The present invention relates to a method for detection of the operating state, in particular of non-zero-voltage switching operation, of a ballast for florescent lamps, and to a ballast.
In order to assist understanding of the invention as explained in the following text, the fundamental design of an electronic ballast, which is used to drive a florescent lamp, and its method of operation will first of all be explained with reference to
An electronic ballast has a half-bridge with two semiconductor switching elements Q1, Q2, whose load paths are connected in series between supply terminals K1, K2, between which a DC voltage Vb is applied. These two semiconductor switching elements S1, S2 are driven via a drive circuit 20 which drives each of the two semiconductor switching elements S1, S2 in a clocked form. The two semiconductor switches Q1, Q2 are in this case driven alternately in order to ensure that the two semiconductor switches are never switched on at the same time. A voltage V2, which has an essential square waveform, is produced at an output K3 of the half-bridge, which is formed by a node that is common to the load paths of the semiconductor switching elements.
This voltage V2 feeds a resonant tuned circuit with a resonant inductance L1 and a resonant capacitor C1, with a florescent lamp being connected in parallel with the resonant capacitor C1 in the example. A further capacitor C2, which is connected in series with the resonant inductance L1 and upstream of the parallel circuit formed by the florescent lamp 10 and the resonant capacitor C1, is used as a blocking capacitor, and blocks direct-current components.
A snubber capacitor C3 is connected in parallel with the load path of the second semiconductor switching element Q2, with the object of reducing the switching losses during zero-voltage switching operation (ZVS) of the two semiconductor switching elements Q1, Q2.
The illustration does not show the normally provided measurement connections of the drive circuit 20, via which by way of example a voltage across the florescent lamp 10 or a current through the half-bridge Q1, Q2 is determined, and supply connections via which a voltage supply is provided for the drive circuit 20. The DC voltage Vb for the ballast is provided, for example, by a switched-mode converter with a power factor correction function (power factor controller, PFC). In this context, reference is made, for example, to EP 1 066 739 B1, U.S. Pat. No. 6,617,805 B2 or U.S. Pat. No. 6,400,095 B1, as cited above.
The semiconductor switching elements Q1, Q2 are switched on by the drive circuit 20 via the drive signals S1, S2, with a respective phase shift, for switched-on durations Ton1, Ton2, with the drive periods Tp for the two semiconductor switches S1, S2 each being the same. The drive is provided, for example, in such a way that there is a minimum switched-off time toff between one of the two semiconductor switching elements being switched off and the other being switched on. The switched-on durations Ton1, Ton2 are normally each of equal length, the duty cycle, that is to say the ratio of the switched-on duration to the period duration is, for example, about 45%.
When the first semiconductor switch S1 is switched on and the second semiconductor switch S2 is switched off, the output voltage V2 from the half-bridge circuit Q1, Q2 corresponds approximately to the DC voltage Vb between the terminals K1, K2, ignoring the switched-on resistance of the first semiconductor switching element Q1. This voltage results in a lamp current I1, which flows in the opposite direction to that shown in
The snubber capacitor C3 assists zero-voltage switching of the first and second semiconductor switching elements Q1, Q2, that is to say switching of these semiconductor switching elements Q1, Q2 when the voltage across their load path is equal to zero. The switches Q1, Q2 can admittedly also be switched on at zero voltage without the snubber capacitor C3. The only precondition for this is that the current through the load path continues to flow with the same polarity until the corresponding switch Q1, Q2 is switched on. Without any snubber capacitor C3, the voltage would, however, rise very quickly after switching off a switch Q1, Q2, leading to corresponding switching-off losses. The snubber capacitor C3 limits this rate of voltage rise, and thus reduces the switching losses.
However, situations in which such zero-voltage switching operation cannot be achieved may occur during operation of a florescent lamp. In this case, the snubber capacitor C3 charge is not changed by means of the current that is induced in the resonant inductance L1 but by means of the currents flowing through the semiconductor switching elements on switching on, and this is associated with considerable losses. Operating states such as these may occur, for example, when the lamp has been removed from the socket or is damaged, or when the DC voltage Vb falls for a lengthy time period during normal operation.
In order to avoid overloading of the semiconductor switching elements which are designed to be continuously loaded only for zero-voltage switching operation during non-zero-voltage switching operation, it is necessary to identify an operating state such as this and, if necessary, to switch off the florescent lamp by interrupting the drive to the half-bridge if this operating state lasts for longer than a predetermined time period.
In order to detect such non-zero-voltage switching operation, it is known from U.S. Pat. Nos. 6,331,755 B1 and 5,973,943 for a current to be detected by the low-side switch in the half-bridge and to be assessed against a reference value at the time at which the switch is switched on and off. U.S. Pat. No. 6,400,095 B1 and EP 1 066 739 B1 propose that the current through the lamp be detected by means of a shunt resistance, and be assessed against a reference value.
One aim of the present invention is to provide a method for detection of non-zero-voltage switching operation of a lamp ballast, and to provide a ballast having a detector circuit for detection of non-zero-voltage switching operation.
This aim is achieved by methods and apparatus disclosed herein.
In the method according to a first embodiment of the invention for detection of non-zero-voltage switching operation of a lamp ballast, which has a half-bridge circuit with a first and a second semiconductor switching element, a resonant tuned circuit connected to one output of the half-bridge circuit, and a snubber capacitance connected in parallel with one of the semiconductor switching elements, provision is made for a voltage measurement signal which is dependent on a voltage at the output of the half-bridge to be produced, and for the voltage measurement signal to be evaluated by comparison of the voltage measurement signal with a reference value, in each case before the switching-on times of at least one of the first and second semiconductor switching elements.
In the case of this method, non-zero-voltage switching operation is detected when the voltage measurement signal falls below the level of the reference signal before the switching-on time of the first semiconductor switching element, and/or when the voltage measurement signal exceeds the reference value before the switching-on time of the second semiconductor switching element.
The voltage measurement signal is preferably compared with the reference value in each case before the switching-on times of the first semiconductor switching element and before the switching-on times of the second semiconductor switching element, thus making it possible to distinguish between individual different non-zero-voltage switching operating modes.
The voltage measurement signal in one embodiment of the method is produced by means of a resistive voltage divider from the voltage at the output of the half-bridge, and in another embodiment is produced by means of a capacitive voltage divider from the voltage at the output of the half-bridge.
Another embodiment of the invention is a lamp ballast having a half-bridge circuit with a first and a second semiconductor switching element, which are driven on the basis of first and second drive signals, and having an output at which a half-bridge voltage is produced, and has a resonant tuned circuit which is connected to the output of the half-bridge circuit. The lamp ballast also has a detector circuit for detection of non-zero-voltage switching operation, having the following features:
a voltage measurement arrangement which is connected to the output of the half-bridge circuit and provides a voltage measurement signal based on the half-bridge circuit,
an evaluation circuit to which the voltage measurement signal is supplied and which is designed to evaluate the voltage measurement signal by comparison of the voltage measurement signal with a reference value, in each case before the switching-on times of at least one of the first and second semiconductor elements, and to produce at least one evaluation signal on the basis of this comparison.
In order to preset the evaluation times, the lamp ballast is supplied, for example, with at least one of the first and second drive signals.
The present invention will be explained in more detail in the following text with reference to figures, in which:
Unless stated to the contrary, identical reference symbols denote identical circuit components and signals with the same meaning in the figures.
By way of example,
It should be noted that unavoidable delay times between the flanks of the drive signals S1, S2 and the switching-on times of the switches S1, S2 are ignored in
a shows the waveform of the output voltage V3 from the half-bridge in a lamp ballast for non-zero-voltage switching operation of a first type. In this case, although the output voltage V2 falls from the first time t1 when the first switch is switched off, the dead time Toff, however, is not sufficient in order to draw the output voltage V2 to zero or to the reference ground potential GND before the second switch T2 is switched on, so that a voltage which is not equal to zero is present across the second switch Q2 when it is switched on, and this leads to increased switching losses. In a corresponding manner, during this operating state, the dead time between the second switch Q2 being switched off and the first switch Q1 being switched on is not sufficient in order to draw the output voltage V2 to the value of the operating voltage Vb, so that a voltage which is not equal to zero is present across this first switch S1 at its switching-on time t4, and this leads to increased switching losses.
In order to detect this non-zero-voltage switching operation, the method according to the invention provides for a voltage measurement signal Vs to be produced, which is dependent on the output voltage V2 from the half-bridge. The waveform of the signal Vs such as this, which is dependent on the waveform of the output voltage in the example, is illustrated in
Non-zero-voltage switching operation is detected using the method according to the invention when the voltage measurement signal Vs has not yet fallen below the reference value Vref at the first comparison time tm1 before the second switch Q2 is switched on (at the time t2), and/or when the voltage measurement signal Vs has not yet risen above the reference value Vref at the second comparison time tm2 before the second switch Q2 is switched on (at the time t4). The time interval between the respective comparison times tm1, tm2 and the switching-on times t2, t4 as well as the threshold of the reference value Vref are chosen such that, during correct zero-voltage switching operation, the voltage measurement signal Vs has already fallen below the reference value Vref at the first comparison time tm1, and has already risen above the reference value Vref at the second comparison time tm2.
This non-zero-voltage switching operation of the second type can also be detected by means of the method according to the invention by comparing the voltage measurement signal Vs (which is derived from the output voltage V2 and whose waveform is illustrated in
The reference value Vref is chosen in such a way that it is located between the maximum possible signal value and the minimum possible signal value of the voltage measurement signal Vs, with the reference value preferably being closer to the minimum value than to the maximum value. These values are, in particular, dependent on the manner in which the voltage measurement signal Vs is obtained from the output voltage V2 from the half-bridge Q1, Q2.
The detector circuit in the example has a resistive voltage divider R1, R2, which is connected between output K3 of the half-bridge Q1, Q2 and the reference ground potential GND and at whose center tap the voltage measurement signal Vs is available, as the voltage measurement arrangement for provision of a voltage measurement signal Vs which is dependent on the output voltage V2 from the half-bridge Q1, Q2. This voltage measurement signal Vs is supplied to an evaluation circuit 30 which produces a status signal S30, which assumes a first level during zero-voltage switching operation, and a second level during non-zero-voltage switching operation.
The evaluation circuit 30 has a reference voltage source 35, which provides the reference value Vref. The reference value Vref and the voltage measurement signal Vs are supplied to a comparator 31, which produces a comparison signal S31 that is dependent on the comparison of the voltage measurement signal Vs with the reference value Vref. This comparison signal S31 is supplied to the data input D of a D-flipflop 32, which carries out the function of a sampling and storage unit. The comparison signal S31 is sampled on the basis of a clock signal S33, which is derived from the second drive signal S2 by inversion by means of an inverter 33 and is supplied to a clock input CLK of the flipflop 32. The flipflop 32 is level-controlled and in each case receives the instantaneous value of the comparison signal S31 while the clock signal is at a high level, and retains the most recently stored value after a falling flank of the clock signal S33. The value which is stored in the flipflop 31 is available at its output. This output signal S32 from the flipflop 32 is linked by means of an AND gate 34 to the second drive signal S2, in order to produce the status signal S30.
The method of operation of the detector circuit illustrated in
The comparison signal S31 is evaluated by the detector circuit at each of the switching-on switching times of the second switch Q2, in which case, with reference to the statements relating to
With reference to the waveforms shown in
Instead of the level-controlled flipflop 32, a flank-controlled flipflop could also be used in the evaluation circuit 30, which stores the value of the comparison signal S31 on each positive flank of the second drive signal S2 and thus on a falling flank of the clock signal S33, and makes this available as the output signal at its output. The output signal from this flip-flop could then be used directly as the status signal S30. In this case, there would be no need for the AND gate 34.
The detector circuit which has been explained with reference to
The diode D1 in this case prevents high voltage from reaching the resistors R1, R2, while the resistor R3 ensures that a defined voltage value is applied to the anode of the diode D1 when the diode is reverse-biased. When the second switch Q2 is switched on, the voltage at the anode of the diode D1 corresponds to the output voltage V2 from the half-bridge Q1, Q2 plus the voltage drop across the forward-biased diode. When the first switch Q1 is switched on, the resistor R3 and the resistors R1 and R2 form a voltage divider, which divides the voltage Vcc. This circuit arrangement is used to detect whether the output voltage V2 is less than the supply voltage Vcc minus the voltage drop across the resistor R3 and the threshold voltage of the diode D1.
A capacitive voltage divider C4, C5 can also be used, instead of a resistive voltage divider, to produce the voltage measurement signal Vs from the output voltage V3 from the half-bridge.
In comparison to resistive voltage dividers, a capacitive voltage divider has the advantage of having a shorter signal delay when high-speed switching processes take place, and of having a lower power consumption. Furthermore, the capacitors C4, C5 which are required for the capacitive voltage divider may, for example, be thick-oxide capacitors with an oxide thickness of between 2 and 3 .mu.m, or may be in the form of gate-oxide capacitors with an oxide thickness in the order of magnitude between 20 nm and 50 nm, so that the capacitors C4, C5 in the capacitive voltage divider can be produced together with the control circuit 20 (illustrated by dashed lines in
One of the two capacitors in the voltage divider C4, C5 may, in particular, be part of a circuit arrangement, the rest of which is not illustrated in any more detail but which detects the presence of a florescent lamp. In addition to the capacitor, in the example the capacitor C5 which is connected to the reference ground potential GND, a lamp identification circuit such as this requires a resistor R5, which is connected between this capacitor C5 and the connection which is common to the lamp electrode 12 and the resonant capacitor C1. The capacitor C5 and the resistor R5 form a low-pass filter, with a lamp identification circuit, which is not illustrated in any more detail but is connected to the node that is common to the capacitor C5 and the resistor R5, being designed to apply a test current to the resistor R5 and to the lamp filaments 12, and to monitor the voltage drop across the resistor R5 and the lamp filaments 12. When no lamp is inserted or the filament is defective, the voltage across the capacitor C5 rises as a result of the test current and the lack of any discharge path. During normal operation, the operating current of the lamp results in a high-amplitude AC voltage across the filament. The low-pass filter that is formed from the capacitor C5 and the resistor R5 is used to keep this AC voltage away from the other circuit parts, which are formed in an integrated circuit.
When a lamp identification circuit such as this is present, only one additional capacitor C4 is required to produce the capacitive half-bridge, and is connected between the capacitor C5 in the lamp identification circuit and the output K3 of the half-bridge.
This evaluation circuit 40 has a comparator 41, one of whose inputs is supplied with the voltage measurement signal Vs, and whose other input is supplied with a reference value Vref produced by a reference voltage source 45. A comparison signal, S41 is produced at the output of this comparator 41 and is supplied to a data input D of a first flipflop 42 and to the one inverting data input D of a second flipflop 43. The two flipflops 42, 43 are flank-triggered flipflops which in each case receive and store the respective signal applied to the data input on a rising flank of a clock signal that is supplied to them. The second drive signal S2 is supplied as a clock signal to the first flipflop 42, and the first drive signal S1 is supplied as a clock signal to the second flip flop 43. A first status signal S42 is produced at one output of the first flipflop 42, with a second status signal S43 being produced at one output of the second flipflop 43, which are used to indicate non-zero-voltage switching operation.
Once again, it is assumed that the flanks of the first and second drive signals S1, S2 each occur before the actual switching times of the switches, owing to unavoidable switching delays in the switches Q1, Q2. The comparison signal S41 is then evaluated via the first flip flop 42, which is driven by the second drive signal S2, in each case shortly before the second switch Q2 is switched on, and the comparison signal S41 is then evaluated via the second flip flop 43, which is driven by the first drive signal S1, in each case shortly before the first switch Q1 is switched on. This results in a distinction being drawn between two different non-zero-voltage switching operating modes, as will be explained in more detail in the following text with reference to
In the exemplary embodiment, a further capacitor C6 is optionally connected between the center tap of the capacitive voltage divider C4, C5 and carries out the function of a coupling capacitor, with the voltage measurement signal being produced at its connection that is remote from the center tap. However, there is no need for this coupling capacitor C6 if the capacitor C5 in the capacitive voltage divider is not part of a lamp identification circuit, that is to say if no non-reactive resistance is connected between the center tap of the voltage divider and the lamp filaments or the lamp electrode 12.
The evaluation circuit 40 also has a switch 45, which is connected between the reference ground potential GND and that input of the comparator 41 to which the voltage measurement signal Vs is supplied. This switch 45 is driven by the second drive signal S2 and is switched on when the second semiconductor switching element Q2 is switched on. The voltage measurement signal Vs is set to a defined potential by means of this switch 45 during the time in which the second switch Q2 is switched on, and this results, after the second switch Q2 has been switched off and the first switch Q1 has been switched on, that is to say when the output voltage V2 of the half-bridge is rising, in the voltage measurement signal Vs following the output voltage V2 with respect to the reference ground potential GND, corresponding to the division ratio of the capacitive voltage divider C4, C5. The example is based on the assumption that the switch 45 in the evaluation circuit is driven by the second switch Q2 in the half-bridge at the same time. However, correct operation is dependent on the voltage measurement signal Vs being set to a defined potential during the time period in which the second switch Q2 is switched on. The switch 45 may for this purpose also be closed only after the switch Q2 and may also be opened again before the second switch Q2.
In summary, the further switch 45 results in the information which is normally not transmitted by a capacitive voltage divider being recovered via the DC component of the voltage V2, so that the voltage measurement signal Vs is proportional to the output voltage V2, and is related to the same reference ground potential GND.
The method of operation of the evaluation circuit 40 shown in
a and 10b show the waveforms of the first and second drive signals S1, S2, and
c shows the waveform of the voltage measurement signal Vs for non-zero-voltage switching operation (as explained with reference to
With reference to
In summary, the evaluation circuit 40 as shown in
In general, in the case of the method which has been explained with reference to
In both cases, the reference value Vref is chosen for determination of the operating state such that it is located asymmetrically between a maximum level and a minimum level of the voltage measurement signal Vs, and in this case preferably closer to the minimum level. In this case, the voltage measurement signal Vs assumes the minimum level when the output voltage V2 from the half-bridge is zero, and the voltage measurement signal assumes the maximum level when the output voltage V2 assumes the value of the supply voltage Vb.
The different non-zero-voltage switching operating modes which have been explained above lead to different power losses being produced in the half-bridge circuit, with the zero-voltage switching operation explained with reference to
Number | Date | Country | Kind |
---|---|---|---|
10 2004 037 388 | Aug 2004 | DE | national |
This application is a division of co-pending U.S. Ser. No. 12/381,648, filed Mar. 13, 2009, which in turn, is a division of co-pending U.S. Pat. No. 7,560,873, filed Aug. 2, 2005, which claims the benefit of German Application No. DE 102004037388.4-54, filed Aug. 2, 2004.
Number | Name | Date | Kind |
---|---|---|---|
5642065 | Choi et al. | Jun 1997 | A |
5923542 | Sasaki et al. | Jul 1999 | A |
5973943 | Ribarich et al. | Oct 1999 | A |
6008593 | Ribarich | Dec 1999 | A |
6331755 | Ribarich et al. | Dec 2001 | B1 |
6400095 | Primisser et al. | Jun 2002 | B1 |
6617805 | Ribarich et al. | Sep 2003 | B2 |
6853153 | Gray | Feb 2005 | B2 |
Number | Date | Country |
---|---|---|
1066739 | Feb 2002 | EP |
Entry |
---|
Data Sheet No. PD60182-I, International Rectifier, California, www.irf.com, pp. 1-23, (23 pages), Sep. 19, 2003. |
Number | Date | Country | |
---|---|---|---|
20120062137 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12381648 | Mar 2009 | US |
Child | 13230207 | US | |
Parent | 11195370 | Aug 2005 | US |
Child | 12381648 | US |