Illustrated herein is a method of measuring the lateral charge migration by measuring the average potential of a latent image formed on a photoreceptor surface. It finds particular application in conjunction with detecting lateral charge migration, and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiment is also amenable to other like applications.
In the art of electrophotography an electrophotographic plate comprising a photoconductive insulating layer on a conductive layer is imaged by first uniformly electrostatically charging the imaging surface of the photoconductive insulating layer. The plate is then exposed to a pattern of activating electromagnetic radiation such as light, which selectively dissipates the charge in the illuminated areas of the photoconductive insulating layer while leaving behind an electrostatic latent image in the non-illuminated area. This electrostatic latent image may then be developed to form a visible image by depositing finely divided electroscopic toner particles on the surface of the photoconductive insulating layer. The resulting visible toner image can be transferred to a suitable receiving member such as paper. This imaging process may be repeated many times with reusable electrophotographic imaging members.
The electrophotographic imaging members may be in the form of plates, drums or flexible belts. These electrophotographic members are usually multi-layered photoreceptors that comprise a substrate, a conductive layer, an optional hole blocking layer, an optional adhesive layer, a charge generating layer, and a charge transport layer, an optional overcoating layer and, in some belt embodiments, an anticurl backing layer. Materials and methods for producing such photoreceptors are well-known in the art.
The resolution of the final print depends heavily on the location of the electrostatic charge upon the imaging surface of the photoconductive insulating layer. Lateral charge migration (LCM), i.e. the movement of charges on or near the surface of an almost insulating photoconductor surface, has the effect of smoothing out the spatial variations in the surface charge density profile of the latent image. It can be caused by a number of different substances or events (i.e., by ionic contaminants from the environment, by naturally occurring charging device effluents, etc.), which cause the charges to move. LCM can occur locally or over the entire photoconductor surface. As a result, some of the fine features present in the input image may not be present in the final print. This is usually referred to as wipeout or deletion.
Because deletion is undesirable, it is necessary to distinguish acceptable photoconductors (i.e. with no or low LCM) from unacceptable photoconductors (i.e. with high LCM). Often it is not possible, nor desirable, to carry out print tests for deletion; hence, another method is needed. A direct measurement of the latent image profile requires a probe that can detect voltages or fields at the photoconductor surface with a resolution on the scale of tens of microns. Current probes that measure absolute values, i.e., electrostatic voltmeters (ESV), have only a resolution on the order of millimeters. Thus, a resolution improvement of more than an order of magnitude is required for a direct measurement.
Indirect measurements of the LCM are possible. Surface conductivity measurements are commonly used to quantify LCM. However there are problems associated with conventional surface conductivity measurements: 1) they are steady state measurements, 2) the photo-conductor is near insulating and hence, there is the issue of contacts, and 3) in the xerographic process the surface is charged with ions but no ions are usually involved in the traditional steady state surface conductivity measurements.
Furthermore, the only technique that has been used to identify LCM in dual-layer, negatively charged photoreceptors concerned the degree of positive charge acceptance. Photoreceptors with less positive charge acceptance were classified as devices with higher potential for LCM. However, the positive charge acceptance at best only correlates to LCM; there is a degree of error in the correlation. Thus, there is still a need for a better method of quantifying LCM.
Disclosed herein is a method to measure lateral charge migration (layer). The method measures lateral charge migration as a function of exposure-to-development time.
In this regard, the method measures the average potential of a latent image formed on the photoreceptor surface after it has been exposed at least two times to the same pattern. This method of measuring LCM has several advantages. It is conceptually simple and easy to implement. Using this method, LCM can be measured electrically rather than through printing images and manually looking for deletion effects. The spatial resolution of the measurement is not limited by the resolution of current electrostatic probes. LCM can be measured as a function of exposure-to-development time by varying the time between exposures. This method can also be incorporated into existing photographic machines for continuous use in quality control.
In a further embodiment, a method for measuring lateral charge migration upon the surface of a photoreceptor is provided. The method involves providing an area of a photoreceptor which is charged to a uniform value over the area. The area is then exposed at a first time to a pattern. After pausing for a first period of time, the area is exposed to a second time to the same pattern. After pausing for a second period of time, the average potential over the area is measured.
These and other aspects and/or objects of the disclosure are more particularly described below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the development disclosed herein and not for the purposes of limiting the same.
LCM can be quantified by measuring the average potential of a latent image formed on the photoreceptor surface after it has been exposed at least two times to the same pattern. In certain embodiments, measurements are made twice within a short period of time for a given area of a photoreceptor. One measurement gives a reference value and the other measurement gives a test value. The difference between the two values quantifies the amount of LCM in that area of the photoreceptor. Alternatively, measurements can be made periodically for a given area of a photoreceptor and compared with previous measurements to track the change in LCM in that area of the photoreceptor over a long period of time for maintenance purposes.
Generally, the method involves exposing a photoreceptor surface at least twice to the same pattern and then measuring its average potential over a given area. The photoreceptor surface is first charged to a uniform value over its area. The photoreceptor is then exposed to the pattern, which creates a latent image on the photoreceptor surface. Then there is a pause for a period of time. During this period of time, factors such as dark decay and LCM occur which may change the distribution of charge on the photoreceptor surface. The photoreceptor is then exposed to the same pattern a second time. After this second exposure the average potential over this area is measured.
The right column of
In the example of
In embodiments, the photoreceptor surface should not move during the waiting time t1 to insure that the same areas of the surface are exposed to the same pattern during the second exposure. This implies perfect registration and in optical copiers, optimized focus of the pattern being imaged. This assumption should be reasonable because otherwise color shifts would be apparent in current copier systems. In embodiments with a rotating drum photoreceptor, perfect registration can be accomplished with an exposure system that writes line segments perpendicular to the drum axis, such as an LED bar. Since the line segments are written perpendicularly, the exposure system is stationary and errors due to mechanical misregistration are avoided. Alternatively, a second LED image bar aligned with the first LED bar in an alignment fixture and secured to a common mounting block can also be employed. As a result, the optical portion of the exposure system is the limiting factor for resolution.
Several simplifications and assumptions were made in quantifying the LCM. First, it was assumed that the photoreceptor thickness was sufficiently thin that the spatial frequency dependence of the electrostatic potential could be ignored. The surface potential for sinusoidal charge distribution σo+σk·cos(k·y) for a grounded counter electrode placed far away from the photoreceptor surface (d→∞) is given by the equation:
Sufficiently thin photoreceptor here means that that the product k·s is small enough for the spatial frequency k=2π/L to neglect the term in front of Vk·cos(k·y) in first order to simplify the solution of the charge conservation equation:
where j is the surface current density. As a result applying Ohms's law j=E/Rs one obtains the telegraph equation:
Instead of expanding this model to more dimensions to include the dark decay one can account for it by adding a current sink term. Experimentally for low and moderate fields (<25V/μm) a power law in time and for higher fields a linear term in potential are good approximations. Hence,
The example in
t which the potential difference decays. Note the strong spatial frequency dependence.
A Ronchi ruling (exact rectangular line pattern) of about 250 Ipi was used. A worst-case scenario was used where the optics were so badly focused that only the first harmonic survived. A PIDC having the following parameters was used: S=200 V·cm2/ergs; Vc=140V; and VR=20V. Incomplete discharge of 3 ergs/cm2 was also assumed.
The two photoreceptors were charged to a uniform potential of 600V at an exposure of 10 ergs/cm2 and then exposed through the Ronchi ruling. After a period of time, corresponding to the ‘Pause’ row in
After a second exposure, the surface potential of both photoreceptors was measured again.
While the numerical example was a worst-case scenario,
While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or may be presently unforeseen may arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they may be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.