The present invention relates to Digital Visual Interface (DVI), and more specifically, to a method for detecting the DVI off-line mode and associated DVI receiver.
In general, the cathode ray tube (CRT) display is a stereotype of the analog video display device and the liquid crystal display (LCD) is a stereotype of the digital video display device. Meanwhile, the digital video display device is capable of receiving either analog video signals or digital video signals from a signal source such as a graphic card of the computer but eventually displays digital video signals on the screen.
A called “Digital Visual Interface (DVI)” standard, which has been announced by the Digital Display Working Group (DDWG), spreads a high-speed digital transmission technology for visual display signals. The DVI interface complied with said standard is primarily focused on providing a higher compatible connection between a computer (e.g. workstation, desktop, laptop, etc.) and its different display devices (e.g. CRT, LCD, projector, etc.). In a DVI compliant host system, either a digital only interface or a combined analog and digital interface may be utilized.
As known, conventional host systems and liquid crystal displays all are inherently digital devices. The video interface for a CRT display requires a digital to analog converter (DAC) to convert innate the digital signal into the analog signal. However, a LCD may further require an analog to digital converter (ADC) for receiving and converting the analog video signal into the digital video signal. The requirements of DAC of the video interface and ADC of the liquid crystal display do not only result in increasing the cost but also degradation of the video quality during a plurality of conversions between the analog and digital signals.
Thus, the DVI digital video interface provided with solutions of complete digital transmission becomes a popular video connection standard. Conventionally, a mode detection circuit is adopted to frequently detect the current mode of the video signals received by the DVI receiver. In a DVI system, Sync information is encoded in the data stream and DVI receiver needs to use a receiver and decoder to decode the Sync information for mode detection. Even in off-line mode, without displaying any input image but monitoring the input signal, the prior art needs to turn on all DVI receivers and decode the data continuously for mode detection. The full operation of all channels and the frequent detection of the conventional mode detection circuit causes high power consumption and heat dissipation.
It is therefore an objective of the claimed invention to provide a method for detecting DVI off-line mode and associated DVI receiver in order to reduce the power consumption of a DVI system, and raise system performance.
The DVI receiver comprises a plurality of receiving channels, a clock channel, and an off-line mode detector. Each receiving channel receives a video signal and the clock channel receives a clock signal. Each receiving channel comprises a channel decoder for decoding the signals received by the corresponding receiving channel. The off-line mode detector couples with the clock channel and the decoders. The off-line mode detector detects an activity of the clock signal to determine whether to turn on at least one receiving channel for a first predetermined period. The off-line mode detector comprises a mode detector, a clock detector, and a power down controller. The power down controller is coupled to the mode detector and the clock detector. The power down controller enables the mode detector to determine the operation mode of the video signal, and then the power down controller turns off all decoders and channels for a second predetermined period when the operation mode is determined as invalid. Preferably, the second predetermined period is much longer than the first predetermined period.
It is an advantage of the claimed invention that the method for DVI off-line mode detection is help to reduce the power consumption and failures of a DVI system such as a DVI chip. The method for DVI off-line mode detection of the claimed invention does not need to detect the DVI mode all the time but just detecting once in a predetermined period. Hence, the total time of mode detection can be minimized in order to diminish the power consumption of the DVI chip.
A more complete appreciation of the present invention, and many of the attendant advantages thereof, will become readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:
The DVI transmitter 20 comprises a plurality of encoders and transmitting channels. As shown in
On the other side, the DVI receiver 40 comprises a plurality of receiving channels for receiving the signals from the transmitting channels. For example, a receiving channel RX_CH0 receives the signal from the transmitting channel TX_CH0, a receiving channel RX_CH1 receives the signal from the transmitting channel TX_CH1, and a receiving clock channel RX_CLK receives the CLK signal from the transmitting clock channel TX_CLK. Each receiving channel RX_CHn comprises a channel decoder CHn for decoding the signals received by the corresponding receiving channel. For example, the channel decoder CH0 decodes the signal from the receiving channel RX_CH0, the channel decoder CH1 decodes the signal from the receiving channel RX_CH1 and so on. The channel decoders CH0˜CH5 respectively output the decoded signals HSYNC, VSYNC, DE and Pixel Data. The crystal oscillator XTAL 70 generates a reference clock signal REF_CLK.
The DVI receiver 40 further comprises an off-line mode detector 10 that includes a mode detector 12, a CLK detector 14 and a power down controller 16. First of all, the CLK detector 14 receives the clock signal CLK from the receiving channel RX_CLK and determines whether the CLK signal is valid and correct or not. For example, roughly count the transitions of the CLK signal in a predetermined period, in order to determine whether the frequency of the CLK signal is operated within a desired frequency range such as above 10 MHz or 25 MHz. If the CLK signal is valid and correct, the power down controller 16 turns on the receiving channel RX_CH0 and decoder CH0 for receiving and decoding the HSYNC and VSYNC signals from the receiving channel RX_CH0. Oppositely, as soon as the CLK detector 14 does not find out correct CLK signal during said detection, the power down controller 16 preferably powers off of the mode detector 12 and all receiving channels for a predetermined period.
Upon the receiving channel RX_CH0 is turned on, the mode detector 12 determines the operation mode by monitoring the decoded signals of HSYNC and VSYNC on the receiving channel RX_CH0 in order to detect the assertion of HSYNC and VSYNC signals for a very short period, e.g. 100 ms. If the frequencies of the HSYNC and VSYNC signals are valid and correct, the power down controller 16 keeps the receiving channel RX_CH0 active and further activates other receiving channels depending on the display resolution and the display frequency. For example, the display resolution can be determined by line count or pixel count. It should be noted that there are six transceiving channels in the DVI system 1. The receiving channels RX_CH0 to RX_CH2 transceive the R (red), G (green), and B (blue) signals. Under a low resolution display such as below 1280*1024 and 60 Hz, the receiving channels RX_CH0 to RX_CH2 are required for display so that the power down controller 16 preferably activates the receiving channels RX_CH0 to RX_CH2 and deactivates other channels for power saving. Oppositely, under a high resolution display such as 1600*1200 and 70 Hz display, the power down controller 16 activates all receiving channels RX_CH0 to RX_CH5.
Moreover, if the mode detector 12 does not detect proper HSYNC and VSYNC signals while the CLK detector 14 receives the correct CLK signal, the power down controller 16 preferably deactivates all receiving channels RX_CH0˜RX_CH5. In the preferred embodiment of the present invention, the mode detector 12 can check the status of the channel RX_CH0 in order to determine whether the video signals are valid and correct. It should be noted that the mode detector 12 can also detect any one of the other receiving channels for the similar activity without departing form the spirit of the invention. For example, but not limited to, the mode detector 12 can detect DE signal in any receiving channel instead of detecting HSYNC and VSYNC signals in the receiving channel RX_CH0. Persons skilled in the art can conceive that detection information for HSYNC and VSYNC signals can be obtained through digital processing of DE signal in any receiving channel. The mode detector 12 and the CLK detector 14 transmit the detection information to the power down controller 16, so that the power down controller 16 controls the power down signals PD0 to PD5 to respectively operate the corresponding receiving channels of the DVI receiver 40 (e.g. power on or off) in response to the detection information.
The determination of whether the mode is valid and correct can be implemented by referencing the detection information, including but not limited to the clock frequency, display resolution and display frequency, with a look-up table (not shown), which may prerecord a plurality of valid and correct operation modes. It should be noted that the power down controller 16 can also power down the receiving clock channel RX_CLK for the predetermined period if the mode detector 12 does not find out proper HSYNC and VSYNC signals.
The off-line mode detector 10′ in accordance with the present invention, for example, may periodically determines the operation mode of the digital video signals by detecting HSYNC, VSYNC, DE and Pixel Data signals. The off-line mode detector 10′ is able to work independently. For example, the CLK detector 14′ preferably detects the CLK signal periodically, and the mode detector 12′ can further determine the operation mode of the video signals after the correct clock activity from the DVI transmitter is detected. The power-down controller 16′ determines whether to activate the receiving channels RX_CH0˜RX_CH5 or not, according to the detection information generated from the CLK detector 14′ and the mode detector 12′. Thus, the present invention significantly reduces the power consumption of the DVI system 1′ and improves the durability and performance thereof. Furthermore, the off-line mode detector 10′ can be coordinated by a MCU 60′ for satisfying the specific requirements from the user.
Please further refer to
According to the embodiment of the present invention, although the detecting period of the signals of the channels is set for approximate 100 ms and the power down period is set for approximate 900 ms, each of the periods can be adjustably modified with corresponding to different requirements or situations. In general, the detecting period for the signal mode is preferably twice higher than the period of the signal to be detected. For example, if the minimum signal period for the VSYNC signal is 40 ms, the detecting period for the signal mode is preferably longer than 80 ms.
In contrast to the prior art, the method for detecting DVI off-line mode in accordance with the present invention does not need to detect the mode of the video signals all the time. The present invention reduces the active time of the DVI system such as a DVI chip, and it thus reduces the power consumption of the DVI chip. For example, the power consumption of mode detection can be significantly reduced to a factor of 1/30 in off-line mode. The lesser operation time and lower power consumption leads to the improvements of the durability and reliability of the DVI chip.
Thus, the present invention discloses a method for detecting the DVI off-line mode and associated DVI receiver. The DVI receiver comprises a plurality of receiving channels, a clock channel, and an off-line mode detector. Each receiving channel receives a video signal and the clock channel receives a clock signal. Each receiving channel comprises a channel decoder for decoding the signals received by the corresponding receiving channel. The off-line mode detector couples with the clock channel and the decoders. The off-line mode detector detects an activity of the clock signal to determine whether to turn on at least one receiving channel for a first predetermined period. The off-line mode detector comprises a mode detector, a clock detector, and a power down controller. The power down controller is coupled to the mode detector and the clock detector. The power down controller enables the mode detector to determine the operation mode of the video signal, and then the power down controller turns off all decoders and channels for a second predetermined period when the operation mode is determined as invalid. Preferably, the second predetermined period is much longer than the first predetermined period.
This invention has been described in considerable detail in order to provide those skilled in the digital visual interface art with the information needed to apply the novel principles and to construct and use such specialized components as are required. In view of the foregoing descriptions, it should be apparent that the present invention represents a significant departure from the prior art in construction and operation. However, while particular embodiments of the present invention have been described herein in detail, it is to be understood that various alterations, modifications and substitutions can be made therein without departing in any way from the spirit and scope of the present invention, as defined in the claims which follow.