The present invention generally relates to a method for popping popcorn in which end status indicators are used to determine when to end a popping cycle for the popcorn and a microwave which is operable to carry out the method.
One embodiment of the present disclosure includes a method of popping popcorn in a microwave that includes operating an energy source to provide energy to a cooking chamber and detecting, by a microphone sensor, sound waves in the cooking chamber and providing an output signal indicative of the detected sound waves to a control unit. The method also includes determining, by the control unit, that the output signal is indicative of a popping sound generated by popcorn kernels popping and controlling, by the control unit, the energy source to stop providing energy to the cooking chamber when each of the following end status indicators are satisfied: (a) a predetermined number of popping sounds per a first time interval are detected, (b) a predetermined total number of popping sounds are detected, and (c) a predetermined change in a number of popping sounds per a second time interval is detected by the microphone sensor.
Another embodiment of the present disclosure includes a method of popping popcorn in a microwave that includes operating an energy source to provide energy to a cooking chamber and detecting, by a microphone sensor, sound waves in the cooking chamber and providing an output signal indicative of the detected sound waves to a control unit. The method also includes determining, by the control unit, that the output signal is indicative of a popping sound generated by popcorn kernels popping. The method further includes determining, by the control unit, that a first end status indicator is satisfied when a predetermined number of popping sounds per a predetermined time interval are detected by the microphone sensor. The method also includes determining, by the control unit, that a second end status indicator is satisfied when a predetermined total number of popping sounds are detected by the microphone sensor and the first end status indicator has been satisfied. The method further includes determining, by the control unit, that a third end status indicator is satisfied when a predetermined change in a number of popping sounds per a predetermined time interval is detected by the microphone sensor and the first and second end status indicators have been satisfied. The method also includes controlling, by the control unit, the energy source to stop providing energy to the cooking chamber when the third end status indicator is satisfied.
Yet another embodiment of the present disclosure includes a microwave having a cooking chamber, an energy source configured to provide energy to the cooking chamber during a popcorn popping cycle, a microphone sensor configured to detect popping sounds generated when popcorn kernels are popped in the cooking chamber during a popcorn popping cycle, and a control unit configured to receive an output signal from the microphone sensor indicative of popping sounds detected by the microphone sensor. The control unit is configured to end the popcorn popping cycle when each of the following end status indicators are detected by the microphone sensor: (a) a predetermined number of popping sounds per a first time interval are detected, (b) a predetermined total number of popping sounds are detected, and (c) a predetermined change in a number of popping sounds per a second time interval is detected by the microphone sensor.
These and other features, advantages, and objects of the present methods and devices will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
In one embodiment, as shown in
In particular, in the embodiment shown in
In use, as shown in the embodiment schematically represented in
In one embodiment, as shown in the electrical schematic of
The appliance control unit 48 filters the output signal 46 from the microphone sensor by evaluating the signal 46 to determine whether it represents a popping sound. If the signal width is greater than 15 milliseconds, it is considered a popping sound. The appliance control unit 48 continuously tracks a peak pop count, a total pop number, a pop slope, and the elapsed time. The “peak pop count” is the maximum number of popping sounds detected in a first time interval. The “total pop number” is the number of popping sounds detected during a given popcorn popping cycle. The “pop slope” is a change in the number of popping sounds per a second time interval, i.e., the number of popping sounds in a second time interval subtracted from the number of popping sounds in a time interval of the same length immediately preceding the second time interval. The appliance control unit 48 also tracks the elapsed time of the magnetron 14 operating, i.e., the popping cycle.
The appliance control unit 48 uses the measurements of peak pop count, total pop number and pop slope as end status indicators to determine when the popcorn popping cycle should be terminated to avoid burning or overheating the popcorn kernels 40. End status indicators include (a) reaching a predetermined number of popping sounds per a first time interval, (b) reaching a predetermined total number of popping sounds during the popcorn popping cycle, and (c) reaching a predetermined change in the number of popping sounds per a second time interval. In certain embodiments, such as that shown in
In the embodiment shown in
Alternative threshold values for the predetermined number of popping sounds per a first time interval, the predetermined total number of popping sounds during the popcorn popping cycle, and the predetermined change in the number of popping sounds per a second time interval can be determined through experimentation, and may be based on a particular microwave or cooking apparatus model. For example, the threshold for a predetermined number of popping sounds per a first time interval could be set at a value chosen from about 8 to about 15 popping sounds per 5 seconds, more preferably at a value chosen from about 8 to about 12 popping sounds per 5 seconds. Additionally, the threshold for the total number of popping sounds during the popcorn popping cycle could be set at a value between about 80 and about 150, or more preferably at a value chosen from about 80 to about 100.
If all of the end status indicators are detected, a user of the microwave is notified that the popping cycle has successfully ended. If any of the end status indicators listed above have not been reached within a predetermined time period, the user is notified to check the popcorn to determine whether popping has finished. Therefore, the total predetermined time period of the popping cycle also functions as an end status indicator, and reaching the total predetermined time period on its own is sufficient for the appliance control unit 48 to stop the magnetron 14. As shown in the embodiment depicted in
In another embodiment, as shown in
In particular, in the embodiment shown in
As depicted in the graphs of
The appliance control unit 48 continuously tracks the humidity level in the cooking chamber 12, and detects a peak in the humidity level by determining when the humidity level is no longer increasing. When the humidity level is no longer increasing, the appliance control unit 48 evaluates whether the humidity level has fallen to below a predetermined percentage of the peak humidity level. After the humidity level has reached the predetermined percentage, the appliance control unit 48 continuously tracks the number of popping sounds in a first time interval, and the pop slope, i.e., the number of popping sounds in a second time interval subtracted from the number of popping sounds in a time interval of the same length immediately preceding the second time interval. The appliance control unit 48 also tracks the elapsed time of the magnetron 14 operating, i.e., the popping cycle.
The appliance control unit 48 uses the measurements of the humidity level and popcorn popping sounds as end status indicators to determine when the popcorn popping cycle should be terminated to avoid burning or overheating the popcorn kernels 40. As shown in the embodiment depicted in
In the embodiment shown in
The microwave 10 and method for its use described herein permit the cooking of popcorn kernels 40 to their desired state, with the end status indicators helping the appliance control unit 48 to determine when the popping is complete, so that the popcorn popping cycle is not terminated too early (leaving a larger number of unpopped kernels 40) or extended too long (overcooking or burning the popcorn kernels 40). In one embodiment of a microwave 10 according to the present disclosure, the microwave 10 includes the cooking chamber 12 and magnetron 14 which is operable to provide microwave energy 42 to the cooking chamber 12. The microwave 10 also incorporates the microphone sensor 16 to detect popping sounds generated within the cooking chamber 12 and the humidity sensor 60 to detect a humidity level within the cooking chamber 12. The appliance control unit 48 is also provided, and the appliance control unit 48 receives the first input based on the sound waves 32 detected by the microphone sensor 16 and the second input based on the humidity detected by the humidity sensor 60, and uses the first input and the second input to direct the operation of the magnetron 14.
One method of using the microwave 10 described herein includes placing a plurality of popcorn kernels 40 in the cooking chamber 12 of the microwave 10, operating the energy source 14 during a popcorn popping cycle, and detecting popping sounds generated when the popcorn kernels 40 are popped. The method further includes the step of directing the energy source 14 to stop operating and end the popcorn popping cycle when the popping sounds satisfy one or more end status indicators. The end status indicators include (a) reaching a predetermined number of popping sounds per a first time interval, (b) reaching a predetermined total number of popping sounds during the popcorn popping cycle, (c) reaching a predetermined change in the number of popping sounds per a second time interval, and (d) reaching a predetermined total popping cycle time.
Another method of using the microwave described herein includes placing a plurality of popcorn kernels 40 in the cooking chamber 12 of the microwave 10 and operating the energy source 14 during a popcorn popping cycle. The humidity level in the cooking chamber 12 and popping sounds generated when the popcorn kernels 40 are popped are detected, and the energy source 14 is directed to stop operating when the popping sound and the humidity level satisfy one or more of the end status indicators. Potential end status indicators include (a) the humidity level falling to a predetermined percentage of a peak humidity level, (b) the number of popping sounds is reduced below a predetermined number of popping sounds per a first time interval, (c) reaching a predetermined change in the number of popping sounds per a second time interval, and (d) reaching a predetermined total popping cycle time.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
This application is a continuation of U.S. application Ser. No. 14/912,475, now U.S. Pat. No. 10,560,986, filed on Feb. 17, 2016, entitled METHOD FOR DETECTING THE STATUS OF POPCORN IN A MICROWAVE, which is a National Stage Application of PCT/CN2013/081837, filed Aug. 20, 2013, entitled METHOD FOR DETECTING THE STATUS OF POPCORN IN A MICROWAVE, the contents of which are incorporated herein by reference, in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2742612 | Cohn | Apr 1956 | A |
2981904 | Ajioka et al. | Apr 1961 | A |
3265995 | Hamasaki | Aug 1966 | A |
3430023 | Tingley | Feb 1969 | A |
3737812 | Gaudio et al. | Jun 1973 | A |
4088861 | Zwillinger | May 1978 | A |
4139828 | Commault et al. | Feb 1979 | A |
4143646 | Sampsel et al. | Mar 1979 | A |
4196332 | MacKay et al. | Jan 1980 | A |
4354562 | Newman | Oct 1982 | A |
4374319 | Guibert | Feb 1983 | A |
4463324 | Rolfs | Jul 1984 | A |
4628351 | Heo | Dec 1986 | A |
4703151 | Sakamoto | Oct 1987 | A |
4743728 | Nagafusa et al. | May 1988 | A |
4786774 | Kaminaka | Nov 1988 | A |
4870238 | Hodgetts et al. | Sep 1989 | A |
4886046 | Welch et al. | Dec 1989 | A |
4937413 | Spruytenburg et al. | Jun 1990 | A |
4952766 | McDonald | Aug 1990 | A |
5075525 | Jung | Dec 1991 | A |
5369254 | Kwon | Nov 1994 | A |
5483045 | Gerling | Jan 1996 | A |
5619983 | Smith | Apr 1997 | A |
5736717 | Lee | Apr 1998 | A |
5831253 | Han et al. | Nov 1998 | A |
5878910 | Gibemau et al. | Mar 1999 | A |
5919389 | Uehashi et al. | Jul 1999 | A |
5973305 | Kim et al. | Oct 1999 | A |
5981929 | Maeda et al. | Nov 1999 | A |
6018158 | Kang | Jan 2000 | A |
6054696 | Lewis et al. | Apr 2000 | A |
6057535 | Derobert et al. | May 2000 | A |
6097019 | Lewis et al. | Aug 2000 | A |
6268593 | Sakai | Jul 2001 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6429370 | Norte et al. | Aug 2002 | B1 |
6557756 | Smith | May 2003 | B1 |
6559882 | Kerchner | May 2003 | B1 |
6853399 | Gilman et al. | Feb 2005 | B1 |
7193195 | Lundstrom et al. | Mar 2007 | B2 |
7361871 | Cho et al. | Apr 2008 | B2 |
7476828 | Genua | Jan 2009 | B2 |
7482562 | Song et al. | Jan 2009 | B2 |
7926313 | Schenkl et al. | Apr 2011 | B2 |
8074637 | Yamauchi | Dec 2011 | B2 |
8389916 | Ben-Shmuel et al. | Mar 2013 | B2 |
8455803 | Danzer et al. | Jun 2013 | B2 |
8492686 | Bilchinsky et al. | Jul 2013 | B2 |
8530807 | Niklasson et al. | Sep 2013 | B2 |
8610038 | Hyde et al. | Dec 2013 | B2 |
8745203 | McCoy | Jun 2014 | B2 |
8803051 | Lee et al. | Aug 2014 | B2 |
9131543 | Ben-Shmuel et al. | Sep 2015 | B2 |
9132408 | Einziger et al. | Sep 2015 | B2 |
9179506 | Sim et al. | Nov 2015 | B2 |
9215756 | Bilchinsky et al. | Dec 2015 | B2 |
9374852 | Bilchinsky et al. | Jun 2016 | B2 |
9560699 | Zhylkov et al. | Jan 2017 | B2 |
9585203 | Sadahira et al. | Feb 2017 | B2 |
20060289526 | Takizaki et al. | Dec 2006 | A1 |
20090134155 | Kim et al. | May 2009 | A1 |
20110031236 | Ben-Shmuel et al. | Feb 2011 | A1 |
20110168699 | Oomori et al. | Jul 2011 | A1 |
20110290790 | Sim et al. | Dec 2011 | A1 |
20120067872 | Libman et al. | Mar 2012 | A1 |
20120103972 | Okajima | May 2012 | A1 |
20120152939 | Nobue et al. | Jun 2012 | A1 |
20130048881 | Einziger et al. | Feb 2013 | A1 |
20130142923 | Torres et al. | Jun 2013 | A1 |
20130156906 | Raghavan et al. | Jun 2013 | A1 |
20130186887 | Hallgren et al. | Jul 2013 | A1 |
20130200066 | Gelbart et al. | Aug 2013 | A1 |
20130277353 | Joseph et al. | Oct 2013 | A1 |
20140277100 | Kang | Sep 2014 | A1 |
20150034632 | Brill et al. | Feb 2015 | A1 |
20150136758 | Yoshino et al. | May 2015 | A1 |
20150156827 | Ibragimov et al. | Jun 2015 | A1 |
20150173128 | Hosokawa et al. | Jun 2015 | A1 |
20150289324 | Rober et al. | Oct 2015 | A1 |
20150305095 | Huang et al. | Oct 2015 | A1 |
20150334788 | Hofmann et al. | Nov 2015 | A1 |
20150373789 | Meusburger et al. | Dec 2015 | A1 |
20160029442 | Houbloss et al. | Jan 2016 | A1 |
20160088690 | Kubo et al. | Mar 2016 | A1 |
20160119982 | Kang et al. | Apr 2016 | A1 |
20160219656 | Hunter, Jr. | Jul 2016 | A1 |
20160327281 | Bhogal et al. | Nov 2016 | A1 |
20160353528 | Bilchinsky et al. | Dec 2016 | A1 |
20160353529 | Omori et al. | Dec 2016 | A1 |
20170099988 | Matloubian et al. | Apr 2017 | A1 |
20170105572 | Matloubian et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1523293 | Aug 2004 | CN |
101118425 | Feb 2008 | CN |
201081287 | Jul 2008 | CN |
102620324 | Aug 2012 | CN |
103156532 | Jun 2013 | CN |
203025135 | Jun 2013 | CN |
105042654 | Nov 2015 | CN |
204987134 | Jan 2016 | CN |
10613555 | Nov 2016 | CN |
0493623 | Aug 1992 | EP |
1193584 | Mar 2002 | EP |
1424874 | Jun 2004 | EP |
1426692 | Jun 2004 | EP |
1795814 | Jun 2007 | EP |
2031938 | Mar 2009 | EP |
2220913 | May 2011 | EP |
2405711 | Nov 2012 | EP |
2618634 | Jul 2013 | EP |
2775794 | Sep 2014 | EP |
2976651 | Dec 2012 | FR |
639470 | Jun 1950 | GB |
2367196 | Mar 2002 | GB |
S55155120 | Dec 1980 | JP |
57194296 | Dec 1982 | JP |
59226497 | Dec 1984 | JP |
H01200119 | Aug 1989 | JP |
H0510527 | Jan 1993 | JP |
H06147492 | May 1994 | JP |
2000304593 | Nov 2000 | JP |
2008108491 | May 2008 | JP |
2011146143 | Jul 2011 | JP |
2013073710 | Apr 2013 | JP |
19940002369 | Mar 1994 | KR |
2000025539 | Oct 1998 | KR |
20050002121 | Jul 2005 | KR |
101359460 | Feb 2014 | KR |
20160093858 | Aug 2016 | KR |
2122338 | Nov 1998 | RU |
2215380 | Oct 2003 | RU |
2003111214 | Nov 2004 | RU |
2008115817 | Oct 2009 | RU |
2008137844 | Mar 2010 | RU |
03077601 | Sep 2003 | WO |
2008018466 | Feb 2008 | WO |
2008102360 | Aug 2008 | WO |
2009039521 | Mar 2009 | WO |
2011138680 | Nov 2011 | WO |
2012001523 | Jan 2012 | WO |
2012162072 | Nov 2012 | WO |
2011039961 | Feb 2013 | WO |
2015024177 | Feb 2015 | WO |
2016128088 | Aug 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20200154535 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14912475 | US | |
Child | 16728373 | US |