 240 to 280 millimoles, more preferably 260 millimoles.
In addition to trifluoroacetic acid (TFA), a fluorinated polymer, preferably a fluoropolymer-copolymer consisting of sulfonated tetrafluoroethylene, sulfonated perfluorovinylether or sulfonated trifluorostyrene is preferably also used. In particular the polymer commercially known as Nafion (CAS number: 31175-20-9) can be used. Nafion is preferably used in the production of a preferred form of the sensor, directly on the working electrode as indicated in
In a preferred embodiment, the step of separating the protein-containing fraction of the biological liquid from the fraction of the biological liquid comprising the metal element and the at least one fluorinated acid substance is carried out by means of centrifugation or ultracentrifugation, preferably ultracentrifugation. This embodiment is particularly suited to laboratory use.
In a preferred alternative embodiment, the step of separating the protein-containing fraction of the biological liquid from the fraction of the biological liquid comprising the metal element and the at least one fluorinated acid substance is carried out by means of a microfluidic system. In this embodiment also Nafion is preferably used, directly added to the sample to be analysed. In particular Nafion is added to the first fluorinated acid substance in the step of contacting the biological liquid with at least one fluorinated acid substance. Alternatively to a microfluidic system, membranes, beads and/or filters integrated in the surface of the electroanalytical sensor can be used. This embodiment is particularly suitable for use at the point-of-care, out-of-the-lab.
Although different types of electroanalytical sensors can be used, a preferred sensor is a sensor that comprises a polyester support and another preferred sensor is a sensor that comprises a support made of cellulose or derivatives thereof, on which a hydrophobic area delimits a hydrophilic working area, said hydrophilic working area comprising at least a working electrode, a reference electrode and a counter-electrode printed by screen-printing. The sensors can be obtained also by means of other methods such as, for example, inkjet printing, photolithography, chemical vapour deposition and electron-beam evaporation.
This type of sensor printed on cellulose has been described in the Italian patent application no. 102020000002017. Unlike the sensor described in the above-mentioned patent application, the sensor used in the present invention does not entail functionalization of the support with metal nanoparticles.
Preferably the support made of cellulose or derivatives thereof is formed of paper, in particular filter paper, Whatman paper or office paper, more preferably office paper. The hydrophobic area is preferably formed of wax printed on the support.
Preferably, the sensor has a configuration as illustrated in
Carbon black is preferably deposited on the working electrode. More preferably, metal nanoparticles of gold, palladium or platinum are deposited on the carbon black. Gold nanoparticles (AUNP) have proved to be particularly effective. Even more preferably a fluoropolymer-copolymer formed of sulfonated tetrafluoroethylene (for example, Nafion) is furthermore deposited on the carbon black and on any metal nanoparticles.
The preferred order of deposition on the working electrode is carbon black, metal nanoparticles and fluoropolymer-copolymer, as illustrated in
The preferred method for producing the sensor illustrated in
Alternatively to detecting by means of the electroanalytical sensor a current signal proportional to the amount of metal element in the biological liquid, the current signal can generate a change of colour in a chromophore and the detection can be colorimetric. In other words, by using the same analytical procedures described and the same electrochemical sensor, the current generated in the measurement is exploited to cause a chromophore to change colour. In this case the above-mentioned substance must be added as a final passage of the method and the final detection will be carried out by means of optical system. In the specific case of the detection of metals, substances that can be used are derivatives of N-ethylmaleimide.
With reference to
A test was performed to verify the iron measurement capacity according to the method of the present invention, also when the matrix is represented by whole blood instead of serum.
It was therefore shown that by using the same procedure it is possible to accurately measure the iron from whole blood. The rationale is that the iron bound to the haemoglobin has a very low concentration and does not “alter” determination of the serum iron, and is therefore potentially compatible with measurement at the point-of-care.
A test was performed to verify the iron measurement capacity by means of electrochemical sensor, also when the sensor is printed on polyester instead of paper. The procedure for demonstrating the capacity of the system to measure iron is the same as described. The sensor was tested by measuring standard solutions in the absence (upper line) and in the presence of 5 ppm (central line) and 2 ppm (lower line) of iron. The results are illustrated in
The method according to the invention was tested with trifluoropropionic acid, as illustrated in
Analogous results (not illustrated for the sake of brevity) were obtained with monofluoroacetic acid and difluoroacetic acid.
The method according to the invention was tested with sulfonated trifluorostyrene, as illustrated in
The method according to the invention is particularly advantageous since it does not necessarily involve a phase of separation of the protein-containing fraction of the biological liquid. As shown in this example, the iron can be directly measured on whole blood.
The method entails the following steps:
The test was carried out by measuring the serum iron on a serum sample as is (upper line) and on serum following the addition of iron 80 ppm (lower line). The results are illustrated in the graph of
Advantages
With respect to the methods according to the prior art, the method according to the present invention has the following advantages:
Number | Date | Country | Kind |
---|---|---|---|
102020000027546 | Nov 2020 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2021/060659 | 11/17/2021 | WO |