The present invention generally relates to the detection of faults related to wheels of a motor vehicle, and more particularly to a method allowing the detection of such faults during vehicle driving situations.
As will appear later, what is understood by fault related to wheels is any fault related to the state of the wheels or to their axles.
It is known that a fault in the wheels of a motor vehicle, such as a fault in alignment or deflation of the tires, can be the cause of premature wear of the tires but also induce problems relating to stability or control and wear of the steering system during the phases of driving the vehicle. Faults related to the wheels can also be the cause of overconsumption of fuel for the motor vehicle.
In addition, an increasing number of motor vehicles are equipped with partial automation systems or advanced driver assistance systems, in particular systems performing, in place of the driver, the lateral control of the vehicle. In particular, so-called traffic lane keeping or guiding systems are known which make it possible to determine the traffic lanes, in particular by detecting the marking lines on the ground, and then to act on the steering system of the motor vehicle in order to allow it to follow a path according to the traffic lanes. In practice, for a functionality of keeping the vehicle in its traffic lane, such systems estimate in real time corrective steering wheel angles which are applied to enable the vehicle to follow a predefined path, parallel to the traffic lane. It will therefore be appreciated that wheel alignment or tire deflation faults can negatively impact the performance of these assistance systems in the lateral control of the vehicle, in terms of stability, safety and behavior.
However, such faults are generally detected and corrected only during maintenance inspections of the motor vehicle. Thus, the alignment procedure is a standard procedure in automotive maintenance during which the motor vehicle is placed on an inspection bench or platform equipped with dedicated equipment making it possible to detect any alignment faults, conventionally by measuring with precision the different angles involved in the alignment of the wheels, in particular:
It follows from the foregoing that there is a need to be able to detect as soon as possible, and during the driving phases of a vehicle, the presence of a fault related to the wheels so as to alert the driver of the need to quickly carry out a maintenance operation.
Document US 2013/0253767 discloses a method and a system for self-diagnosing possible malfunctions linked to a vehicle by using a lateral control assistance system fitted to the motor vehicle, and for alerting the driver accordingly. More specifically, the lateral control assistance system conventionally comprises a path generator capable of generating a desired path for the vehicle so that the latter keeps in a traffic lane and a steering controller capable of providing the steering members with steering corrections to follow the desired path. The system further comprises a path predictor for predicting a path actively followed by the vehicle and a virtual dynamics module modeling the anticipated path of the vehicle resulting from the steering corrections. If the predicted path and the anticipated path show too great differences reflecting a possible malfunction, a diagnostic system is then activated to identify whether the cause of the possible malfunction is linked to environmental conditions (strong wind for example), to mechanical faults in the components of the steering system (for example a fault related to wheels or to the positioning of an angle sensor), or to faults related to the positioning of the sensors used to detect the traffic lanes. In this system, however, it is not possible to determine precisely which of the two left or right wheels of the pair of steered wheels of the vehicle actually has a fault, nor to specify whether the type of fault relates to deflation of tires or to a wheel alignment fault.
The present invention aims to overcome the limitations of the prior art.
More specifically, the subject of the present invention is a method for detecting faults related to wheels of a motor vehicle in a driving situation, comprising:
According to particular embodiments:
The invention will be better understood in view of the following description given with reference to the appended figures, in which:
Possible modes of implementation of a method for detecting faults related to wheels of a motor vehicle according to the invention will now be described, with particular reference to
To keep the motor vehicle 1 in the traffic lane which it takes, the lateral-control driver assistance system 2 conventionally has one or more sensors 20 whose detections will make it possible to determine certain characteristics of this traffic lane, such as the width of the traffic lane, its orientation relative to the vehicle and its curvature, in order to estimate and follow a model of the traffic lane (typically the path formed by following the center of the traffic lane). The sensors used are, for example, cameras, LIDAR sensors, radars or else virtual sensors, or more generally any type of sensor capable of detecting marking lines on the ground. An example of a virtual sensor would be software that would read data acquired by other sensors of the vehicle, which would determine on this basis the position of objects such as other cars or safety rails, and which would deduce therefrom the position of the traffic lane relative to the vehicle. From the information delivered by the sensor or sensors 20, an electronic module 21 of the lateral control system 2 estimates the marking lines on the ground, possibly by data fusion in cases where several sensors capable of detecting marking lines on the ground are used. The system 2 also has a certain amount of information, grouped under the reference 22, such as the speed and/or the acceleration of the motor vehicle 1, and the position of the vehicle provided by an on-board navigation system, such as a GPS system, and/or an on-board high-definition map. On the basis of all of this information, an electronic lateral-control module 23 generates and transmits, to a system 3 for controlling the steering column of the motor vehicle 1, corrective steering wheel angles to be applied so that the motor vehicle 1 automatically follows a path parallel to the traffic lane, generally the center line of this traffic lane. The system 3 then directly applies the angle corrections to the steering wheel that it receives. In other words, the steering wheel of the vehicle, which controls the steered wheels of the vehicle, is automatically turned according to the corrective angle values that it receives.
The principle of the invention is based on the fact that the main symptom of a fault related to a steered wheel of a motor vehicle is that the vehicle will tend to drift to the right or to the left. This drift is all the more visible when the motor vehicle is driving on a rectilinear road portion. Under these conditions, the lateral-control assistance system 2, when it is activated, will detect these drifts and thus be caused to generate many more corrective steering wheel angles than it should have done for a vehicle whose steered wheels show no fault. This is illustrated schematically in
The method for detecting faults related to steered wheels of the motor vehicle according to the invention is based on the analysis of the corrective steering wheel angles which will make it possible, as will be detailed later, not only to automatically detect the presence of a fault while the vehicle is in a driving situation, but also to estimate a type of fault and to identify which of the two left or right steered wheels is affected by the fault.
A first step S1 of the method consists in automatically determining a first series of corrective steering wheel angles which are applied successively during a first time window of driving the motor vehicle 1 while the latter is traveling on a first substantially rectilinear traffic lane portion, in order to force the motor vehicle 1 to follow a path parallel to this first traffic lane portion.
As has been seen previously, the corrective angles are here automatically determined by the electronic lateral-control module 23, and can therefore be delivered directly for processing to a module 4 for detecting faults related to the wheels (see
The corrective steering wheel angles of the first series are then processed by the module 4 for detecting faults related to the wheels during a step S2 for the purpose of automatically detecting the presence of a fault affecting the pair of steered wheels of the motor vehicle. To do this, the module 4 can calculate, during a step S20, the average and the standard deviation which are associated with the corrective steering wheel angles of the first series. If {SW_angle1, SW_angle2, . . . SW_angleN} is used to denote the set of N values of corrective steering wheel angles contained in the first series, then the average
The presence of a fault is detected automatically by comparing a linear combination of the average
reflecting the fact that the corrective steering wheel angles deviate on average by a value greater than the known uncertainty of the system.
If no fault is detected at this stage, provision can be made to reprogram the automatic reiteration of steps S1 and S2 at a later date, for example one week later.
Otherwise, the method continues with a step S3 of estimating the type of fault associated with the fault whose presence has been detected in step S2, and with a step S4 of identifying the steered wheel of the pair of wheels affected by this fault. It should be noted at this stage that although step S4 is illustrated in
To proceed to step S3 of estimating the type of fault, the fault detection module 4 analyzes the rate of variation of the corrective steering wheel angles determined in step S1 by calculating for example, during a calculating step S30, the time derivative dSWi at each instant of the corrective steering wheel angles of the first series, according to the relationships:
The type of fault can then be estimated on the basis of a comparison (step S31) of an average
The steered wheel affected by the fault is identified for its part from the sign of the average
At the end of steps S3 and S4, the detection module 4 can generate a warning message (step S5) for the attention of the driver of the motor vehicle, this message advantageously comprising the type of estimated fault and the wheel identified as having the fault. This message is transmitted for sound and/or visual broadcast on a user interface 5 located in the passenger compartment of the motor vehicle 1 (see
The module 4 can also decide, depending on the type of fault detected, to deactivate the lateral-control assistance system 2 as indicated by the dotted command in
The method begins with the same steps S1 and S2 as those described with reference to
The method of
As before, the corrective angles here are automatically determined by the electronic lateral-control module 23, and can therefore be delivered directly for processing to the module 4 for detecting faults linked to the wheels (see
The type of fault and the identification of the wheel having the fault are then determined in a manner similar to steps S3 and S4 described above, except that the calculations performed by the fault detection module 4 now use the corrective steering wheel angles of the second series.
More specifically, the module 4 can calculate, during a step S7, the average of the corrective steering wheel angles of the second series. If {SW_angle1, SW_angle2, . . . SW_angleP} denotes the set of P values of corrective steering wheel angles contained in the second series, then the average
The method continues with a step S8 of estimation of the type of fault associated with the fault whose presence was detected in step S2, and by a step S9 of identification of the steered wheel of the pair of wheels affected by this fault. Here again, although step S9 is shown in
These steps S8 and S9 are very similar to steps S3 and S4 of the embodiment of
Thus, to proceed to step S8 for estimating the type of fault, the fault detection module 4 analyzes the rate of variation of the corrective steering wheel angles determined in step S6 by calculating for example, during a step S80 of calculation, the time derivative dSWi at each instant of the corrective steering wheel angles of the second series, according to the relationships:
The type of fault can then be estimated on the basis of a comparison (step S81) of the average
The steered wheel affected by the fault is identified for its part from the sign of the average
At the end of steps S8 and S9, there is found, as in the case of
The module 4 can also decide, once the presence of a fault has been detected, or depending on the type of fault detected, to deactivate the lateral-control assistance system 2, as indicated by the dotted command in
The two previous methods have been described as being alternative methods, comprising only steps S1 and S2 in common. In a variant that is not shown, provision can also be made to combine these two methods. For example, there can be provision, following the detection in step S2 of the method shown in
The two methods whose steps are illustrated in
The principles of the invention can nevertheless be applied even in the case where the motor vehicle is not equipped with such a lateral-control assistance system. In this case, there can be provision that the driver can deliberately enter, for example via the user interface 5, into a diagnostic mode when driving, and that the corrective steering wheel angles used by the fault detection module 4 are the steering wheel angles directly applied to the steering wheel of the vehicle by the driver to recenter his vehicle on a rectilinear portion of a traffic lane, and measured by a steering wheel angle sensor.
Number | Date | Country | Kind |
---|---|---|---|
10 2019 124 655.5 | Sep 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/073964 | 8/27/2020 | WO |