The invention relates to the field of genetic engineering. In particular, the present invention relates to a novel nucleic acid detection method based on CRISPR system. More specifically, the present invention relates to a Cas12b-mediated DNA detection method and the related kits.
Rapid and portable detection of nucleic acids promises significant applications in clinical diagnostics and quarantine inspection. CRISPR nucleases Cas12a and Cas13 have been developed to rapid detect RNA and DNA with high sensitivity and specificity because of their ssDNA or ssRNA trans-cleavage activity. The CRISPR-Cas13-based RNA detection platform is called SHERLOCK, and the Cas12a-based DNA detection platform is called DETECTR.
The further development of nucleic acid detection platforms with higher sensitivity and higher specificity is of great significance in the field.
The invention provides a Cas12b-based nucleic acid detection method, termed CDetection, which is able to detect DNA with higher specificity than Cas12a, and high sensitivity up to an attomalor magnitude. The invention also provides enhanced CDetection (eCDetection), which can distinguish two targets that differ by only a single nucleotide polymorphism. CRISPR-Cas12b-based CDetection technology will provide rapid and simple DNA detection method in a range of health and biotechnology applications .
Error bars indicate s.e.m., n=3. RPA, recombinase polymerase amplification. (e) Maximum fluorescence signal obtained from AaCas12b-, PrCas12a- and LbCas12a-based DNA detection with RPA pre-amplification. Cas12 is incubated with a cognate gRNA targeting a synthetic HPV16 dsDNA mixed with background genome. Error bars indicate s.e.m., n=3. (f) Fluorescence timecourse kinetics obtained from AaCas12b- and LbCas12a-based DNA detection with RPA pre-amplification. Cas12 is incubated with a cognate guide RNA (gRNA) targeting a synthetic HPV16 dsDNA diluted in human plasma with a final concentration of 10−18 M. Error bars indicate s.e.m., n=3.
In the present invention, the scientific and technical terms used herein have the meaning as commonly understood by a person skilled in the art unless otherwise specified. Also, the protein and nucleic acid chemistry, molecular biology, cell and tissue culture, microbiology, immunology related terms, and laboratory procedures used herein are terms and routine steps that are widely used in the corresponding field. For example, standard recombinant DNA and molecular cloning techniques used in the present invention are well known to those skilled in the art and are more fully described in the following document: Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter referred to as “Sambrook”). In the meantime, in order to better understand the present invention, definitions and explanations of related terms are provided below.
In a first aspect, the invention provides a method of detecting the presence and/or amount of a target nucleic acid molecule in a biological sample, the method comprising the following steps:
(a) contacting the biological sample with i) a Cas12b protein, ii) a gRNA directed against a target sequence in the target nucleic acid molecule, and iii) a single-strand DNA reporter molecule which produces a detectable signal after being cleaved, thereby forming a reaction mixture;
(b) detecting the presence and/or level of the detectable signal produced in the reaction mixture,
wherein the presence and/or level of the detectable signal represents the presence and/or amount of the target nucleic acid molecule.
In some embodiments, the target nucleic acid molecule is a double-strand DNA molecule. In some embodiments, the target nucleic acid molecule is a single-strand DNA molecule. The target nucleic acid molecule may be genomic DNA, cDNA, viral DNA, or the like, or a fragment thereof.
“Cas12b”, “Cas12b nuclease”, “Cas12b protein”, “C2c1”, “C2c1 nuclease” and “C2c1 protein” are used interchangeably herein and refer to an RNA-directed sequence specific nuclease from a microbiological CRISPR system. Cas12b is capable of targeting and cleaving
DNA target sequences under the guidance of a guide RNA to form a DNA double-strand break (DSB), also known as canonical dsDNA cleavage activity. More importantly, the complex of Cas12b and gRNA, after recognizing and binding to the corresponding target DNA sequence, is capable of activating its non-specific ssDNA cleavage activity, also known as non-canonical bypass ssDNA cleavage activity. Using non-canonical bypass ssDNA cleavage activity, cleavage of a single-stranded DNA reporter molecule that produces a detectable signal upon cleavage can reflect the presence and/or amount of target DNA. Herein, a DNA molecule that is recognized and bound by a complex of Cas12b and gRNA, which activates the non-specific single-strand DNA cleavage activity of Cas12b, is also referred to as an “activator.”
In some embodiments, the Cas12b protein is AaCas12b derived from Alicyclobacillus acidiphilus, AkCas12b derived from Alicyclobacillus kakegawensis, AmCas12b derived from Alicyclobacillus macrosporangiidus, BhCas12b derived from Bacillus hisashii, BsCas12b derived from the genus Bacillus, Bs3Cas12b derived from the genus Bacillus, DiCas12b derived from Desulfovibrio inopinatus, LsCas12b derived from Laceyella sediminis, SbCas12b derived from Spirochaetes bacterium, or TcCas12b derived from Tuberibacillus calidus. In some preferred embodiments, the Cas12b protein is the Cas12b protein derived from Alicyclobacillus acidiphilus (AaCas12b). Applicant has identified that these Cas12b proteins can be used for genome editing in mammals, as well as for nucleic acid detection methods of the invention.
For example, the Cas12b protein is the AaCas12b derived from Alicyclobacillus acidiphilus NBRC 100859, the AkCas12b derived from Alicyclobacillus kakegawensis NBRC 103104, the AmCas12b derived from Alicyclobacillus macrosporangiidus strain DSM 17980, the BhCas12b derived from Bacillus hisashii strain C4, and the BsCas12b derived from genus Bacillus NSP2.1, the Bs3Cas12b derived from Bacillus genus V3-13 contig_40, the DiCas12b derived from Desulfovibrio inopinatus DSM 10711, the LsCas12b derived from Laceyella sediminis strain RHA1, the SbCas12b derived from Spirochaetes bacterium GWB1_27_13, the TcCas12b derived from Tuberibacillus calidus DSM 17572. In some preferred embodiments, the Cas12b protein is a Cas12b protein derived from Alicyclobacillus acidiphilus NBRC 100859.
The Cas12b locus of Alicyclobacillus acidiphilus lacks a direct repeat (DR) array that have been sequenced, so those skilled in the art will recognize that it is unable to perform gene editing and will skip it in the CRISPR nuclease screen. However, the inventors have surprisingly found that the Cas12b protein from Alicyclobacillus acidiphilus also has canonical targeting dsDNA cleavage activity and non-canonical bypass ssDNA cleavage activity, which can be used for gene editing and nucleic acid detection. Similarly, some of the other Cas12b proteins identified, such as the DiCas12b or TcCas12b proteins, are unexpectedly useful in the present invention, although their natural locus does not have a CRISPR array.
In some embodiments of the invention, the Cas12b protein is a Cas12b protein whose natural locus does not have a CRISPR array. In some embodiments, the Cas12b protein whose natural locus does not have a CRISPR array is AaCas12b, DiCas12b or TcCas12b.
In some embodiments, the Cas12b protein comprises amino acid sequence having at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% sequence identity with any one of SEQ ID NOs: 1-10. In some embodiments, the Cas12b protein comprises an amino acid sequence in which one or more amino acid residues are substituted, deleted or added relative to any one of SEQ ID NOs: 1-10. For example, the Cas12b protein comprises amino acid sequences in which 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 amino acid residue(s) are substituted, deleted or added relative to any one of SEQ ID NOs: 1-10. In some embodiments, the amino acid substitution is a conservative substitution. In some embodiments, the Cas12b protein comprises the amino acid sequence set forth in any one of SEQ ID NOs: 1-10. For example, the AaCas12b, AkCas12b, AmCas12b, BhCas12b, BsCas12b, Bs3Cas12b, DiCas12b, LsCas12b, SbCas12b, TcCas12b comprises the amino acid sequence set forth in any one of SEQ ID NOs: 1-10, respectively. In some preferred embodiments, the Cas12b protein comprises the amino acid sequence set forth in SEQ ID NO: 1.
The inventors have demonstrated that the RuvC domain of the Cas12b protein is critical for its non-canonical bypass ssDNA cleavage activity. In some embodiments, the Cas12b protein comprises a RuvC domain of a wild-type Cas12b protein, said wild-type Cas12b protein comprising, for example, the amino acid sequence set forth in any one of SEQ ID NOs: 1-10. One skilled in the art can readily identify the RuvC domain of the Cas12b protein, for example, by the tools provided by NCBI.
Sequence “identity” has recognized meaning in the art, and the percentage of sequence identity between two nucleic acids or polypeptide molecules or regions can be calculated using the disclosed techniques. Sequence identity can be measured along the entire length of a polynucleotide or polypeptide or along a region of the molecule. (See, for example, Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). Although there are many methods for measuring the identity between two polynucleotides or polypeptides, the term “identity” is well known to the skilled person (Carrillo, H. & Lipman, D., SIAM J Applied Math 48: 1073 (1988)).
Suitable conserved amino acid substitutions in peptides or proteins are known to those skilled in the art and can generally be carried out without altering the biological activity of the resulting molecule. In general, one skilled in the art recognizes that a single amino acid substitution in a non-essential region of a polypeptide does not substantially alter biological activity (See, for example, Watson et al., Molecular Biology of the Gene, 4th Edition, 1987, The Benjamin/Cummings Pub. co., p.224).
In particular, one skilled in the art will appreciate that the Cas12b protein in different strains of the same bacterial species may have some differences in amino acid sequence but can achieve substantially the same function.
In some embodiments, the Cas12b protein is recombinantly produced. In some embodiments, the Cas12b protein further comprises a fusion tag, such as a tag for Cas12b protein isolation and/or purification. Methods for recombinant production of proteins are known in the art. A variety of labels, including but not limited to His tags, GST tags, and the like, are known in the art that can be used to isolate/and or purify proteins. Generally, these tags do not alter the activity of the protein of interest.
“guide RNA” and “gRNA” can be used interchangeably herein, typically composed of crRNA and tracrRNA molecules that are partially complementary to each other to form a complex, wherein the crRNA comprises a sequence that is sufficiently identical to the target sequence to hybridize to the complement of the target sequence and direct the CRISPR complex (CRISPR nuclease+crRNA+tracrRNA) to sequence specifically bind to the target sequence. However, single guide RNA(sgRNA) containing both crRNA and tracrRNA characteristics can be designed and used. Different CRISPR nucleases correspond to different gRNAs. For example, Cas9 and Cas12b typically require both crRNA and tracrRNA, however, Cas12a (Cpfl) requires only crRNA.
“gRNA against a target sequence of a target nucleic acid molecule” means that the gRNA is capable of specifically recognizing the target sequence. For example, in some embodiments (the target nucleic acid molecule is a double-strand DNA), the gRNA comprises a spacer capable of specifically hybridizing to the complementary sequence of the target sequence. In some embodiments (the target nucleic acid molecule is a single-strand DNA), the gRNA comprises a spacer sequence capable of specifically hybridizing to the target sequence.
There is no direct repeat (DR) array in the A. acidiphilus CRISPR locus. Therefore, AaCas12b does not have a corresponding crRNA. However, the inventors have found that AaCas12b can also adopt corresponding gRNAs derived from Cas12b proteins of other organisms. For example, AaCas12b can use its own tracrRNA and the crRNA sequence from the CRISPR locus of A. acidoterrestris as gRNA. The inventors optimized the gRNA available for AaCas12b.
In some embodiments of the methods of the invention, the guide RNA is a complex formed by a partial complement of crRNA and tracrRNA. In some embodiments, the tracrRNA is encoded by a nucleotide sequence selected from the group consisting of: 5′-GTCTAAAGGACAGAATTTTTCAACGGGTGTGCCAATGGCCACTTTCCAGGTGGC
AAAGCCCGTTGAACTTCTCAAAAAGAACGCTCGCTCAGTGTTCTGAC-3′. In some embodiments, the crRNA is encoded by a nucleotide sequence selected from the group consisting of: 5′ -GTCGGATCACTGAGCGAGCGATCTGAGAAGTGGCAC-Nx-3′, wherein Nx represents nucleotide sequence that consists of X consecutive nucleotides, N is independently selected from A, G, C and T; X is an integer of 18 X 35. Preferably, X=20. In some embodiments, Nx is spacer sequence capable of specifically hybridizing to the complement of the target sequence (target nucleic acid molecule is dsDNA). In some embodiments, Nx is spacer sequence capable of specifically hybridizing to the complement of the target sequence (target nucleic acid molecule is single-strand DNA).
In some embodiments of the invention, the guide RNA is a sgRNA. In some embodiments, the sgRNA comprises a 5′-end scaffold sequence and a 3′-end spacer sequence. The spacer sequence can specifically hybridize to the target sequence or the complement of the target sequence. The spacer sequence is typically 18 to 35 nucleotides in length, preferably 20 nucleotides.
In some particular embodiments, the sgRNA is encoded by a nucleotide sequence selected from the group consisting of:
wherein Nx represents nucleotide sequence that consists of X consecutive nucleotides, N is independently selected from A, G, C and T; X is an integer of 18 X 35. Preferably, X=20. In some embodiments, Nx is spacer sequence capable of specifically hybridizing to the complement of the target sequence (target nucleic acid molecule is dsDNA). In some embodiments, Nx is spacer sequence capable of specifically hybridizing to the complement of the target sequence (target nucleic acid molecule is single-strand DNA). In some embodiments, the sgRNA comprises a scaffold sequence encoded by the nucleotide sequence of any one of SEQ ID NOs: 11-21.
In some particular embodiments, the sgRNA is encoded by a nucleotide sequence selected from the group consisting of:
wherein Nx represents nucleotide sequence that consists of X consecutive nucleotides(spacer sequence), N is independently selected from A, G, C and T; X is an integer of 18 X 35. Preferably, X=20. In some embodiments, the sequence Nx (spacer sequence) is capable of specifically hybridizing to the complement of the target sequence. The sequence other than Nx in the sgRNA is a scaffold sequence of sgRNA. In some embodiments, the sgRNA comprises a scaffold sequence encoded by the nucleotide sequence of any one of
The present inventors have surprisingly found that the Cas12b protein and the guide RNA in different Cas12b systems can be used interchangeably, thereby enabling the artificial design of universal guide RNAs.
Thus in some embodiments, the sgRNA is an artificial sgRNA selected from the group consisting of:
wherein Nx represents nucleotide sequence that consists of X consecutive nucleotides(spacer sequence), N is independently selected from A, G, C and T; X is an integer of 18 X 35, preferably, X=20. In some embodiments, the sequence Nx (spacer sequence) is capable of specifically hybridizing to the complement of the target sequence. The sequence other than Nx in the sgRNA is a scaffold sequence of sgRNA.
In some embodiments, the artificial sgRNA comprises a scaffold sequence encoded by the nucleotide sequence of any one of SEQ ID NOs: 30-66.
In some embodiments, the spacer sequence of the gRNA is designed to exactly match the target sequence or its complement. In some embodiments, the spacer sequence of the gRNA is designed to have at least one nucleotide mismatch, for example, one nucleotide mismatch, to the target sequence or its complement. Such gRNAs are also referred to as tuned gRNAs, the nucleotide mismatch is also referred to tuning sites. In view of the tolerance difference in Cas12b to to different mismatches between sgRNA and target, gRNAs designed to have nucleotide mismatches with the target sequence or its complement are capable of distinguishing single nucleotide polymorphism variations in the target sequence. In some embodiments, the location of the at least one nucleotide mismatch is different from the location of the single nucleotide polymorphism variation. For example, a tuned sgRNA has a nucleotide mismatch with target sequence 1 at position 1, and target sequence 1 and target sequence 2 have a single nucleotide polymorphism at position 2, i.e., there are two nucleotide mismatches between a tuned sgRNA and target sequence 2. Due to the tolerance difference of Cas12b to the number of mismatches, it only produces a detectable signal (only 1 mismatch) in the presence of target sequence 1, while target sequence 2 has no detectable signal (due to the presence of two mismatches), thereby target sequence 1 and target sequence 2 comprising single nucleotide polymorphism can be distinguished. One skilled in the art can screen for suitable tuning sites based on the particular target sequence.
In the present invention, a sequence other than the spacer sequence in the gRNA is also referred to as a gRNA scaffold.
In some embodiments, the gRNA is produced by in vitro trancription. In some embodiments, the gRNA is produced by chemical synthesis.
In some embodiments of the invention, the target sequence is 18-35 nucleotides in length, preferably 20 nucleotides. In some embodiments of the invention, especially the detecton related to double-strand DNA, the 5′-end flanking of the target sequence is a protospacer adjacent motif (PAM) sequence selected from 5′TTTN-3′, 5′ATTN-3′, 5′GTTN-3′, 5′CTTN-3′, 5′TTC-3′, 5′TTG-3′, 5′TTA-3′, 5′TTT-3′, 5′TAN-3′, 5′TGN-3′, 5′TCN-3′and 5′ATC-3′, preferably 5′TTTN-3′.
The “single-strand DNA reporter molecule which produces a detectable signal after being cleaved” may, for example, comprise a fluorophore and a quenching group thereof at both ends of the single-stranded DNA, respectively. When the single-strand DNA is not cleaved, the fluorophore does not fluoresce due to the presence of the quenching group. When the Cas12b-gRNA complex is activated by the target nucleic acid molecule and the DNA single strand of the single-strand DNA reporter molecule is cleaved by its non-canonical bypass ssDNA cleavage activity, the fluorophore is released to fluoresce. Suitable fluorophores and their corresponding quenching groups, as well as methods for labeling nucleic acid molecules thereof, are known in the art. Suitable fluorophores include, but are not limited to, FAM, TEX, HEX, Cy3 or Cy5. Suitable quenching groups include, but are not limited to, BHQ1, BHQ2, BHQ3 or TAMRA. Suitable fluorophore-quenching pairs include, but are not limited to, FAM-BHQ1, TEX-BHQ2, Cy5-BHQ3, Cy3-BHQ1 or FAM-TAMRA. Thus, in some embodiments, the detectable signal is a fluorescent signal. In some embodiments, the fluorophore is FAM and the quencher group is BHQ1.
The length of the single-strand DNA in the single-strand DNA reporter molecule may be about 2 to 100 nucleotides, for example, 2-5, 2-10, 2-15, 2-20, 2-25, 2-30, 2-40 or 2 to more nucleotides. Single-strand DNA in the single-strand DNA reporter molecule can comprise any sequence, but in some embodiments, except for polyG (poly-guanylic acid). In some embodiments, the single-strand DNA in the single-strand DNA reporter molecule can be selected from the group consisting of polyA (polyadenosine), polyC (polycytidine), or polyT (polythymidine).
In some embodiments, the single-strand DNA reporter molecule is selected from the group consisting of 5′-FAM-AAAAA-BHQ1-3′, 5′-FAM-TTTTT-BHQ1-3′, and 5′-FAM-CCCCC-BHQ1-3′.
In some embodiments of the methods of the invention, a step of amplifying the nucleic acid molecule in the biological sample prior to step (a) is further included. Such amplification includes, but is not limited to, PCR amplification or Recombinase Polymerase Amplification (RPA). Preferably, the amplification is Recombinase Polymerase Amplification.
In some embodiments, the Recombinase Polymerase Amplification is performed for about 10 minutes to about 60 minutes.
In some embodiments, the Cas12b protein has been pre-combined with the gRNA to form a Cas12b-gRNA complex prior to contact with the biological sample.
In some embodiments, the reaction of step (a) is carried out for from about 20 minutes to about 180 minutes, such as about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 60 minutes, about 90 minutes, about 120 minutes, or any period therebetween.
In some embodiments, step (a) is carried out in a suitable buffer. For example, the buffer is NEBuffer™ 2, NEBuffer™ 2.1 or Cutsmart® Buffer. In some embodiments, the buffer comprises a final concentration of 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgC12, 1 mM DTT, pH 7.9. In some embodiments, the buffer comprises a final concentration of 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 100 μg/ml BSA, pH 7.9. In some embodiments, the buffer comprises a final concentration of 50 mM potassium acetate, 20 mM Tris-acetic acid, 10 mM magnesium acetate, 100 μg/ml BSA, pH 7.9.
Biological samples that can be used in the method of the invention include, but are not limited to, whole blood, plasma, serum, cerebrospinal fluid, urine, feces, cell or tissue extracts, and the like. The biological sample encompasses a nucleic acid sample extracted from a cell or tissue.
The scope of the invention also includes a kit for use in the methods of the invention, the kit comprises reagents for carrying out the methods of the invention, and instructions for use. For example, the kit may comprise a Cas12b protein (e.g., a Cas12b protein of the invention), a gRNA (e.g., comprising a gRNA scaffold of the invention) or a reagent for producing a gRNA (e.g., comprising the gRNA scaffold of the invention), single-strand DNA reporter molecule (e.g., single-strand DNA reporter molecule of the invention), suitable buffers, and/or nucleic acid amplification reagents. The kit generally includes a label indicating the intended use and/or method of use of the contents of the kit. The term label includes any written or recorded material provided on or with the kit or otherwise provided with the kit.
The invention further provides the use of the Cas12b protein as defined above and/or a gRNA comprising the scaffold of the invention and/or an agent for producing a gRNA comprising the scaffold of the invention in the preparation of a kit for the method of the present invention.
SpCas9 and LbCas12a proteins were commercially purchased (NEB). AaCas12b, ArCas12a, HkCas12a and PrCas12a proteins were purified according to previous report. Briefly, BPK2014-Cas12-His10 proteins were expression in E. coli strain BL21 (λDE3) and induced expression with 0.5 mM IPTG at 16° C. for 16 h. Cell pellets were harvested and lysed, following washing and elution using His60 Ni Superflow Resin (Takara). Purified Cas12 proteins were dialyzed, concentrated and finally quantitated using BCA Protein Assay Kit (Thermo Fisher).
DNA oligos were commercially purchased (Genscript). Double-stranded DNA activators were obtained by PCR reaction and purified using Oligo Clean & Concentrator Kit (ZYMO Research). Guide RNAs were transcribed in vitro using HiScribe™ T7 High Yield RNA Synthesis Kit (NEB) and purified using MicroElute RNA Clean Up Kit (Omega).
Background genomic DNAs used in indicated reactions were crudely purified from human embryonic kidney 293T cells using Mouse Direct PCR Kit (Bimake). To mimic the cell-free DNA (cfDNA), dsDNAs were diluted into human plasma (Thermo Fisher) at indicated concentrations.
Detection assays were performed with 30 nM Cas12, 36 nM gRNA, 40 nM activator (unless otherwise indicated) mixed in 40 ng background genomic DNAs (in indicated reaction), 200 nM custom synthesized homopolymer ssDNA FQ reporter (Table 1) and NEBuffer™ 2 (unless otherwise indicated) in a 20 μl reaction in a Corning 384-well Polystyrene NBS Microplate. Reactions were incubated at 37° C. for indicated timecourse in a fluorescence plate reader (BioTek Synergy 4) with fluorescent kinetics measured every 5 min (λex=485 nm; λem=528 nm, transmission gain=61). The fluorescence results were analyzed by SigmaPlot software.
Recombinase Polymerase Amplification (RPA) reactions.
Recombinase polymerase amplification (RPA) reactions were proceeded using TwistAmp Basic (TwistDx) according to the manufacturer's protocol. The 50 μl RPA reaction system containing varying amounts of DNA input was incubated in 37° C. for 10 minutes. 16 μl RPA product were directly transferred to the 20 μl detection assay as above mentioned.
CRISPR-Cas12b nuclease derived from Alicyclobacillus acidiphilus NBRC 100859 (AaCas12b, amino acid sequence shown as SEQ ID NO:1) has recently been harnessed for mammalian genome editing for its canonical dsDNA targeted cleavage ability (
To develop the Cas12b-mediated DNA detection system, the inventors first profiled the cleavage preference of AaCas12b-sgRNA complex on fluorophore quencher (FQ)-labeled homopolymer reporters and found that AaCas12b preferred thymine polymer (ploy T) as well as poly A and poly C, whereas poly G could not work at all (
The inventors next tested the specificity of trans-cleavage activation using either a ssDNA or dsDNA activator bearing various mismatches, and found that the PAM sequence is critical for dsDNA activator-triggered trans-cleavage activity for AaCas12b and is dispensable for ssDNA activator (
Then the inventors determined the sensitivity of AaCas12b-sgRNA-activator system, and found that without pre-amplification, AaCas12b did not produce a detectable signal at input concentrations <1.6 nM and 8 nM for ssDNA- and dsDNA-activator, respectively (
Since dsDNA activator possessed a higher specificity(
AaCas12b showed higher detection sensitivity at both detection sites than Cas12a-based DNA detection, so CDetection produced higher signal levels and lower background levels (
To enhance sensitivity, the inventors performed pre-amplification with recombinase polymerase amplification (RPA), and enabled single-molecule detection at 1 am (
To extend and mimic applications of CDetection in molecular diagnostic applications, 19 NP2019TC492 the inventors diluted synthetic HPV dsDNAs into human genomic DNA. The results showed that CDetection could identify infectious virus target at sub-attomolar magnitude (0.1 åM) (
The high sensitivity of AaCas12b in human plasma urged us to test the application of CDetection in cfDNA-based non-invasive diagnoses. Though previously used cfDNA analyses have achieved a sensitivity of 1 in 108, these methods require a relatively large amount of cfDNAs (5-10 ng/ml of plasma) and are time-consuming. To indicate the advantage of CDetection platform in cfDNA detection, the inventors diluted HPV dsDNAs into human plasma and examined the sensitivity of this newly-established method. The results showed that CDetection could detect the existence of HPV DNAs in human plasma at the concentration of 1 aM (
To expand the applications of CDetection in accurate diagnostics, the inventors designed experiments using three targeting sgRNA and corresponding dsDNA activators (on- versus off-activator) to identify six common human ABO alleles. Theoretically, CDetection carrying each of the three sgRNAs can identify 001, 002/003 and B101, respectively. And if no fluorescent signal can be detected for all sgRNAs, the allele should be A101/A201 (
To improve the specificity of CDetection, the inventors introduced tuned guide RNA (tgRNA) containing a single-nucleotide mismatch in the spacer sequence, which transforms the undistinguishable state of two similar targets differed by a single base into the distinguishable state (
To elucidate the single-base-resolution sensitivity of enhanced CDetection (eCDetection), the inventors repeated the ABO blood genotyping test. As the results indicated, eCDetection could determine blood type with high accuracy, while CDetection could not (
Disease-associated point mutations were usually detected by sequencing and probe detection. However, sequencing is costly and time-consuming, and its sensitivity is dependent on sequencing depth. Probe-based methods perform poor sensitivity for single-nucleotide variation. Since the eCDetection method of the present invention has high specificity and sensitivity, the eCDetection can be used to detect low rate single-base mutations in the human genome.
The inventors selected the cancer-related TP53 856G>A mutation to test the feasibility. The results showed that CDetection could accurately distinguish the point mutated allele from the wild-type allele using selected tgRNAs (
Furthermore, the inventors applied CDetection platform in detecting two hotspots in breast cancerrelated BRCA1 gene (3232A>G and 3537A>G). CDetection with selected tgRNAs (tgRNA-3232-1 and tgRNA-3537-4) performed excellently to discriminate point mutations while sgRNAs could hardly support point mutation detection (
Furthermore, to mock the early clinical detection of primary diseases using cfDNA by CDetection, the inventors diluted BRCA1 3232A>G dsDNAs into human plasma. The results demonstrated that CDetection could achieve point mutation detection at the single-base resolution (
Together, the present invention provides a CDetection platform based on the non-canonical collateral ssDNA cleavage properties of Cas12b nuclease, which enables to detect DNA molecules with attomolar sensitivity. Meanwhile, combined with tuned gRNA, the inventors develop an enhanced version (eCDetection) to achieve single-base-resolution sensitivity. The CDetection and eCDetection platform of the present invention will make it easier to detect the presence of nucleic acids in a wide range of molecular diagnostic applications, and genotypic assay in clinical research (
Six representative Cas12b proteins were selected and de novo synthesized from diverse bacteria to conduct genome editing in human embryonic kidney 293T cells as well as four previously reported Cas12b orthologs (
To conduct mammalian genome editing, the inventors co-transfected 293T cells with individual Cas12b enzymes and their cognate chimeric single guide RNAs (sgRNAs) targeting human endogenous loci containing appropriate PAMs (
To investigate the interchangeability between the dual-RNA (crRNA tracRRNA) and protein components in Cas12b systems, the inventors first analyzed the conservation of both Cas12b proteins and dual-RNAs. Besides the conserved amino acid sequences of Cas12b orthologs (
To further demonstrate our hypothesis, we chose two Cas12b orthologs (DiCas12b and TcCas12b) whose loci harbored no CRISPR array (
Example 7. Design artificial sgRNA for Cas12b-mediated genome editing
The exchangeability between Cas12b and dual-RNA in different Cas12b systems further promoted us to design novel artificial sgRNA (artsgRNA) scaffolds to facilitate Cas12b-mediated genome editing. Considering the conservation of DNA sequences and secondary structure among Cas12b orthologs (
GCUAACUAUGA
CCCUUGGCUAU
AUGGCUUCAGU
CCGCGAAACCU
UAUGGCAGCAC
GCUUCUACACA
GUGGGCGUGGA
UGGGCGUGGA
GAUGGUCUACC
GAUGGUCUACC
AGACCAUCCUG
AGACCAUCCUG
GCUCAAGCAAU
GCUCAAGCAAU
GCUCAAGCAAU
G
UCAAGCAAU
GCUCAA
CAAU
AUGGGAAGUGG
AUGGGAAGUGG
AUGGGAAGUGG
A
GGGAAGUGG
AUGGGA
GUGG
GAUCGUUACGCUAACUAUGAGUUUUAGAGCUAGAAAUAGCAAGUUAA
Number | Date | Country | Kind |
---|---|---|---|
201811099146.0 | Sep 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/118457 | 11/30/2018 | WO | 00 |