Method for determining drug resistance mutations in any of the non-structural protein regions NS3 to NS5B of hepatitis C virus (HCV) for genotypes 1 to 6

Information

  • Patent Grant
  • 8945833
  • Patent Number
    8,945,833
  • Date Filed
    Tuesday, October 6, 2009
    15 years ago
  • Date Issued
    Tuesday, February 3, 2015
    9 years ago
Abstract
The present invention relates to a method for determining drug resistance mutations in any of the non-structural protein regions NS3 to NS5B of Hepatitis C Virus (HCV) for genotypes 1 to 6, more in particular for subtype specific genotypes 1a, 1b, 2a, 2b, 3a, 4a and 4d.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 18, 2014, is named VIP0030USPCT_SL.txt and is 169,634 bytes in size.


This application is the national stage of PCT Application No. PCT/EP2009/062986 filed Oct. 6, 2009, which claims priority from European Patent Application No. 08165949.2, filed Oct. 6, 2008, the entire disclosures of which are hereby incorporated in their entirety.


The present invention relates to a method for determining drug resistance mutations in any of the non-structural protein regions NS3 to NS5B of Hepatitis C Virus (HCV) for genotypes 1 to 6, more in particular for subtype specific genotypes 1a, 1b, 2a, 2b, 3a, 4a and 4d.


HCV is a single stranded, positive-sense RNA virus, with a genome of around 9,600 bases belonging to the Flaviviridae family of viruses in the hepacivirus genus. The NS5B region of the RNA polygene encodes a 65 kDa RNA dependent RNA polymerase (RdRp), which is essential to viral replication. Following the initial acute infection, a majority of infected individuals develop chronic hepatitis because HCV replicates preferentially in hepatocytes but is not directly cytopathic. In particular, the lack of a vigorous T-lymphocyte response and the high propensity of the virus to mutate appear to promote a high rate of chronic infection. Chronic hepatitis can progress to liver fibrosis, leading to cirrhosis, end-stage liver disease, and HCC (hepatocellular carcinoma), making it the leading cause of liver transplantations.


Transmission of HCV can occur through contact with contaminated blood or blood products, for example following blood transfusion or intravenous drug use. The introduction of diagnostic tests used in blood screening has led to a downward trend in post-transfusion HCV incidence. However, given the slow progression to the end-stage liver disease, the existing infections will continue to present a serious medical and economic burden for decades.


There are six major HCV genotypes and more than 50 subtypes, which are differently distributed geographically. HCV genotype 1 is the predominant genotype in Europe and the USA. The extensive genetic heterogeneity of HCV has important diagnostic and clinical implications, perhaps explaining difficulties in vaccine development and the lack of response to current therapy.


The genetic variability of HCV complicates amplification, sequencing and genotyping processes. These processes rely on the use of so-called primers complementary to and capable of hybridizing to corresponding nucleic acid sequences of the HCV genome. Due to the high degree of variability of the HCV genome, primers complementary to one HCV species may not be complementary to another species.


To determine the subtype of an HCV clinical isolate an accurate and direct method is sequencing the viral genome in a region that is sufficiently divergent among various species in order to distinguish between HCV genotypes and subtypes accordingly. Phylogenetic analysis of the sequences generated from these regions is used to determine the subtype of clinical isolates.


Several selective and potent antiviral drugs against chronic hepatitis C virus (HCV) infection are currently evaluated in clinical trials. The emergence of drug resistance mutations was proven in previous trials, creating a need for patients to be monitored for the development of such drug-resistance mutations.


In order to improve the identification of HCV types and subtypes for purposes of clinical analysis and therapeutic decision making by a treating physician, there is a continuing need to improve sequencing-based HCV assays.


The hepatitis C virus is, as mentioned above, currently classified into at least 6 major genotypes (FIG. 1). Each genotype differs from the other by 30% to 35% on nucleotide level and may be further divided into several subtypes with sequence diversity typically between 20% and 25% (Simmonds et al., Hepatology 2005; 42(4), 962-973).


The present invention relates to the development of subtype-specific assays for HCV genotype resistance analysis suitable for clinical trial support and regulatory filings.


In more detail the invention relates to genotyping assays covering the complete coding region from NS3 to NS5B as developed on a large panel of clinical samples including protocols for subtypes 1a, 1b, 2a, 2b, 3a, 4a and 4d.


The current invention relates to a NS5B sequence-based subtyping assay detecting all six HCV genotypes and discriminating between the different subtypes.


One aspect of the invention concerns a method for determining drug resistance mutations in any of the non-structural protein regions NS3 to NS5B of Hepatitis C Virus (HCV) for genotypes 1 to 6, more in particular for subtype specific genotypes 1a, 1b, 2a, 2b, 3a, 4a and 4d, present in a sample comprising:

    • a) obtaining said sample from a patient,
    • b) extracting viral genetic material from said sample,
    • c) amplification of the NS5B region of HCV to generate a DNA amplicon of 388 base pairs by using primers having the sequences selected from the group consisting of SEQ ID NO's 1-5,
    • d) sequencing of the amplicon to obtain a sequence of 329 base pairs by using the sequences selected from the group consisting of SEQ ID NO's 3-5,
    • e) performing phylogenetic tree analysis using the 329 base pair sequence information of NS5B to obtain HCV-subtype information in said patient sample,
    • f 1) using subtype-specific primers having the sequences selected from either the group consisting of SEQ ID NO's 6-9, 42-45, 104-107, 120-123, 145-148 or 180-183 for the generation of a DNA amplicon comprising the non-structural protein NS3 (N-terminal 181 amino acids),
    • g 1) sequencing the NS3 amplicon to obtain a sequence of 543 base pairs by using the sequences selected from the group consisting of SEQ ID NO's 8 and 9; 43 and 45-46; 104 and 106; 120 and 122; 146 and 148 or 180 and 182


      or
    • f 2) using subtype-specific primers having the sequences selected from the group consisting of SEQ ID NO's 13-16, 54 and 59-66, 124-133, 158 and 160-168 or 194-197 for the generation of a DNA amplicon comprising NS5B polymerase,
    • g 2) sequencing the NS5B polymerase amplicon to obtain a sequence of 1776 base pairs by using the sequences selected from the group consisting of SEQ ID NO's 15-16 and 87-92; 54, 59 and 61-66; 124 and 127-133; 158-159, 161 and 163-168 or 197-204


      or
    • f 3) using subtype-specific primers having the sequences selected from the group consisting of SEQ ID NO's 30-33, 67-70, 93-96, 108-111, 134-137 or 169-172 for the generation of a DNA amplicon comprising NS3/4A,
    • g 3) sequencing the NS3/4A protease amplicon to obtain a sequence of 2055 base pairs by using the sequences selected from the group consisting of SEQ ID NO's 34-41; 68 and 71-77; 95 and 97-103; 112-119; 136 and 138-144 or 171 and 173-179


      or
    • f 4) using subtype-specific primers having the sequences selected from the group consisting of SEQ ID NO's 47-50, 78-81, 149-151 and 159 or 184-187 for the generation of a DNA amplicon comprising NS4B/5A,
    • g 4) sequencing the NS4B/5A amplicon to obtain a sequence of the two genes NS4B and NS5A by using the sequences selected from the group consisting of SEQ ID NO's 51-57; 79 and 81-87; 152-159 or 185 and 187-193;
    • h) aligning the sequence obtained in step (g 1), (g 2), (g 3) or (g 4) with a reference or wild-type HCV sequence,
    • i) determining drug resistance mutation(s) in the viral genetic material present in patient sample.


Another embodiment of the current invention is that above method further comprises the steps for performing a NS3 phenotyping assay by

    • j) generating a NS3 amplicon starting from the DNA amplicon comprising the NS3 (N-terminal 181 amino acids) as obtained in step (f 1) of claim 1 using primers having the sequence of SEQ ID NO 11 and 12,
    • k) inserting, by InFusion™ cloning or in vitro recombination, said amplicon obtained in step (j) into a NS3 deleted replication incompetent marker containing shuttle vector having the sequence of SEQ ID NO 10 to obtain a NS3 replication competent recombinant HCV replicon,
    • l) generating RNA, by in vitro transcription, from said HCV replicon obtained in step (k)
    • m) transfecting said RNA into suitable cells,
    • n) determining, based on the expression of the marker gene, the EC50 value and/or fold change as a measure for the presence of drug resistance mutations in a sample.


In another embodiment the invention relates to the above mentioned method further comprising the steps for performing a NS5B phenotyping assay by

    • o) generating a NS5B amplicon starting from the DNA amplicon comprising the NS5B as obtained in step (f 2) of claim 1 using primers having the sequence of SEQ ID NO 28 and 29,
    • p) inserting, by in vitro recombination, said amplicon obtained in step (o) into a NS5B deleted replication incompetent marker containing shuttle vector having the sequence of SEQ ID NO 21 or SEQ ID NO 27 to obtain a NS5B replication competent recombinant HCV replicon,
    • q) generating RNA, by in vitro transcription, from said HCV replicon obtained in step (p)
    • r) transfecting said RNA into suitable cells,
    • s) determining, based on the expression of the marker gene, the EC50 value and/or fold change as a measure for the presence of drug resistance mutations in a sample.


Part of the invention is also a vector comprising the HCV genome and a deletion spanning the HCV NS3 N-terminal 181 amino acid region, in particular vector pFK I341 PI luc ΔNS3 7-192_ET (SEQ ID NO. 10) and a vector comprising the HCV genome and a deletion spanning the HCV NS5B region, in particular vector pFK_I1341_PI_NS3-3_ET_dNS5a/b5a440-5b591-Scla (SEQ ID NO 21) and the vector comprising the HCV genome and a deletion spanning the HCV NS5B region, in particular vector pFK_I341_PI_NS3-3_ET_dNS5a/b5a440-5b591-XbaI (SEQ ID NO 27).


Besides the use of any of the above vectors in any of the methods mentioned, also the primers with SEQ ID NO 1-5 for the amplification of the HCV NS5B region, as obtained from a sample of an HCV-infected patient, belong to the invention.


The use of the primers with SEQ ID NO 1-5 for the preparation of a sequence-based subtyping HCV assay to detect HCV genotypes 1, 2, 3 and 4 and to discriminate between the subtypes 1a, 1b, 2a, 2b, 3a, 4a and 4d, belongs in particular to the current invention.





EXPLANATION OF FIGURES


FIG. 1: Phylogenetic tree of complete open-reading frame sequences of HCV showing the major 6 genotypes and their most common subtypes. (Simmonds et al. 2005 Hepatology 2005; 42(4), 962-973)



FIG. 2: Overview of amplicons for the integrated HCV platform.



FIG. 3: Development status of the HCV subtyping and subtype-specific genotyping assays and their performance characteristics. Numbers in brackets show the number of tested samples.



FIG. 4: Vector pFK I341 PI luc ΔNS3 7-192_ET (SEQ ID NO. 10)



FIG. 5: process overview





A panel of 603 clinical samples covering all six genotypes (G) was collected. Two test systems were developed: a NS5B sequence-based subtyping assay and a set of subtype-specific genotyping assays to determine drug-resistance mutations in the following target regions: (1) protease inhibitors (complete NS3/4A and the N-terminal 181 as of NS3), (2) polymerase inhibitors (complete NS5B), and (3) others (complete NS4B/5A region). All primer sets have been optimized for subtype specificity and to allow the same PCR protocol to be used for a target region independent of the subtype (FIG. 2). All methods and protocols were optimized and validated to support high-throughput processing of the genotypic resistance assays in a routine operational setting.


The NS5B sequence-based subtyping assay was tested on a set of 603 clinical samples containing all six genotypes with a clinical sensitivity (amplification success rate of high viral load samples) of 91%.


For the subtype-specific genotyping assays, sets of clinical samples of, on average, n=94 for G1a/b, n=16 for G2a/b, n=76 for G3a, and n=83 for G4a/d were tested in the different assays to evaluate the clinical sensitivity. Amplification success rates between 90% and 100% and sequencing success rates between 95% and 100% were achieved (FIG. 3).


EXAMPLE SECTION
General Outline

The general process flow is visualized in FIG. 5. It starts with the determination of the HCV subtype of a clinical sample (Subtyping). This subtype information is then used in the subsequent Genotyping process to select the appropriate subtype-specific primers for amplification and sequencing of the target region of interest. The end result of the Genotyping process is the nucleotide and amino acid sequence information of that region. By comparison to a wildtype or viral reference sequence it provides information about the occurrence of amino acid changes. PCR products from the Genotyping process will be used in the Phenotyping process to generate chimeric subgenomic replicons for drug susceptibility assessment. The results of the phenotyping are EC50 values which can be used for interpretation of drug susceptibility (i.e. by calculating EC50 fold change values) of the clinical isolate. Sequence information of the target region and drug susceptibility can be compared.


1. Subtyping


An amplicon was generated from patient-derived viral plasma RNA by One-step RT-PCR followed by nested PCR. This amplicon, further referred to as the NS5B subtyping amplicon, contains a 329 bp sequence of the NS5B polymerase domain, which is used for phylogenetic tree analysis in order to obtain subtype information of the clinical isolate. The assay is called the NS5B sequence-based subtyping assay. The subtype information of the clinical isolate will be used in a next step to select the appropriate subtype-specific amplification and sequencing primers in order to obtain sequence information of the region of interest in the genotyping assay.


2. Genotyping


Using subtype-specific primers, an amplicon of the NS3 protease domain (containing the catalytic domain) is generated from patient-derived viral plasma RNA by One-Step RT-PCR followed by nested PCR. This amplicon, further referred to as the NS3 amplicon, contains the catalytic domain of the NS3 protease. This amplicon is going to be sequenced with subtype-specific sequencing primers in the HCV NS3 protease genotypic assay.


Using subtype-specific primers, an amplicon of the complete NS5B polymerase can also be generated from patient-derived viral plasma RNA by One-Step RT-PCR followed by nested PCR. This amplicon, further referred to as the NS5B amplicon, contains the complete NS5B gene. This amplicon is going to be sequenced with subtype-specific sequencing primers in the HCV NS5B polymerase genotypic assay.


The same can be achieved using subtype-specific primers for other dedicated HCV regions like NS3/NS4A or NS4B/NS5A and the like.


3. Phenotyping


A NS3-deleted replication incompetent shuttle vector, further referred to as the delta[NS3] backbone, has been generated based on the subgenomic replicon con1b sequence. The NS3 amplicon is generated, from patient-derived material, replicon plasmid DNA, synthetic genes or PCR products of replicon RNA, by PCR using the One-Step RT-PCR product of the HCV NS3 protease genotypic assay. In-Fusion™ cloning (Clontech) of the PCR-generated NS3 amplicon and the delta[NS3] backbone resulted in a replication-competent recombinant HCV replicon that was used in experiments to evaluate HCV NS3 phenotypic drug resistance.


A NS5B-deleted replication incompetent shuttle vector, further referred to as the delta[NS5B] backbone has been generated based on the subgenomic replicon con1b sequence. The NS5B amplicon is generated, from patient-derived material, replicon plasmid DNA, synthetic genes or PCR products of replicon RNA, by PCR using the One-Step RT-PCR product of the HCV NS5B polymerase genotypic assay. In vitro cloning (using BD In-Fusion™, Clontech Laboratories Inc.) of the PCR-generated NS5B amplicon and the delta[NS5B] backbone resulted in a replication-competent recombinant HCV replicon that was used in experiments to evaluate HCV NS5B phenotypic drug resistance.


EXAMPLE 1
NS5B Sequence-Based Subtyping Assay

A. RNA-Extraction


From a total 500 μl of plasma, total RNA was extracted using the EasyMAG™ RNA extraction platform (BioMerieux). After elution in 60 μl elution buffer, RNA was stored at −80° C. until use for amplicon generation.


B. One-Step RT-PCR


Five μl RNA were mixed with 2× reaction buffer, 120 ng/ml yeast tRNA (Ambion Inc., Woodward, USA), 0.2 μM primer NS5Bsubtype_A (TGGGGTTCGCGTATGATACCCGCTGCTTTGA) (SEQ ID NO: 1), 0.2 μM primer NS5Bsubtype_B (TGGGGTTTTCTTACGACACCAGGTGCTTTGA) (SEQ ID No: 2), 0.2 μM primer Pr2 (published in Sandres-Saunes et al. 2003) and 0.5 μl of the Superscript™ III RT/Platinum Taq High Fidelity enzyme mix from the SuperScript™ III One-Step RT-PCR System (Invitrogen) in a total volume of 25 μl. The cDNA synthesis is performed for 30 min at 52° C. followed by a denaturation step at 94° C. for 2 min. Thermal cycling consisted of 50 cycles of denaturation at 94° C. for 15 s, annealing at 63° C. for 30 s and elongation at 72° C. for 30 s. Final extension took place at 72° C. for 5 min. An aliquot of the resulting amplification product was used for a nested PCR step.


C. Inner PCR


For the nested PCR, 2.5 μl from the One-Step RT-PCR product were mixed with 10× buffer 2 from the Expand™ High Fidelity kit (Roche), 0.35 mM dNTPs (Promega), 0.4 μM primer NS5Bsubtype_C (CCGTATGATACCCGCTGCTTTGACTCAAC) (SEQ ID NO: 3), 0.3 μM primer NS5Bsubtype_D (TCCTACGACACCAGGTGCTTTGATTCAAC) (SEQ ID NO: 4), 0.4 μM primer NS5Bsubtype_E (AATTCCTGGTCATAGCCTCCGTGAAGACTC) (SEQ ID NO: 5) and 0.075 U/μl of DNA polymerase (Roche, Basel, Switzerland) to give a total volume of 50 μl. Initial denaturation was 94° C. for 2 min and thermal cycling consisted of 30 cycles of denaturation at 94° C. for 15 s, annealing at 56° C. for 30 s and elongation at 72° C. for 30 s. Final extension took place at 72° C. for 5 min. The amplicons were purified using the QIAQuick 96 PCR purification kit (Qiagen,). Final volume of purified amplicons was 100 μl.


D. Raw Sequence Analysis


Sequencing reaction was performed according to standard procedures by using the primers from the nested PCR for sequencing of both directions, forward and reverse. Electropherograms were retrieved from the ABI3730 capillary sequencer and imported into Seqscape v2.5 (Applied Biosystems). Sequence ends were trimmed based on quality values and the 329 bp length of the subtyping reference sequence; the latter spanned the regions between the amplification primers. No insertions, deletions or STOP codons were allowed to occur in the sequences.


E. Phylogenetic Tree Analysis


The sample sequences with a length of 329 bp were merged with subtype reference sequences in BioEdit ((Ibis Therapeutics; public source internet: www.mbio.ncsu.edu/BioEdit/bioedit.html) and subsequently analysed in MEGA v3.1 (public source, internet: http://www.megasoftware.net/) using Neighbour-Joining tree and Jukes-Cantor distance model.


Results:









>Pt 1 NS5B subtyping


(SEQ ID NO: 205)


AGTCACCGAGAATGATATCCGTGTTGAGGAGTCAATTTACCAATGCTGTG





ACTTGGCCCCCGAAGCCAAACAGGCCATAAGGTCGCTCACAGAGCGGCTT





TAYATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTATCG





CCGGTGCCGCGCGAGCGGCGTGCTGACGACCAGCTGCGGTAATACCCTC





ACCTGTTACTTGAAGGCCACCGCGGCCTGTCGAGCTGCAAAGCTCCAGG





ACTGCACGATGCTCGTGTGCGGGGACGACCTTGTCGTTATCTGTGAAAGC





GCGGGAACCCAAGAGGACGCGGCGAACCTAC





>Pt 2 NS5B subtyping


(SEQ ID NO: 206)


TGTCACYGAGAGTGACATCCGYGTTGAGGAGTCAATCTACCAATGTTGTG





ACTTGGCCCCCGAAGCCAGACAGGCCATAAAGTCGCTCACAGAGCGGCT





TTAYATCGGGGGTCCCCTGACTAAYTCAAAAGGRCAGAACTGCGGYTATC





GCCGGTGCCGCGCGAGCGGCGTGCTGACGACTAGCTGCGGYAACACCC





TCACMTGTTACYTGAAGGCCTCTGCAGCCTGTCGAGCTGCRAAGCTCCAG





GACTGCACGATGCTCGTGTGCGGGGACGACCTTGTCGTTATCTGCGAGA





GTGCTGGGACCCAGGAGGACGYGGCGAGCCTAC





>Pt 3 NS5B subtyping


(SEQ ID NO: 207)


GGTCACTGAGAATGACATTCGTGTCGAGGAGTCGATCTACCAATGCTGTG





ACTTGGCCCCCGAAGCCAGACARGCCATAAGGTCGCTCACGGAGCGGCT





TTATATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTATC





GCCGGTGCCGCGCGAGCGGTGTACTGACGACCAGCTGTGGTAATACCCT





CACATGTTACTTGAAGGCCTCTGCGGCCTGTCGAGCTGCCAAGCTCCAGG





ACTGCACGATGCTCGTGAACGGAGACGACCTTGTCGTTATCTGTGAGAGC





GCGGGAACCCAARAGGACGCAGCGAACCTAC





>Pt 4 NS5B subtyping


(SEQ ID NO: 208)


RGTCACCGAGAGKGACATCCGTGTTGAGGAGTCRATYTACCAATGTTGTG





ACTTGGCCCCCGAAGCCAGACAGGCCATAAAGTCGCTCACRGAGCGGCT





CTATATCGGGGGCCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTATC





GCCGGTGCCGCGCCAGCGGCGTRCTGACGACCAGCTGCGGTAATACCCT





CACATGTTACTTGAAGGCCTCTGCGGCCTGTCGAGCTGCAAAGCTCCAGG





ACTGCACGATGCTTGTGTGYGGAGACGACCTYGTCGTTATCTGTGAGAGC





GCGGGGACCCAGGAGGACGCGGCGAGCCTAC





>Pt 5 NS5B subtyping


(SEQ ID NO: 209)


GGTCACTGAGAGTGAYATCCGTGTYGAGGAGTCAATATACCAATGTTGTG





ACTTGGCCCCCGAAGCCAGACAGGCCATAAAGTCGCTCACAGAGCGGCT





CTATGTTGGGGGTCCCCTGACTAAYTCAAAAGGGCAGAACTGCGGTTATC





GCCGGTGCCGCGCCAGCGGCGTGCTGACGACCAGCTGCGGTAATACCCT





CACTTGTTACTTGAAAGCCTCTGCRGCCTGTCGAGCTGCGAAGCTCCAGG





ACTGCACGATGCTCGTGTGTGGAGACGACCTTGTCGTTATCTGCGAAAGC





GCGGGAACCCAGGAGGACGCGGCGAGCCTAC





>Pt 12 NS5B subtyping


(SEQ ID NO: 210)


AGTCACTGAGAGTGACATCCGCGTTGAGGAGTCAATCTACCAATGTTGTG





ACTTGGCCCCCGAAGCCAAACAGGCCATAAAGTCGCTCACAGAGCGGCT





TTACATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGCTATC





GCCGGTGCCGCGCCAGCGGCGTACTGACGACCAGCTGTGGTAATACCCT





CACATGTTACTTGAAAGCCTCTGCGGCCTGTCGAGCTGCAAAGCTCCAGG





ACTGCACGATGCTCGTGTGCGGAGACGACCTTGTCGTTATCTGTGAGAGC





GCGGGAACCCAGGAGGACGCGGCGAGCCTAC





>Pt 13 NS5B subtyping


(SEQ ID NO: 211)


GGTCACTGAGAGTGATATCCGTACTGAGGAGTCTATTTACCAATGTTGTG





ACCTGGCCCCCGAAGCTAGACAAGTCATAAGGTCGCTCACAGAGCGGCTT





TAYATYGGGGGCCCCCTGACYAATTCAAAAGGGCAGAACTGCGGTTATCG





CCGGTGCCGYGCGAGCGGCGTGCTGACGACTAGCTGCGGTAATACCCTCA





CATGTTACTTGAAGGCCTCTGCGGCCTGTCGAGCTGCAAAGCTCCGGGA





CTGCACGATGCTCGTGTGCGGAGACGACCTCGTCGTTATCTGTGAAAGCG





CGGGGACCCAGGAGGACGCGGCTAGCCTAC





>Pt 14 NS5B subtyping


(SEQ ID NO: 212)


AGTCACCGAGAATGATATCCGTGTTGAGGAGTCAATTTACCAATGCTGTG





ACTTGGCCCCCGAAGCCAAACAGGCCATAAGGTCGCTCACAGAGCGGCTT





TAYATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTATCG





CCGGTGCCGCGCGAGCGGCGTGCTGACGACCAGCTGCGGTAATACCCTC





ACCTGTTACTTGAAGGCCACCGCGGCCTGTCGAGCTGCAAAGCTCCAGG





ACTGCACGATGCTCGTGTGCGGGGACGACCTTGTCGTTATCTGTGAAAGC





GCGGGAACCCAAGAGGACGCGGCGAACCTAC





>Pt 15 NS5B subtyping


(SEQ ID NO: 213)


GGTCACYGAGAGYGACATCCGTACTGAGGAGTCAATTTACCAATGTTGTG





ACTTGGCCCCCGAAGCCAGACAGGTTATAAGGTCGCTCACAGAGCGGCT





TTATATCGGGGGTCCTYTGACTAATTCAAAAGGGCAGAACTGCGGCTATC





GCCGGTGTCGCGCAAGCGGCGTGCTGACGACCAGCTGCGGCAATACCCT





CACATGTTACCTGAAGGCCACTGCAGCCTGTCGAGCTGCGAAGCTCCAG





GACTGCACAATGCTTGTGTGTGGGGACGACCTTGTCGTYATCTGTGAGAG





CGCGGGGACCCAAGAGGACGCAGCGAGCCTAC





>Pt 16 NS5B subtyping


(SEQ ID NO: 214)


GGTCACTGAGAATGACATYCGTGTTGAGGAGTCAATTTACCAATGTTGTG





ACTTGGCYCCCGAAGCCAGACAGGYCATAAGGTCGCTCACAGAGCGGCTT





TAYATCGGGGGTCCYCTAACCAATTCAAAAGGGCAAAACTGCGGTTATCG





CCGGTGTCGCGCRAGCGGCGTGCTGACGACTAGCTGCGGCAAYACCCTT





ACATGTTACTTGAARGCCTCTGCRGCCTGTCGAGCTGCGAAGCTCCAGGA





CTGCACGATGCTCGTGTGCGGAGACGACCTCGTCGTTATCTGTGAGAGC





GCGGGGACCCACGAGGATGCGGCGAGCCTAC






These sequences were subtyped using phylogenetic analysis. Table 1 shows the result.











TABLE 1







NS5B sequence based subtype



Sample ID
information after phylogenetic analysis








Pt 1
1b



Pt 2
1b



Pt 3
1b



Pt 4
1b



Pt 5
1b



Pt 12
1b



Pt 13
1b



Pt 14
1b



Pt 15
1b



Pt 16
1b









Based on the NS5B sequence-based subtype information, the appropriate subtype-specific primers were selected for the amplification of the NS3 protease domain.


EXAMPLE 2
HCV NS3 Genotyping Assay

A. One-Step RT-PCR


Five μl RNA were mixed with 2× reaction buffer, 120 ng/ml yeast tRNA (Ambion), 0.2 μM forward primer 1b-NS3_out_F (GCGTGTGGGGACATCATCTTAGG) (SEQ ID NO: 6), 0.2 μM primer 1b_NS3_out_R (GCTGCCAGTGGGAGCGTG) (SEQ ID NO: 7) and 0.5 μl of the Superscript™ III RT/Platinum Taq High Fidelity enzyme mix from the SuperScript™ III One-Step RT-PCR System (Invitrogen) in a total volume of 25 μl. The cDNA synthesis is performed for 30 min at 52° C. followed by a denaturation step at 94° C. for 2 min. Thermal cycling consisted of 50 cycles of denaturation at 94° C. for 15 s, annealing at 58° C. for 30 s and elongation at 72° C. for 1 min. Final extension took place at 72° C. for 5 min. An aliquot of the resulting amplification product was used for a nested PCR step.


B. Inner PCR


For the nested PCR, 2.5 μl from the One-Step RT-PCR product was mixed with 10× buffer 2 from the Expand™ High Fidelity kit (Roche), 0.35 mM dNTPs (Promega), 0.4 μM primer 1b_NS3_in_F (TCATCTTAGGCCTGCCCGTCTC) (SEQ ID NO: 8), 0.4 μM primer 1b_NS3_in_R (GGGAGCGTGTAGATGGGCCAC) (SEQ ID NO: 9) and 0.075 U/μl of Expand™ High Fidelity DNA polymerase (Roche) to give a total volume of 50 μl. Initial denaturation was 94° C. for 2 min and thermal cycling consisted of 30 cycles of denaturation at 94° C. for 15 s, annealing at 58° C. for 30 s and elongation at 72° C. for 1 min. Final extension took place at 72° C. for 5 min. The amplicons were purified using the QIAQuick 96 PCR purification kit (Qiagen). Final volume of purified amplicons was 100 μl.


C. Raw Sequence Analysis


Sequencing reaction was performed according to standard procedures by using the primers from the nested PCR for sequencing of both directions, forward and reverse (SEQ ID No's 8-9). Electropherograms were retrieved from the ABI3730 capillary sequencer and imported into Seqscape v2.5 (Applied Biosystems). Sequence ends were trimmed based on quality values and the 543 bp (coding sequence for the N-terminal 181 aa of NS3) length of the subtyping reference sequence; the latter spanned the regions between the amplification primers. No insertions, deletions or STOP codons were allowed to occur in the sequences.


Result:


NS3 Protease Sequences from Five (5) HCV-1b Patient Isolates









>Pt 1 NS3


(SEQ ID NO: 215)


GCGCCTATCACGGCCTACGCCCARCAAACACGGGGCTTGTTTGGCTGTAT





CATCACTAGCCTCACAGGCCGGGACAAGAACCAGGTCGAGGGGGAGGTC





CAAGTGGTTTCCACCGCCACACAATCTTTCCTGGCGACCTGTGTCAACGG





TGTKTGTTGGACTGTCTTCCACGGCGCCGGTTCAAAGACCCTGGCTGGCC





CAAAGGGYCCAATCACCCAAATGTACACCAATGTAGACCAGGACCTCGTC





GGCTGGCCGGCCCCCCCYGGGGCGCGCTCTCTRACACCATGCACCTGTG





GCAGCTCGGACCTTTACTTGGTCACGAGGCATGCTGATGTTATCCCGGTG





CGCCGGCGGGGCGACAGTAGGGGRAGCCTACTCTCCCCCAGGCCTGTG





TCCTACTTAAAAGGCTCTTCGGGTGGWCCRCTGCTCTGCCCCTCGGGGC





ACGCTGTGGGCGTCTTCCGGGCTGCTGTGTGCACCCGGGGGGTCGCGA





AGGCGGTGGACTTTGTACCCGTAGAGTCTATGGAGACTACCATGCGGTCC





>Pt 2 NS3


(SEQ ID NO: 216)


GCGCCCATCACGGCCTACGCCCAACARACGAGGGGCCTACTTGGCTGTA





TCATCACCAGCCTCACAGGCCGGGACAAGAACCAGGTYGAGGGGGAGGT





TCAGGTGGTCTCCACTGCAACACAGTCCTTCCTGGCRACTTGCATCAACG





GCGTGTGTTGGACTGTCTTTCATGGAGCCGGCTCTAAGACCCTAGCCGGC





CCAAAGGGGCCGATCACCCAGATGTACACCAATGTAGACCAGGACCTCGT





CGGCTGGCAAGCGCCCCCYGGGGCGCGTTCCTTGACACCGTGCACCTGC





GGCAGCTCGGACCTTTACTTGGTCACGAGGCATGCCGATGTCATTCCGGT





GCGCCGGCGAGGTGACAGCAGGGGGAGCTTGCTCTCCCCCCGGCCCAT





TTCYTACTTRAAAGGCTCTTCGGGTGGTCCRYTGCTCTGCCCCTCGGGGC





ACGCYGTGGGCATCTTCCGGGCTGCCGTGTGCACYCGGGGGGTTGCCAA





GGCRGTGGATTTTGTACCCGTTGAGTCTATGGAAACTACYATGCGGTCC





>Pt 3 NS3


(SEQ ID NO: 217)


GCGCCTATTACGGCCTACGCCCAACAGACGAGGGGCCTATTAGGCTGCA





TCATCACTAGCCTCACAGGCCGAGACAAGAACCAGGTCGAGGGGGAGGT





TCAGGTGGTTTCTACCGCAACACAATCCTTCCTAGCGACTTGCGTCAACG





GCGTGTGTTGGACTGTCTATCATGGCGCCGGCTCTAAGACCTTAGCCGGC





CCAAAGGGGCCTGTCACCCAAATGTACACCAATGTAGACCAAGACCTCGT





CGGCTGGCCAGCGCCCCCCGGGGCGCGTTCCTTGACACCATGTACTTGC





GGCAGTTCGGACCTTTACTTGGTCACGAGACATGCCGATGTCATTCCGGT





GCGCCGGCGGGGCGACAGCAGGGGGAGCCTGCTCTCCCCCAGGCCTGT





CTCCTATTTGAAGGGCTCTTCGGGTGGTCCACTGCTCTGCCCTTCAGGGC





ACGCCGTGGGCATCTTCCGGGCTGCCGTGTGCACCCGAGGGGTTGCCAA





GGCGGTGGACTTTGTGCCCGTCGAGTCCATGGAAACTACTATGCGGTCT





>Pt 4 NS3


(SEQ ID NO: 218)


GCGCCTATCACGGCTTACTCCCAACAGACGCGGGGCCTGCTTGGCTGCA





TCATCACYAGCCTCACAGGCAGRGACAAGAACCAGGTCGAGGGGGAAGT





CCAAGTGGTTTCCACCGCAACACAATCTTTTCTAGCGACCTGTGTCAACG





GCGTGTGTTGGACTGTTTTCCATGGCGCCGGCTCAAAAACCTTAGCCGGC





CCAAAGGGCCCGGTCACCCAAATGTACACCAATGTAGACCAGGACCTCGT





CGGCTGGCAGGCGCCTACCGGGGCGCGTTCTTTAACACCATGCACCTGC





GGCAGCTCGGACCTTTATTTGGTCACGAGGCATGCTGATGTCATTCCGGT





GCGCCGGCGGGGCGACAGCCGGGGGAGTCTACTCTCCCCCAGGCCCGT





CTCCTACTTGAAGGGCTCCTCGGGTGGTCCGCTGCTCTGCCCCTCGGGG





CATGCAGTGGGCATCTTCCGGGCTGCCGTGTGCACCCGGGGGGTCGCAA





AGGCAGTGGACTTCATACCCGTTGAGTCTATGGAAACTACTATGCGGTCC





>Pt 5 NS3


(SEQ ID NO: 219)


GCGCCTATCACAGCCTACTCCCAACAGACGCGGGGCCTGCTTGGCTGCA





TCATCACTAGCCTCACAGGCCGGGACAAGAACCAGGTCGAGGGGGAGGT





TCAAGTGGTTTCCACCGCGACACAATCTTTCCTGGCGACCTGCGTCAACG





GCGTGTGTTGGACTGTCTACCATGGTGCCGGCTCGAAGACCCTAGCCGG





CCCAAAGGGCCCGATCACCCAAATGTACACCAATGTAGACCAGGACCTCG





TCGGCTGGCCGGCGCCCTCCGGAGCGCGCTCCTTGACACCGTGCACCTG





CGGCAGCTCAGACCTYTACTTGGTCACGAGGCATGCTGATGTTGTTCCGG





TGCGCCGGCGGGGCGACAGCAGGGGAAGCCTACTCTCCCCCAGGCCCA





TTTCCTACTTGAAGGGCTCTTCGGGTGGCCCGCTGCTTTGCCCCTCGGGG





CACGCGGTGGGCATCTTCCGGGCTGCTGTATGCACCCGGGGGGTCGCGA





AGGCGGTGGACTTTGTACCCGTTGAGTCTATGGAAACCACCATGCGGTCT







D. Alignment of Sequences with Reference Sequence


The alignment shows the nucleotide sequence of the NS3 protease domain of an HCV-1b isolate from an untreated patient (SEQ ID NO: 219). The sequences were aligned against a reference sequence (SEQ ID NO: 220). Homologies between the two sequences are plotted as dots.




embedded image


The following shows the amino acid sequence of the NS3 protease domain of an HCV-1b isolate from an untreated patient (SEQ ID NO: 222). The sequences were aligned against a reference sequence (SEQ ID NO: 221). Homologies between the two sequences are plotted as dots.




embedded image


NS3 amplicons from these five HCV-1b isolates were further used in the NS3 replicon phenotyping assay.


HCV NS5B Polymerase Genotyping Assay


One-Step RT-PCR:


Five μl RNA were mixed with 2× reaction buffer, 120 ng/ml yeast tRNA (Ambion Inc.), 0.2 μM primer 1b_NS5B_out_F (TAGAGTCCTGGAAGGACCCGG) (Sequence ID NO:13), 0.2 μM primer 1b_NS5B_out_R (GGCCTGGAGTGGTTAGCTCCCC) (Sequence ID NO:14) and 0.5 μl of the Superscript™ III RT/Platinum Taq High Fidelity enzyme mix from the SuperScript™ III One-Step RT-PCR System (Invitrogen) in a total volume of 25 μl. The cDNA synthesis is performed for 30 min at 47° C. followed by a denaturation step at 94° C. for 2 min. Thermal cycling consisted of 50 cycles of denaturation at 94° C. for 15 s, annealing at 59° C. for 30 s and elongation at 68-° C. for 2 min 30 s. Final extension took place at 68° C. for 5 min. An aliquot of the resulting amplification product was used for a nested PCR step.


Inner PCR:


For the nested PCR, 2.5 μl from the One-Step RT-PCR product was mixed with 10× buffer 1 from the Expand™ Long Template High Fidelity kit (Roche, Basel, Switzerland), 0.35 mM dNTPs (Promega), 0.4 μM primer 1b_NS5B_in_F (TGGAAGGACCCGGACTACG) (Sequence ID NO:15), 0.4 μM primer 1b_NS5B_in_R (GAGTGGTTAGCTCCCCGTTCA) (Sequence ID NO:16) and 0.075 U/μl of Expand™ High Fidelity DNA polymerase (Roche,) to give a total volume of 50 μl. Initial denaturation was 94° C. for 2 min and thermal cycling consisted of 30 cycles of denaturation at 94° C. for 15 s, annealing at 59° C. for 30 s and elongation at 68° C. for 2 min 30 s. Final extension took place at 68° C. for 5 min. The amplicons were purified using the QIAQuick 96 PCR purification kit (Qiagen). Final volume of purified amplicons was 100 μl.


Raw Sequence Analysis


Sequencing reaction was performed according to standard procedures by using 8 sequencing primers (SEQ ID No's 15-16 and 87-92) to cover both directions, forward and reverse. Electropherograms were retrieved from the ABI3730 capillary sequencer and imported into Seqscape v2.5 (Applied Biosystems). Sequence ends were trimmed based on quality values and the 1776 bp (coding sequence of the NS5B polymerase) length of the subtype-specific reference sequence; the latter spanned the regions between the amplification primers. No insertions, deletions or STOP codons were allowed to occur in within the sequences.


Result:


NS5B Polymerase Sequences from Five HCV-1b Clinical Isolates









>Pt 12 NS5B


(SEQ ID NO: 223)


TCGATGTCCTACACGTGGACGGGCGCCCTGATCACGCCGTGCGCCGCGG





AGGAAAGCAAGCTGCCTATCAATGCATTGAGCAACTCACTGCTGCGTCAC





CACAATATGGTTTATGCTACAACATCCCGCAGCGCAAGCCAGCGGCAGAA





GAAGGTCACTTTTGACAGACTGCAAGTCCTGGACGACCACTACCGGGACG





TGCTCAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAAGCTTCTA





TCTGTAGAGGAAGCCTGTAAACTGACGCCCCCACATTCGGCCAGATCCAA





ATTTGGCTAYGGGGCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTA





ACCACATCCGCTCCGTGTGGAAGGACTTGCTGGAAGACACTGAGACACCA





ATTGACACCACCATCATGGCAAAAAACGAGGTYTTCTGCGTCCAACCAGA





GAAAGGAGGCCGCAAGCCAGCTCGCCTTATCGTGTTCCCAGACTTGGGA





GTTCGTGTGTGCGAGAAAATGGCCCTTTACGACGTGGTCTCCACTCTTCC





TCAAGCCGTGATGGGCTCCTCATATGGATTCCAGTACTCTCCTGGACAGC





GGGTTGAATTCCTGGTGAATGCCTGGAAGTCGAAGAAGAACCCTATGGGC





TTCGCATATGACACCCGCTGTTTTGACTCAACAGTCACTGAGAGTGACAT





CCGCGTTGAGGAGTCAATCTACCAATGTTGTGACTTGGCCCCCGAAGCCA





AACAGGCCATAAAGTCGCTCACAGAGCGGCTTTACATCGGGGGTCCCCTG





ACTAATTCAAAAGGGCAGAACTGCGGCTATCGCCGGTGCCGCGCCAGCG





GCGTACTGACGACCAGCTGTGGTAATACCCTCACATGTTACTTGAAAGCC





TCTGCGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTCGTGT





GCGGAGACGACCTTGTCGTTATCTGTGAGAGCGCGGGAACCCAGGAGGA





CGCGGCGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCCGC





CCCCCCCGGGGACCCGCCCCAGCCAGAGTACGACTTGGAGTTGATAAC





ATCATGCTCCTCCAACGTGTCGGTCGCGCACGATGCATCCGGCAAACGGG





TGTATTACCTCACCCGTGACCCCACCACCCCCCTCGCGAGGGCTGCGTGG





GAAACAGCTAGACACACTCCAGTTAATTCTTGGCTAGGCAACATCATTAT





GTATGCGCCCACCCTGTGGGCAAGGATGATTTTGATGACTCACTTCTTCT





CCATCCTTCTAGCTCAAGAACAACTTGAAAAAGCCCTGGATTGTCAGATC





TACGGGGCCTGCTACTCCATTGAGCCACTTGACCTACCTCAGATCATTCA





RCGACTCCATGGTCTTAGCGCATTTTCACTCCACAGTTACTCTCCAGGTG





AGATCAATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCGCCCTTG





CGAGTCTGGAGACATCGGGCCAGAAGTGTCCGCGCTAAGCTACTGTCCCA





GGGGGGGAGGGCTGCCATTTGTGGCAAGTACCTCTTCAACTGGGCRGTAA





GGACCAAGCTCAAACTCACTCCAATCCCGGCAGCGTCCCAGTTGGACTTG





TCCGACTGGTTCGTTGCCGGCTACAGCGGGGGAGACATATATCACAGCCT





GTCTCGTGCCCGACCCCGCTGGTTCCTGTGGTGCCTACTCCTGCTTTCTG





CGGGGGTAGGCATCTACTTGCTCCCCAACCGATGA





>Pt 13 NS5B


(SEQ ID NO: 224)


TCGATGTCCTACACATGGACAGGCGCTTTAATCACACCATGCGCTGCGGA





GGAAAGCAAGCTGCCCATCAACGCGCTGAGCAACTCCCTGCTGCGYCAC





CACAATATGGTGTATGCCACAACATCCCGCAGCGCAAGCCARCGGCAGAA





GAARGTCACTTTTGACAGACTGCAAGTCCTGGACGAYCATTACCGGGACG





TRCTCAAGGAGGTGAAGGCGAAGGCGTCCACAGTTAAGGCYAAACTTCTA





TCCGTAGAAGAGGCCTGCAAACTSACGCCCCCACACTCAGCCAAATCCAA





RTTTGGCTATGGGGCRAAGGACGTCCGGAACCTATCCAGCAAGGCCGTY





AACCACATCCACTCCGTGTGGAAGGACTTGCTGGAGGACACTGAAACACC





AATTGACACTACCATCATGGCAAAAAATGAGGTTTTCTGCGTTCAACCGG





AAAAGGGAGGCCGCAAGCCAGCTCGCCTTATCGTGTTCCCAGACCTGGGG





GTTCGTGTGTGCGAGAAAATGGCCCTCTACGACGTGGTYTCYACCCTTCC





TCAGGCCGTGATGGGCCCCTCATACGGGTTCCAGTACTCTCCTGGACAG





CGGGTCGAGTTCCTGGTGAATGCCTGGAAATCAAAGAAATGCCCTATGGG





CTTCGCATATGACACCCGCTGTTTTGACTCAACGGTCACTGAGAGTGATA





TCCGTACTGAGGAGTCTATTTACCAATGTTGTGACCTGGCCCCCGAAGCT





AGACAAGTCATAAGGTCGCTCACAGAGCGGCTTTAYATYGGGGGCCCCCT





GACYAATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGYGCGAGC





GGCGTGCTGACGACTAGCTGCGGTAATACCCTCACATGTTACTTGAAGGC





CTCTGCGGCCTGTCGAGCTGCAAAGCTCCGGGACTGCACGATGCTCGTG





TGCGGAGACGACCTCGTCGTTATCTGTGAAAGCGCGGGGACCCAGGAGG





ACGCGGCTAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCAGCC





CCCCCCGGGGACCCGCCCCAACCAGAGTACGACTTGGAGTTGATAACAT





CATGCTCCTCCAACGTGTCGGTCGCGCACGACGCATMTGGCAAGAGGGT





GTACTACCTCACCCGTGACCCCACCACCCCCCTCGCGCGGGCTGCGTGG





GAGACAGCTAGACACACTCCAATTAACTCCTGGCTAGGCAACATCATCAT





GTATGCGCCCACYYTATGGGCAAGGATGATTCTGATGACTCACTTCTTCT





CCATCCTTCTRGCYCAGGAACAACTTGAAAAAGCCCTAGATTGCCARATC





TAYGGGGCCTGTTACTCCATTGAACCACTTGACCTACCTCAGATCATTCA





GCGACTCCATGGTCTYAGCGCATTTTCACTCCATAGTTACTCTCCAGGTG





AGATCAATAGGGTGGCTTCAAGCCTCAGGAAACTTGGGGTGCCRCCCTTG





CGAGTCTGGAGACATCGGGCCAGGAGYGTCCGCGCTAAGCTACTGTCCCA





RGGAGGGAGGGCYGCCACGTGTGGTAAGTACCTCTTCAACTGGGCAGTAA





GGACCAAGCTYAAACTCACTCCAATCCCGGCTGCGTCCCAGCTGGACTTG





TCCAGCTGGTTCGTYGCTGGTTACAGCGGGGGAGACATATATCACAGCCT





GTCTCGTGCCCGRCCCCGCTGGTTCATGTGGTGCCTACTCCTACTCTCTG





TAGGGGTAGGCATCTAYCTGCTCCCCAAYCGATGA





>Pt 14 NS5B


(SEQ ID NO: 225)


TCGATGTCCTACACATGGACAGGCGCCCTGATCACGCCATGCGCTGCGG





AGGAAAGCAAGCTGCCCATCAACCCGTTGAGCAACTCTTTGCTGCGTCAC





CATAAYATGGTATACGCTACAACATCCCGCAGCGCAAGCCTACGGCAGAA





GAAGGTCACTTTTGACAGACTGCAAGTCCTGGACGACCACTACCGGGACG





TGCTTAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAAGCTTCTA





TCTGTAGAAGAAGCCTGCAAACTGACACCCCCACACTCGGCCAGATCCAA





ATTTGGCTATGGGGCAAAGGACGTCCGGAGCCTATCCAGCAAGGCCGTC





AACCACATCAACTCCGTGTGGAAGGACTTGCTGGAAGACACTGAGACACC





AATTGACACCACCATCATGGCAAAAAATGAGGTTTTCTGCGTCCAACCAG





AGAAAGGAGGCCGCAAGCCAGCCCGCCTTATCGTGTTCCCAGACTTAGGG





GTTCGCGTGTGCGAGAAGATGGCCCTTTATGACGTGGTCTCCACCCTTCC





TCAGGCCGTGATGGGCTCCTCGTACGGATTCCAATACTCTCCTGGACAGC





GGGTCGAGTTCCTGGTGAATGCCTGGAAATCAAAGAAATGCCCTATGGGC





TTCTCATATGACACCCGCTGTTTTGACTCAACAGTCACCGAGAATGATAT





CCGTGTTGAGGAGTCAATTTACCAATGCTGTGACTTGGCCCCCGAAGCCA





AACAGGCCATAAGGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCCCTG





ACTAATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGCGCGAGCG





GCGTGCTGACGACCAGCTGCGGTAATACCCTCACCTGTTACTTGAAGGCC





ACCGCGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTCGTGT





GCGGGGACGACCTTGTCGTTATCTGTGAAAGCGCGGGAACCCAAGAGGA





CGCGGCGAACCTACGAGTCTTCACGGAGGCTATGACTAGGTATTCTGCCC





CCCCCGGGGACCCGCCCCAACCAGAATACGACTTGGARTTGATAACATCA





TGCTCCTCCAACGTGTCGGTCGCGCACGATGCATCTGGCAAGCGGGTGTR





AAYTACCTCACCCGCGACCCCACCACCCCCCTYGCACGGGCTGCGTGGGA





CAGCTAGACACACTCCAGTTAACTCCTGGCTAGGCAACATTATCATGTAT





GCGCCCACCTTATGGGCAAGGATGATCCTGATGACTCACTTCTTCTCCAT





CCTTCTAGCTCAGGAACAACTTGAAAAAGCCCTGGATTGYCAAATCTACG





GGGCCTGTTACTCCATTGAGCCACTTGACCTACCTCAGATCATTCAGCGA





CTCCATGGCCTTAGCGCATTTTCACTCCACAGTTACTCTCCAGGTGAGAT





CAATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCACCCTTGCGAG





TCTGGAGACATCGGGCCAGAAGTGTCCGCGCTAAGCTACTGTCCCAGGGA





GGGAGGGCCGCCACTTGTGGCAGGTACCTCTTCAATTGGGCAGTAAGGA





CCAAGCTTAAACTCACTCCAATCCCGGCTGCGTCCCAGTTGGACTTGTCC





GGCTGGTTCGTTGCTGGGTACAGCGGGGGAGACATATATCACAGCCTGT





CTCGTGCCCGACCCCGCTGGTTCCTGTGGTGCCTACTCCTACTTTCTGTA





GGGGTAGGCATCTACCTGCTCCCCAACCGATGA





>Pt 15 NS5B


(SEQ IS NO: 226)


TCGATGTCCTAYACATGGACAGGCGCCCTGATCACGCCATGCGCCGCGG





ARGAAAGCAAGCTGCCCATCAATGCGTTGAGCAACTCTTTGCTGCGTCAC





CATAAYATGGTCTACGCCACAACATCCCGCAGCGCAAGCCAGCGGCAGA





AGAAGGTCACCTTTGACAGACTGCAGGTCCTGGACGACCACTACCGGGA





CGTGCTTAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAGACTTC





TATCYGTAGAAGAAGCCTGCAAGCTGACGCCCCCACACTCAGCCAGATCC





AAATTTGGCTATGGGGCGAAGGACGTCCGGAACCTATCTAGCAAGGCCGT





TAACCACATCCGCTCCGTGTGGAAGGACTTGCTGGAAGACACTGAAACAC





CAATCGACGCTACCATCATGGCAAAAAATGAGGTTTTCTGCGTCCAACCA





GAGAAAGGAGGTCGCAAGCCRGCTCGCCTTATCGTGTTCCCAGATTTGG





GAGTCCGTGTGTGCGAGAAAATGGCCCTTTACGACGTGGTCTCCACCCTT





CCTCAGGCCGTGATGGGCCCCTCATACGGATTCCAATACTCTCCTGGACA





GCGGGTCGAGTTCCTGGTGAATGCCTGGAAATCAAAGAAAAACCCTATGG





GCTTCTCATATGACACCCGCTGYTTTGACTCTACGGTCACYGAGAGYGAC





ATCCGTACTGAGGAGTCAATTTACCAATGTTGTGACTTGGCCCCCGAAGC





CAGACAGGTTATAAGGTCGCTCACAGAGCGGCTTTATATCGGGGGTCCTY





TGACTAATTCAAAAGGGCAGAACTGCGGCTATCGCCGGTGTCGCGCAAG





CGGCGTGCTGACGACCAGCTGCGGCAATACCCTCACATGTTACCTGAAG





GCCACTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACAATGCTTG





TGTGTGGGGACGACCTTGTCGTYATCTGTGAGAGCGCGGGGACCCAAGA





GGACGCAGCGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCT





GCTCCCCCCGGGGACCCGCCCCGGCCGGAATACGACTTGGARTTAATAA





CATCATGCTCCTCCAACGTGTCGGTCGCGCACGACGCACAYGGCAAAAG





GGTGTACTACCTCACCCGTGACCCCACCACCCCCCTTGCGCGGGCYGCAT





GGGAGACAGCTAGACACACTCCAGTCAACTCCTGGCTAGGCAACATCATC





ATGTATGCGCCCACCTTGTGGGCAAGGATGATYCTGATGACYCATTTCTT





CTCCATCCTTCTAGCCCAGGAGCAACTTGAAAAAGCCCTAGATTGTCAGA





TCTACGGGGCCTGTTACTCCATTGAGCCACTTGACCTACCTCAGATCATT





CAGCGACTCCATGGTCTTAGCGCATTTTCACTCCACAGTTACTCTCCAGG





TGAGATCAATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCACCCC





TGCGAGTCTGGAGACATCGGGCCAGAAGTGTCCGCGCTAAGCTGCTGTCC





CGGGGGGGGAGGGCTGCCACTTGTGGCAAGTACCTCTTCAACTGGGCRGT





AAGGACCAAGCTCAAACTCACTCCAATCCCGGCTGCGTTCAAGCTGGACT





TGTCCGGCTGGTTCGTTGCTGGTTACAGCGGGGGAGACATATATCACAGC





CTGTCTCGTGCCCGACCCCGCTGGTTYRTGTGGTGCCTACTCCTACTTTC





TGTAGGGGTAGGCATCTACCTGCTCCCCAACCGATGA





>Pt 16 NS5B


(SEQ ID NO: 227)


TCGATGTCCTACACATGGACAGGCGCCTTGATCACACCGTGCGCTGCGG





ARGAGAGCAAGCTGCCCATCAAYGCGCTGAGCAACTCTTTGYTGCGYCAC





CATAACATGRTCTATGCCACAACATCCCGCAGCGCYAGCCAAMGGCAGAR





GAAGGTCACTTTTGAYAGACTGCARGTCCTGGACGACCACTACCGGGACG





TGCTYAAGGAGATGAAGGCGAAGGCGTCCACAGTCAAGGCTAAACTTCTA





TCCGTAGARGAAGCCTGYAAGCTGACRCCCCCACACTCGGCCAGATCYAA





ATTTGGCTATGGGGCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTA





ACCACATCCACTCCGTGTGGAAGGACTTGCTGGAAGACACTGACACACCA





ATTGACACCACCATCATGGCAAAAAATGAGGTTTTCTGYATCCAACCAGA





GAAAGGAGGCCGCAAGCCAGCTCGCCTTATCGTRTACCCAGACCTGGGGG





TCCGRGTGTGCGAGAAGATGGCTCTTTAYGATGTGGTCTCCACYCTTCCT





CAGGCCGTGATGGGCCCCTCRTACGGATTTCAGTACTCTCCTGGACAGC





GGGTTGAGTTCCTGGTGAAWGCCTGGAARTCAAAGAAATGCCCTATGGG





CTTCGCRTATGACACCCGCTGCTTYGACTCRACGGTCACTGAGAATGACA





TYCGTGTTGAGGAGTCAATTTACCAATGTTGTGACTTGGCYCCCGAAGCC





AGACAGGYCATAAGGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCYCT





AACCAATTCAAAAGGGCAAAACTGCGGTTATCGCCGGTGTCGCGCRAGC





GGCGTGCTGACGACTAGCTGCGGCAAYACCCTTACATGTTACTTGAARGC





CTCTGCRGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGCTCGTG





TGCGGAGACGACCTCGTCGTTATCTGTGAGAGCGCGGGGACCCACGAGG





ATGCGGCGAGCCTACGAGTCTTYACGGAGGCTATGACTAGGTACTCCGC





CCCCCCYGGGGACCCGCCTCAGCCAGAATACGACTTAGAGCTGATAACAT





CATGCTCTTCCAAYGTGTCRGTCGCGCACGATGCATCYGGCAAAAGGGTR





TACTACCTCACCCGTGACCCCACCACCCCCCTTGCRCGGGCTGCGTGGG





ARACAGCTAGACACACTCCAGTYAACTCCTGGCTAGGCAACATCATCATG





TAYGCGCCCACCYTATGGGCAAGGATGATCCTGATGACTCATTTCTTCTC





CATCCTTCTAGCTCAGGAGCAACTTGAAAAAGCCCTAGATTGTCAGATCT





AYGGGGCCTGTTACTCCATTGAACCACTTGACCTACCTCAAATCATTCAR





CGACTCCATGGTATTAGCGCGTTTTCACTCCAYAGTTACTCTCCAGGWGA





GATCAATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCRCCCTTGC





GAGTCTGGAGACATCGGGCCAGGAGTGTCCGCGCTAAGYTACTGTCCCAG





GGGGGGAGGGCTGCCACTTGTGGCAARTACCTCTTCAACTGGGCAGTAAR





AACCAAGCTTAATCTCACTCCAATTCCGGCTGCGTCCAAGCTGGATTTAT





CCRGCTGGTTCGTTGCCGGYTACAGCGGGGGAGACATATATCACAGCGTG





TCTCMTGCCCGACCCCGCTGGTTCATGTGGTGCCTRCTCCTACTKTCTGT





AGGRGTAGGCATCTACCTGCTYCCCAACCGATGA







D. Alignment of Sequences with Reference Sequence


The alignment shows the nucleotide sequence of the NS5B polymerase domain of an HCV-1b isolate from an untreated patient (SEQ ID NO: 223). The sequence was aligned against a reference sequence (SEQ ID NO: 228). Homologies between the two sequences are plotted as dots.




embedded image


embedded image


embedded image


EXAMPLE 3
NS3 Phenotyping Assay

Construction of Delta [NS3] Shuttle Vector


The plasmid 11pFK I341 PI luc NS3-3′_ET is based on the construct described in Krieger et al. 2001 and was kindly provided by Prof. Bartenschlager (Heidelberg, Germany). In order to generate a shuttle vector for NS3 phenotyping, it was modified by site-directed mutagenesis to introduce two new SacII restriction sites at position 3338 and 3899. In a next step, the modified plasmid was digested with SacII and subsequently religated to give the delta[NS3] shuttle vector pFK I341 PI luc ΔNS3 7-192_ET (SEQ ID No 10).


For InFusion cloning, the delta[NS3] backbone pFK I341 PI luc ΔNS3 7-192_ET (SEQ ID NO: 10) was linearized by SacII digestion.


EXAMPLE 4
Cloning of the NS3 PCR Amplicons from Infected Patients into the Delta[NS3] Shuttle Vector

A. NS3 Amplicon Generation from Isolates of HCV-Infected Patients


For the PCR, 1 μl from the One-Step RT-PCR product of the NS3 genotyping assay was mixed with 0.2 μM primer 1b_InFu_NS3_F (SEQ ID NO: 11), 0.2 μM primer 1b_InFu_NS3_R (SEQ ID NO: 12) and 2× Herculase™ Hotstart master mix (Stratagene) to give a total volume of 50 μl. Initial denaturation was 95° C. for 2 min and thermal cycling consisted of 10 cycles followed by another 20 cycles consisting of denaturation at 95° C. for 30 s, annealing at 60° C. for 30 s and elongation at 72° C. for 1 min (plus 10 s per cycle). Final extension took place at 72° C. for 10 min. The amplicons were purified using the QIAQuick gel purification kit (Qiagen).


B. Delta [NS3] Shuttle Vector Preparation


The NS3 subgenomic shuttle backbone was digested with an excess of the restriction endonuclease SacII (NEB) and 1× restriction enzyme buffer 4 (NEB) at 37° C. overnight. In a next step, calf intestine phosphatase was added and the mixture incubated for 40 min at 37° C. in order to dephosphorylate the linearized shuttle backbone. The dephosphorylated vector was purified via agarose gel electrophoresis (crystal violet) followed by gel extraction using the kit from QIAGEN. The linearized vector was stored at −20° C. until further use.


C. Cloning of the NS3 Derived from Patient Isolates into the Linearized Delta [NS3] Shuttle Vector


The PCR products and the linearized vector were thawed and the PCR product was stored on ice until cloning. Immediately before the In-Fusion™ cloning, the linearized vector was denatured for 5 min at 60° C. and subsequently put on ice. For the cloning reaction, 1 μl of the PCR product and 1 μl of the vector preparation were added to 8 μl Dnase/Rnase-free water. The complete mix (10 μl) was added into one tube containing the Dry-Down In-Fusion™ reaction mix (Clontech) and carefully pipetted up and down. The pipetting steps were performed on ice. The PCR tubes containing the In-Fusion™ cloning mix were subsequently transferred to a thermocycler and incubated for 30 min at 42° C. After incubation the tubes were immediately transferred to ice.


D. Transformation of Recombinant Replicon DNA


The transformation of Escherichia coli cell was performed immediately after the In-Fusion™ cloning step. The XL10-Gold® Ultracompetent Cells (Stratagene) were used for the transformation. 50 μl of the cells were transformed with 5 μl of the In-Fusion™ cloning mix according to the protocol from Stratagene. The complete transformation mix was plated onto ampicillin-containing LB Petri dishes and incubated overnight at 37° C. Colonies were pooled by applying 1 ml of ampicillin-containing LB medium onto the Petri dishes and removing the colonies by scraping. The bacterial suspension was transferred into a 15 ml-Falcon tube. The Petri dishes were washed for a second time with 1 ml of the ampicillin-containing LB medium and the solution was again transferred into the Falcon tube. 2 ml of ampicillin-containing LB medium were added and cells were grown at 37° C. until they reached the logarithmic phase (approximately 4-5 hours). 1.5 ml of the cell culture was used for inoculation of 200 ml ampicillin-containing LB medium. Cells were grown overnight at 37° C. for the DNA preparation. The DNA was prepared using the Maxiprep DNA purification kit from QIAGEN.


EXAMPLE 5
Replicon NS3 Phenotypic Assay

A. Recombinant Replicon Plasmid DNA Linearization


The replicon plasmid DNA (10 μg per sample) was linearized using 1.5 μl of Asel (NEB) and 3 μl ScaI (NEB) together with 4 μl NEB buffer 3 to give a total volume of 40 μl. The reaction mix was incubated for 4 hours at 37° C. The linearized vector was separated from the resulting fragments via agarose gel electrophoresis and purified using the gel extraction kit from QIAGEN. DNA concentration was measured using the Nanodrop® spectrophotometer (ratio OD260 nm/OD280 nm). The purified DNA was stored at −20° C. until further use.


B. Preparation of In Vitro Transcribed Replicon RNA


The in vitro transcription was performed using the MEGAscript High Yield Transcription kit (Ambion) according to protocol HCV_SP038.vs2 in the Laboratory Operation Unit at Tibotec. Briefly, 1 μg of the linearized and purified replicon DNA was used per reaction for in vitro transcription and were added to a mix containing 44 μl nuclease-free water, 4 μl ATP solution, 4 μl CTP solution, 4 μl GTP solution, 4 μl UTP solution and 10× reaction buffer. Four μl of the enzyme mix were subsequently added. The pipetting was performed at room temperature. The reaction mix was incubated for 4 hours at 37° C. Two μl of TURBO DNase (Ambion) were subsequently added and the mixture was incubated for 15 min at 37° C. in order two destroy the DNA template. The RNA was purified using the MEGAclear™ kit (Ambion). RNA was quantified using the Nanodrop® spectrophotometer (ratio OD260 nm/OD280 nm). The purified RNA was stored in 10 μg aliquots at −80° C. until further use.


C. Hepatoma Cell Line


Cured hepatoma cell line Huh7 were cultured at 37° C. in a humidified atmosphere with 5% CO2 in Dulbecco's Modified Eagle medium (DMEM, Biowhittaker, Cat n° BE12-917F) supplemented with L-Glutamine and 10% FCS.


D. Determination of Transient Replicon Replication


4×106 cells were transfected with 10 μg of in vitro transcribed replicon RNA via electroporation. For EC50 determination 4,000 cells/well were seeded in a volume of 30 μl medium in white 384-well compound plates. Compound plates contained 10 μl/well of the respective compound dilution in medium (containing 2% DMSO), leading to a total volume of 40 μl per well with a final concentration of 0.5% DMSO. Compound dilutions were prepared in quadruplates. Cell culture plates were incubated for 48 h at 37° C. and 5% CO2. Experiments were performed in triplicates. The firefly luciferase chemiluminescence read-out was performed using the Steady-Lite reagent (PerkinElmer). The EC50 values were assessed as the inhibitor concentration at which a 50% reduction in the level of firefly luciferase reporter was observed as compared to the level of firefly luciferase signal without the addition of compounds. Results of studies testing the inhibitory effect of an example protease inhibitor, SCH 503034, on replication of WT replicon and replicons with patient-derived NS3 sequences are shown in Table 2.


Table 2 shows that the NS3-restored shuttle vector is replicating. GND serves as a non-replicating replicon control.


Table 3 shows EC50 values of an HCV protease inhibitor tested in the NS3 replicon shuttle system with 5 patient isolates.


Results:









TABLE 2







Replication level of replicons (96-well format*)













Replication


Plasmid
Vector backbone
RLU level1
level2





rep PI-luc/ET (WT)
rep PI-luc/ET (WT)
1637 ± 348



rep PI-luc/ET NS3 7-
Rep PI-luc/ET delta
1047 ± 151
WT level


192 InFu restored
[NS37-192] SacII




GND

17 ± 2
No





replication





15000 cells were seeded per well in 96-well plates.



1RLU represents level of firefly luciferase signal observed after 48 hours post-transfection.




2Replication level is compared to wild type (WT) vector.














TABLE 3







EC50 values (384-well format)










NS3 sequence
SCH 503034 EC50 [μM]*






rep PI-luc/ET (WT)
0.140 ± 0.069



Clinical isolate Pt 1
0.341 ± 0.130



Clinical isolate Pt 2
0.090 ± 0.046



Clinical isolate Pt 3
0.124 ± 0.023



Clinical isolate Pt 4
0.126 ± 0.018



Clinical isolate Pt 5
0.120 ± 0.068





*Inhibition by SCH 503034 of transient HCV replicon RNA replication containing the NS3 from genotype 1b clinical isolates inserted into the shuttle vector pFK PI-luc delta[NS3 7-192]_ET; mean EC50 value from at least n = 3 experiments.






EXAMPLE 6
NS5B Phenotyping Assay

Construction of Delta [NS5B] Backbone


The plasmid 11 pFK I341 PI luc NS3-3′_ET is based on the construct described in Krieger et al. 2001 and was kindly provided by Prof. Bartenschlager (Heidelberg, Germany). In order to generate a shuttle vector, it was modified by site-directed mutagenesis to introduce two AfIII restriction sites at position 7481 and 9287. First, an AfIII restriction site was introduced by site directed mutagenesis into the 3′ NCR directly after the stop codon of NS5B at Medigenomix (Munich, Germany) resulting in plasmid pFKi341Luc_NS3-3′-ET-AfIII (Sequence ID NO:17). Next, a second AfIII restriction site 8aa upstream of the NS5A/NS5B cleavage site was introduced using the Quick Change Site-Directed Mutagenesis Kit (Stratagene, La Jolla, Calif., USA) according to the manufacturers recommendations with SDM primer pair AfIII-5A-fwd (5′-accgtaagcgaggagcttaaggctagtgaggacgtc-3′) (Sequence ID NO:18) and AfIII-5A-rev (5′-gacgtcctcactagccttaagctcctcgcttacggt-3′) (Sequence ID NO:19) resulting in plasmid pFKi341Luc_NS3-3′-ET-2×AfIII (Sequence ID NO:20). In a next step, the modified plasmid was digested with AfIII and subsequently re-ligated resulting in the delta[NS5B] backbone pFK_I341_PI_NS3-3_ET_dNS5a/b5a440-5b591-ScaI (Sequence ID NO:21).


In parallel, a NS5B phenotyping construct with an XbaI restriction site at the 3′ end was generated using plasmid pFKi341Luc_NS3-3′-ET-2×AfIII (Sequence ID NO:20) as template. First, an XbaI site in the gene of the firefly luciferase was mutated by a site directed mutagenesis approach, resulting in a silent mutation, using primer pair XbaI-mut-fwd (5′-ggcgccattctatccactagaggatggaacc-3′) (Sequence ID NO:22) and XbaI-mut-rev (5′-ggttccatcctctagtggatagaatggcgcc-3′) (Sequence ID NO:23). In a second SDM reaction, an XbaI restriction site was introduced at the 3′ end of the HCV 3′ NCR instead of the ScaI site using primer pair XbaI-add-fwd (5′-gagtgctgatactggcctctctgcagatcaagtctagaaagtccctttagtgagggttaattc-3′) (Sequence ID NO:24) and XbaI-add-rev (5′-gaattaaccctcactaaagggactttctagacttgatctgcagagaggccagtatcagcactc-3′) (Sequence ID NO:25) resulting in plasmid pFKi341Luc_NS3-3′-ET-2×AfIII-XbaI (Sequence ID NO:26). In a next step, the modified plasmid was digested with AfIII and subsequently re-ligated resulting in the delta[NS5B] backbone pFK_I341_PI_NS3-3_ET_dNS5a/b5a440-5b591-XbaI (Sequence ID NO:27). Linearization with XbaI results in an authentic HCV 3′ end and offered the possibility to shuttle amplicons of clinical isolates which harbor a ScaI site in the NS5B coding sequence.


For InFusion cloning, the delta[NS5B] backbone pFK_I341_PI_NS3-3_ET_dNS5a/b5a440-5b591-ScaI (SEQ ID NO:21) or pFK_I341_PI_NS3-3_ET_dNS5a/b5a440-5b591-XbaI (SEQ ID NO:27) was linearized by AfIII digestion.


EXAMPLE 7
Cloning of the NS5B PCR Amplicons from HCV-Infected Patients into the Delta [NS5B] Shuttle Vector

A. NS5B Amplicon Generation from Isolates of HCV-Infected Patients


For the InFusion™ PCR, 1 μl from the One-Step RT-PCR product of the NS5B genotyping assay was mixed with 0.2 μM primer 1b_NS5B_F_AfIII-Infusion (5′-AAGCGAGGAGCTTAAGGCYRGTGAGGACGT-3′) (SEQ ID NO:28), 0.2 μM primer 1b_NS5B_R_AfIII-Infusion (5′-AGCTCCCCGTCTTAAGTCAYCGGT TGGGG-3′) (SEQ ID NO:29) and 2× Herculase™ Hotstart master mix (Stratagene, La Jolla, Calif., U.S.) to give a total volume of 50 μl. Initial denaturation was 95° C. for 2 min and thermal cycling consisted of 10 cycles followed by another 20 cycles consisting of denaturation at 95° C. for 30 s, annealing at 60° C. for 30 s and elongation at 72° C. for 1 min 30 s (plus 10 s per cycle). Final extension took place at 72° C. for 10 min. The amplicons were purified using the QIAQuick gel purification kit (Qiagen, Hilden, Germany). Final volume of purified amplicons was 30 μl.


B. Delta [NS5B] Shuttle Vector Preparation


The NS5B subgenomic shuttle backbone was digested with an excess of the restriction endonuclease AfIII (NEB) and 1× restriction enzyme buffer 4 (NEB) at 37° C. overnight. In a next step, calf intestine phosphatase was added and the mixture incubated for 1 h at 37° C. in order to dephosphorylate the linearized shuttle backbone. The dephosphorylated vector was purified via agarose gel electrophoresis (crystal violet) followed by gel extraction using the kit from QIAGEN. The linearized vector was stored at −20° C. until further use.


C. Cloning of the NS5B Derived from Patient Isolates into the Linearized Delta [NS5B] Shuttle Vector


The PCR products and the linearized vector were thawed and the PCR product was stored on ice until cloning. Immediately before the In-Fusion™ cloning, the linearized vector was denatured for 5 min at 60° C. and subsequently put on ice. For the cloning reaction, 2 μl of the PCR product and 1-3 μl of the vector preparation were added to 5-8 μl Dnase/Rnase-free water. The complete mix (10 μl) was added into one tube containing the Dry-Down In-Fusion™ reaction mix (Clontech) and carefully pipetted up and down. The pipetting steps were performed on ice. The PCR tubes containing the In-Fusion™ cloning mix were subsequently transferred to a thermocycler and incubated for 30 min at 42° C. After incubation the tubes were immediately transferred to ice


D. Transformation of Recombinant Replicon DNA


The transformation of Escherichia coli cell was performed immediately after the In-Fusion™ cloning step. The XL10-Gold® Ultracompetent Cells (Stratagene) were used for the transformation. 50 μl of the cells were transformed with 5 μl of the In-Fusion™ cloning mix according to the protocol from Stratagene. The complete transformation mix was plated onto ampicillin-containing LB Petri dishes and incubated overnight at 37° C. Colonies were pooled by applying 1 ml of ampicillin-containing LB medium onto the Petri dishes and removing the colonies by scraping. The bacterial suspension was transferred into a 15 ml-Falcon tube. The Petri dishes were washed for a second time with 1 ml of the ampicillin-containing LB medium and the solution was again transferred into the Falcon tube. 2 ml of ampicillin-containing LB medium were added and cells were grown at 37° C. until they reached the logarithmic phase (approximately 4-5 hours). 1.5 ml of the cell culture was used for inoculation of 200 ml ampicillin-containing LB medium. Cells were grown overnight at 37° C. for the DNA preparation. The DNA was prepared using the Maxiprep DNA purification kit from QIAGEN.


EXAMPLE 8
Replicon NS5B Phenotypic Assay

A. Recombinant Replicon Plasmid DNA Linearization


The replicon plasmid DNA (10 μg per sample) was linearized using 3 μl of XbaI (NEB) together with 10 μl NEB buffer 4 and 1 μl of a 100× concentrated BSA stock solution (NEB) to give a total volume of 100 μl. The reaction mix was incubated for 4 hours at 37° C. The linearized vector was separated from the resulting fragments via agarose gel electrophoresis and purified using the gel extraction kit from QIAGEN. DNA concentration was measured using the Nanodrop® spectrophotometer (ratio OD260 nm/OD280 nm). The purified DNA was stored at −20° C. until further use.


B. Preparation of In Vitro Transcribed Replicon RNA


The in vitro transcription was performed using the MEGAscript High Yield Transcription kit (Ambion) according to protocol HCV_SP038.vs2 in the Laboratory Operation Unit at Tibotec. Briefly, 1 μg of the linearized and purified replicon DNA was used per reaction for in vitro transcription and were added to a mix containing 44 μl nuclease-free water, 4 μl ATP solution, 4 μl CTP solution, 4 μl GTP solution, 4 μl UTP solution and 10× reaction buffer. Four μl of the enzyme mix were subsequently added. The pipetting was performed at room temperature. The reaction mix was incubated for 4 hours at 37° C. Two μl of TURBO DNase (Ambion) were subsequently added and the mixture was incubated for 15 min at 37° C. in order two destroy the DNA template. The RNA was purified using the MEGAclear™ kit (Ambion). RNA was quantified using the Nanodrop® spectrophotometer (ratio OD260 nm/OD280 nm). The purified RNA was stored in 10 μg aliquots at −80° C. until further use.


C. Hepatoma Cell Line


Cured hepatoma cell line Huh7 were cultured at 37° C. in a humidified atmosphere with 5% CO2 in Dulbecco's Modified Eagle medium (DMEM, Biowhittaker, Cat no BE12-917F) supplemented with L-Glutamine and 10% FCS.


D. Determination of Transient Replicon Replication


4×106 cells were transfected with 10 μg of in vitro transcribed replicon RNA via electroporation. For EC50 determination 4,000 cells/well were seeded in a volume of 30 μl medium in white 384-well compound plates. Compound plates contained 10 μl/well of the respective compound dilution in medium (containing 2% DMSO), leading to a total volume of 40 μl per well with a final concentration of 0.5% DMSO. Compound dilutions were prepared in quadruplates. Cell culture plates were incubated for 48 h at 37° C. and 5% CO2. Experiments were performed in at least duplicates. The firefly luciferase chemiluminescence read-out was performed using the Steady-Lite reagent (PerkinElmer). The EC50 values were assessed as the inhibitor concentration at which a 50% reduction in the level of firefly luciferase reporter was observed as compared to the level of firefly luciferase signal without the addition of compounds. Results of studies testing the inhibitory effect of an example polymerase inhibitor, Thiophene-2-carboxylic acid, on replication of WT replicon and replicons with patient-derived NS5B sequences are shown in Table 4.


Table 4 shows EC50 values of an HCV polymerase inhibitor tested in the NS5B replicon shuttle system with 5 patient isolates.


Results:









TABLE 4







EC50 values (384-well format)








NS5B sequence
Thiophene-2-carboxylic acid EC50 [μM]*





Rep PI-luc/ET (WT)
0.58


Clinical isolate Pt_12
0.28


Clinical isolate Pt_13
0.59


Clinical isolate Pt_14
 1.0**


Clinical isolate Pt_15
0.63


Clinical isolate Pt_16
3.96





*Inhibition by Thiophene-2-carboxylic acid of transient HCV replicon RNA replication containing the NS5B from genotype 1b clinical isolates inserted into the shuttle vector pFK PI-luc delta[NS5B]_ET; mean EC50 value from at least n = 2 experiments.


**measured once

















TABLE 5





SEQ



Amplification/


ID NO
Primer name
Sequence (5′ to 3′)
Remark
Sequencing



















1
NS5Bsubtype_A
TGGGGTTCGCGTA
NS5B sequence-
Amplification




TGATACCCGCTGC
based subtyping





TTTGA
assay






2
NS5Bsubtype_B
TGGGGTTTTCTTA
NS5B sequence-
Amplification




CGACACCAGGTG
based subtyping





CTTTGA
assay






3
NS5Bsubtype_C
CCGTATGATACCC
NS5B sequence-
Amplification




GCTGCTTTGACTC
based subtyping
and




AAC
assay
sequencing





4
NS5Bsubtype_D
TCCTACGACACCA
NS5B sequence-
Amplification




GGTGCTTTGATTC
based subtyping
and




AAC
assay
sequencing





5
NS5Bsubtype_E
AATTCCTGGTCAT
NS5B sequence-
Amplification




AGCCTCCGTGAA
based subtyping
and




GACTC
assay
sequencing





6
1b_NS3_out_F
GCGTGTGGGGAC
N-terminal 181aa
Amplification




ATCATCTTAGG
of NS3 genotyping






assay






7
1b_NS3_out_R
GCTGCCAGTGGG
N-terminal 181aa
Amplification




AGCGTG
of NS3 genotyping






assay






8
1b_NS3_in_F
TCATCTTAGGCCT
N-terminal 181aa
Amplification




GCCCGTCTC
of NS3 genotyping
and





assay
sequencing





9
1b_NS3_in_R
GGGAGCGTGTAG
N-terminal 181aa
Amplification




ATGGGCCAC
of NS3 genotyping
and





assay
sequencing





10
pFK I341 PI luc
Plasmid sequence of
Phenotyping
NA



deltaNS3 7-
delta[NS3] backbone
shuttle backbone




192_ET








11
1b_InFu_NS3_F
ATGGCGCCTATTA
Phenotyping
Amplification




CCGCCTACTCCCA
amplification





ACAGACG
primer






12
1b_InFu_NS3_R
AATGTCTGCGGTA
Phenotyping
Amplification




CCGCCGGGGGGG
amplification





ATGAGTTGTC
primer






13
1b_NS5B_out_F
TAGAGTCCTGGA
Polymerase
Amplification




AGGACCCGG
(NS5B)






genotyping assay






14
1b_NS5B_out_R
GGCCTGGAGTGG
Polymerase
Amplification




TTAGCTCCCC
(NS5B)






genotyping assay






15
1b_NS5B_in_F
TGGAAGGACCCG
Polymerase
Amplification




GACTACG
(NS5B)
and





genotyping assay
sequencing





16
1b_NS5B_in_R
GAGTGGTTAGCTC
Polymerase
Amplification




CCCGTTCA
(NS5B)
and





genotyping assay
sequencing





17
pFKi341Luc_NS3-
plasmid with 1st
Phenotyping
NA



3′-ET-AflII
AflII site
shuttle backbone





(intermediate






plasmid)







18
AflII-5A-fwd
(5′-accgtaagcgaggag
Phenotyping for





cttaaggctagtgaggacgtc-
cloning





3′) SDM primer







19
AflII-5A-rev
(5′-gacgtcctcactagcctt
Phenotyping for





aagctcctcgcttacggt-3′
cloning





SDM primer







20
pFKi341Luc_NS3-
plasmid with 2nd
Phenotyping
NA



3′-ET-2xAflII
AFLii SITE
shuttle backbone





(intermediate






plasmid)







21
pFK_I341_PI_NS3-
Plasmid sequence of
Phenotyping
NA



3_ET_dNS5A/
delta[NS5B] ScaI
shuttle backbone




b_5a440-5b591-
backbone





ScaI








22
XbaI-mut-fwd
(5′-ggcgccattctatccac
Phenotyping for





tagaggatggaacc-3′)
cloning





SDM primer







23
XbaI-mut-rev
(5′-ggttccatcctctagtg
Phenotyping for





gatagaatggcgcc-3′)
cloning





SDM primer







24
XbaI-add-fwd
(5′-gagtgctgatactggcc
Phenotyping for





tctctgcagatcaagtctaga
cloning





aagtccctttagtgagggtta






attc-3′)







25
XbaI-add-rev
(5′-gaattaaccctcactaaa
Phenotyping for





gggactttctagacttgatctg
cloning





cagagaggccagtatcagc






actc-3′)







26
pFKi341Luc_NS3-
Intermediate plasmid
Phenotyping
NA



3′-ET-2xAfl II-

shuttle backbone




XbaI








27
pFK_I341_PI_NS3-
Plasmid sequence of
Phenotyping
NA



3_ET_dNS5A/
delta[NS5B] XbaI
shuttle backbone




b_5a440-5b591-
backbone





XbaI








28
1b_NS5B_F_AflII-
AAGCGAGGAGCT
Phenotyping
Amplification



Infusion
TAAGGCYRGTGA
amplification





GGACGT
primer






29
1b_NS5B_R_AflII-
AGCTCCCCGTCTT
Phenotyping
Amplification



Infusion
AAGTCAYCGGTT
amplification





GGGG
primer






30
1a_NS3/4A_out_R
GGGACCTCACCG
Protease (NS3/4A)
Amplification




CTCATGAT
genotyping assay






31
1a_NS3/4A_in_R
CTCACCGCTCATG
Protease (NS3/4A)
Amplification




ATCTTGAATGC
genotyping assay






32
1a_NS3/4A_out_F
CGGAGGTCATTA
Protease (NS3/4A)
Amplification




CGTGCAAATG
genotyping assay






33
1a_NS3/4A_in_F
CGTGCAAATGGC
Protease (NS3/4A)
Amplification




CATCATCAAG
genotyping assay






34
1a_NS2_F1sb
GCGCTTACTGGCA
Protease (NS3/4A)
Sequencing




CCTATG
genotyping assay






35
1a_NS3_F1s
AGGCACGCCGAT
Protease (NS3/4A)
Sequencing




GTCAT
genotyping assay






36
1a_NS3_R2s
CGGGACCTTGGT
Protease (NS3/4A)
Sequencing




GCTCTT
genotyping assay






37
1a_NS3_F2s
CGGCACTGTCCTT
Protease (NS3/4A)
Sequencing




GACCA
genotyping assay






38
1a_NS3_R3s
GAGTCGAAGTCG
Protease (NS3/4A)
Sequencing




CCGGTA
genotyping assay






39
1a_NS3_F3s
CCGAGACTACAG
Protease (NS3/4A)
Sequencing




TTAGGCTACG
genotyping assay






40
1a_NS3_R4s
GCATGTCATGATG
Protease (NS3/4A)
Sequencing




TATTTGGTG
genotyping assay






41
1a_NS4B_R1s
ACGAGGACCTTC
Protease (NS3/4A)
Sequencing




CCCAGT
and NS4B/5A






genotyping assay






42
1a_NS3_out_R
GCTGCCGGTGGG
N-terminal 181aa
Amplification




AGCATG
of NS3 genotyping






assay






43
1a_NS3_in_R
GAGCATGCAGGT
N-terminal 181aa
Amplification




GGGCCAC
of NS3 genotyping
and





assay
sequencing





44
1a_NS3_out_F
GCGGCGACATCA
N-terminal 181aa
Amplification




TCAACGG
of NS3 genotyping






assay






45
1a_NS3_in_F
CATCAACGGCTTG
N-terminal 181aa
Amplification




CCCGTCTC
of NS3 genotyping
and





assay
sequencing





46
1a_NS3_Fs_BU
GACCTTTACCTGG
N-terminal 181aa
Sequencing




TCACGAG
of NS3 genotyping






assay






47
1a_NS4B/5A_out_R
GCTGTCCAGAACT
NS4B/5A
Amplification




TGCAGTCTGTC
genotyping assay






48
1a_NS4B/5A_in_R
CCTTTGGCAAGCA
NS4B/5A
Amplification




CTGCGTG
genotyping assay






49
1a_NS4B/5A_out_F
CTGCGTGGTCATA
NS4B/5A
Amplification




GTGGGCAG
genotyping assay






50
1a_NS4B/5A_in_F
TGTCTTGTCCGGG
NS4B/5A
Amplification




AAGCCGG
genotyping assay






51
1a_NS4B_F2s
CGTCACTGCCATA
NS4B/5A
Sequencing




CTCAGCA
genotyping assay






52
1a_NS5A_R1s
CGTCCCGTTTTTG
NS4B/5A
Sequencing




ACATG
genotyping assay






53
1a_NS5A_R2s
TGACTCAACCCTG
NS4B/5A
Sequencing




GTGATGTT
genotyping assay






54
1a_NS5A_F2s
CGGTGGTCCTCAC
NS4B/5A and
Sequencing




CGAA
Polymerase






(NS5B)






genotyping assay






55
1a_NS4A_F1s
TTGTCCGGGAAG
NS4B/5A
Sequencing




CCG
genotyping assay






56
1a_NS5B_R1s
TGGCAAGCACTG
NS4B/5A
Sequencing




CGTG
genotyping assay






57
1a_NS5A_F1s
TTGACGTCCATGC
NS4B/5A
Sequencing




TCACTG
genotyping assay






58
1a_NS5B_out_R
AGGCCGGAGTGT
Polymerase
Amplification




TTACCCCAAC
(NS5B)






genotyping assay






59
1a_NS5B_in_R
GGAGTGTTTACCC
Polymerase
Amplification




CAACCTTCA
(NS5B)
and





genotyping assay
sequencing





60
1a_NS5B_out_F
TGACTATGAACC
Polymerase
Amplification




ACCTGTGGTCC
(NS5B)






genotyping assay






61
1a_NS5B_in_F
CACCTGTGGTCCA
Polymerase
Amplification




TGGCTG
(NS5B)
and





genotyping assay
sequencing





62
1a_NS5B_F1s
CATCAACTCCGTG
Polymerase
Sequencing




TGGAAAG
(NS5B)






genotyping assay






63
1a_NS5B_R1s
CAGCGGGTATCA
Polymerase
Sequencing




TACGAGAA
(NS5B)






genotyping assay






64
1a_NS5B_F2s
GCACCATGCTCGT
Polymerase
Sequencing




GTGTG
(NS5B)






genotyping assay






65
1a_NS5B_R2s
GTCATCAGTATCA
Polymerase
Sequencing




TCCTCGCC
(NS5B)






genotyping assay






66
1a_NS5B_F3s
CGACTCCATGGTC
Polymerase
Sequencing




TTAGCG
(NS5B)






genotyping assay






67
1b_NS3/4A_out_R
GAGCGCCTTCTGT
Protease (NS3/4A)
Amplification




TTGAATTG
genotyping assay






68
1b_NS3/4A_in_R
CTGTTTGAATTGC
Protease (NS3/4A)
Amplification




TCGGCGAG
genotyping assay
and






sequencing





69
1b_NS3/4A_out_F
ATGCATGCTGGTG
Protease (NS3/4A)
Amplification




CGGAA
genotyping assay






70
1b_NS3/4A_in_F
TGGTGCGGAAAG
Protease (NS3/4A)
Amplification




TCGCTGG
genotyping assay






71
1b_NS2_F1s
GGTCATTATGTCC
Protease (NS3/4A)
Sequencing




AAATGGC
genotyping assay






72
1b_NS3_F1s
CGGCAGCTCGGA
Protease (NS3/4A)
Sequencing




CCTTTA
genotyping assay






73
1b_NS3_R2s
CACTTGGAATGTC
Protease (NS3/4A)
Sequencing




TGCGGTAC
genotyping assay






74
1b_NS3_F2s
GATGAGTGCCAC
Protease (NS3/4A)
Sequencing




TCAACTGACT
genotyping assay






75
1b_NS3_R3s
CGTCTGTTGCCAC
Protease (NS3/4A)
Sequencing




GACAA
genotyping assay






76
1b_NS3_F3s
CTATGACGCGGG
Protease (NS3/4A)
Sequencing




CTGTG
genotyping assay






77
1b_NS3_R4s
AGCCGTATGAGA
Protease (NS3/4A)
Sequencing




CACTTCCAC
genotyping assay






78
1b_NS4B/5A_out_R
GCATAGACCATG
NS4B/5A
Amplification




TTGTGGTGACG
genotyping assay






79
1b_NS4B/5A_in_R
GTGACGCAGCAA
NS4B/5A
Amplification




AGAGTTGCTCA
genotyping assay
and






sequencing





80
1b_NS4B/5A_out_F
AGCGTGGTCATTG
NS4B/5A
Amplification




TGGGCAG
genotyping assay






81
1b_NS4B/5A_in_F
GGGCAGGATCAT
NS4B/5A
Amplification




CTTGTCCGG
genotyping assay
and






sequencing





82
1b_NS4B_R1s
TTCCCAAGGCCTA
NS4B/5A
Sequencing




TGCTG
genotyping assay






83
1b_NS4B_F2s
GGATGAACCGGC
NS4B/5A
Sequencing




TGATAGC
genotyping assay






84
1b_NS5A_R1s
ATGGAACCGTTTT
NS4B/5A
Sequencing




TGACATGT
genotyping assay






85
1b_NS5A_F1s
GGGCATGACCAC
NS4B/5A
Sequencing




TGACAAC
genotyping assay






86
1b_NS5A_R2s
CCACAGGAGGTT
NS4B/5A
Sequencing




GGCCT
genotyping assay






87
1b_NS5A_F2s
CACGGGTGCCCA
NS4B/5A and
Sequencing




TTGC
Polymerase






(NS5B)






genotyping assay






88
1b_NS5B_F1s
AAGGAGATGAAG
Polymerase
Sequencing




GCGAAGG
(NS5B)






genotyping assay






89
1b_NS5B_R1s
CATCACGGCCTG
Polymerase
Sequencing




AGGAAG
(NS5B)






genotyping assay






90
1b_NS5B_F2s
TCGCTCACAGAG
Polymerase
Sequencing




CGGCT
(NS5B)






genotyping assay






91
1b_NS5B_R2s
TGGAGGAGCATG
Polymerase
Sequencing




ATGTTATCA
(NS5B)






genotyping assay






92
1b_NS5B_F3s
CGACTCCATGGTC
Polymerase
Sequencing




TTAGCG
(NS5B)






genotyping assay






93
2a_NS3/4A in_F
GTAGGTGGACTG
Protease (NS3/4A)
Amplification




GCACTTACATCTA
genotyping assay





TGA







94
2a_NS3/4A out_F
CGCTATTAGCCCT
Protease (NS3/4A)
Amplification




TGGTAGGTGG
genotyping assay






95
2a_NS3/4A in_R
AAATGCCCGCAC
Protease (NS3/4A)
Amplification




CATACCC
genotyping assay
and






sequencing





96
2a_NS3/4A
GGCTTCTCGCCAG
Protease (NS3/4A)
Amplification



out_R
ACATGATCTT
genotyping assay






97
2a_NS2_F2sb
CACGGACTTCCCG
Protease (NS3/4A)
Sequencing




TGTC
genotyping assay






98
2a_NS3_R1sb
TGCCAGTTGGGG
Protease (NS3/4A)
Sequencing




CATG
genotyping assay






99
2a_NS3_F1s
TCCGGGCAGCTGT
Protease (NS3/4A)
Sequencing




GTG
genotyping assay






100
2a_NS3_R2s
CGTCTTGAGGGA
Protease (NS3/4A)
Sequencing




CAGTCTGTG
genotyping assay






101
2a_NS3_F2s
GGAGGGTGAGAT
Protease (NS3/4A)
Sequencing




CCCCTTCTA
genotyping assay






102
2a_NS4B_R1s
GAAGTTCCACAT
Protease (NS3/4A)
Sequencing




GTGTTTGGC
genotyping assay






103
2a_NS3_F3s
GTAGTGCTCTGTG
Protease (NS3/4A)
Sequencing




AGTGCTACG
genotyping assay






104
2a_NS3_in_F
ATCTTACACGGAC
N-terminal 181aa
Amplification




TCCCCGTGTC
of NS3 genotyping
and





assay
sequencing





105
2a_NS3_out_F
ATGCGGGGACAT
N-terminal 181aa
Amplification




CTTACACGG
of NS3 genotyping






assay






106
2a_NS3_in_R
TGGGGCATGCAA
N-terminal 181aa
Amplification




GTACCCGAC
of NS3 genotyping
and





assay
sequencing





107
2a_NS3_out_R
CACTGCCAGTTGG
N-terminal 181aa
Amplification




GGCATG
of NS3 genotyping






assay






108
2b_NS3/4A_in_F
TACGGATACCAT
Protease (NS3/4A)
Amplification




ACTTTGTGAGGGC
genotyping assay






109
2b_NS3/4A_out_F
TCTCTGCTACGGA
Protease (NS3/4A)
Amplification




TACCATACTTTG
genotyping assay






110
2b_NS3/4A_in_R
TCCACCAGTATCT
Protease (NS3/4A)
Amplification




TACCCAGGCCTA
genotyping assay






111
2b_NS3/4A_out_R
ACGTCCACCAGT
Protease (NS3/4A)
Amplification




ATCTTACCCA
genotyping assay






112
2b_NS2_F1s
ACGAGTGTGTAC
Protease (NS3/4A)
Sequencing




CCTGGTGA
genotyping assay






113
2b_NS3_F1s
GACCCCTGTACCT
Protease (NS3/4A)
Sequencing




GCGG
genotyping assay






114
2b_NS3_R2s
GCAAGTAGCCCA
Protease (NS3/4A)
Sequencing




CCTGGTAAG
genotyping assay






115
2b_NS3_F2s
GCCATTCAGTGG
Protease (NS3/4A)
Sequencing




ACGCCAC
genotyping assay






116
2b_NS3_R3s
CCTTGAGTTGGTA
Protease (NS3/4A)
Sequencing




TAACGGAGAC
genotyping assay






117
2b_NS3_F3s
GCTCTGTGAGTGC
Protease (NS3/4A)
Sequencing




TATGATGC
genotyping assay






118
2b_NS3_R4s
GGTAGGACCAGT
Protease (NS3/4A)
Sequencing




CAGTGTAGGTTT
genotyping assay






119
2b_NS4B_R1s
CAACGAAGCCAG
Protease (NS3/4A)
Sequencing




TGGCTC
genotyping assay






120
2b_NS3_in_F
TGCATGGCCTCCC
N-terminal 181aa
Amplification




GGTTTC
of NS3 genotyping
and





assay
sequencing





121
2b_NS3_out_F
CATGTGGAGACA
N-terminal 181aa
Amplification




TCCTGCATGG
of NS3 genotyping






assay






122
2b_NS3_in_R
TTGGTGCATGCAA
N-terminal 181aa
Amplification




GTAGCCCAC
of NS3 genotyping
and





assay
sequencing





123
2b_NS3_out_R
CGCTGCCTGTTGG
N-terminal 181aa
Amplification




TGCATG
of NS3 genotyping






assay






124
2b_NS5B_in_F
CTTCTGTACCATC
Polymerase
Amplification




AGAGTACCTGAT
(NS5B)
and




CA
genotyping assay
sequencing





125
2b_NS5B_out_F
GTGAGCCTTCTGT
Polymerase
Amplification




ACCATCAGAGTAC
(NS5B)






genotyping assay






126
2b_NS5B_out_R
ATGGAGTGTAGC
Polymerase
Amplification




TAGGGTTTGCC
(NS5B)






genotyping assay






127
2b_NS5B_R_in
TGTAGCTAGGGTT
Polymerase
Amplification




TGCCGCTCTA
(NS5B)
and





genotyping assay
sequencing





128
2b_NS5A_F2s
GAACCACCCACT
Polymerase
Sequencing




GTCCTAGG
(NS5B)






genotyping assay






129
2b_NS5B_F1s
GCACACTATGACT
Polymerase
Sequencing




CAGTCTTGCA
(NS5B)






genotyping assay






130
2b_NS5B_R1s
CATCTTTTCGCAC
Polymerase
Sequencing




ACCCTG
(NS5B)






genotyping assay






131
2b_NS5B_F2s
TACGTAGGAGGG
Polymerase
Sequencing




CCCATG
(NS5B)






genotyping assay






132
2b_NS5B_R2s
AGCGCTACCGAT
Polymerase
Sequencing




ACGTTTG
(NS5B)






genotyping assay






133
2b_NS5B_F3s
CCGGCCATAATTG
Polymerase
Sequencing




AAAGG
(NS5B)






genotyping assay






134
3a_NS3/4A_in_F
ATGCTCGTGCGCT
Protease (NS3/4A)
Amplification




CCGTGAT
genotyping assay






135
3a_NS3/4A_out_F
CTTTGCATGCTCG
Protease (NS3/4A)
Amplification




TGCGCTC
genotyping assay






136
3a_NS3/4A_in_R
TACTATGGGCTCA
Protease (NS3/4A)
Amplification




ATGACAGCTTGTTG
genotyping assay
and






sequencing





137
3a_NS3/4A_out_R
GGTAGCTACTATG
Protease (NS3/4A)
Amplification




GGCTCAATGACA
genotyping assay





GC







138
3a_NS2_F1s
TACTTCCAGATGA
Protease (NS3/4A)
Sequencing




TCATACTGAGC
genotyping assay






139
3a_NS3_F1s
ACTTATACTTGGT
Protease (NS3/4A)
Sequencing




TACCCGCG
genotyping assay






140
3a_NS3_R2s
TCTTACCGCTGCC
Protease (NS3/4A)
Sequencing




GGTC
genotyping assay






141
3a_NS3_F2s
TCTTAGATCAGGC
Protease (NS3/4A)
Sequencing




TGAGACGG
genotyping assay






142
3a_NS3_R3s
CTGTTGTTGGTAT
Protease (NS3/4A)
Sequencing




GACGGACA
genotyping assay






143
3a_NS3_F3s
AGCCCGCTGAGA
Protease (NS3/4A)
Sequencing




CCACA
genotyping assay






144
3a_NS3_R4s
ATGTAGTGTTGGC
Protease (NS3/4A)
Sequencing




TTAAGCCG
genotyping assay






145
3a_NS3_out_R
CTGCCGGTCGGG
N-terminal 181aa
Amplification




GCATG
of NS3 genotyping






assay






146
3a_NS3_in_R
GGTCGGGGCATG
N-terminal 181aa
Amplification




AAGGTATCCTAC
of NS3 genotyping
and





assay
sequencing





147
3a_NS3_out_F
CTTGCGGAGATAT
N-terminal 181aa
Amplification




TCTTTGCGG
of NS3 genotyping






assay






148
3a_NS3_in_F
TTGCGGGCTGCCC
N-terminal 181aa
Amplification




GTCTC
of NS3 genotyping
and





assay
sequencing





149
3a_NS4B/5A_out_R
CGACGTTGAATA
NS4B/5A
Amplification




GACTAGGTTATG
genotyping assay





ATGTCT







150
3a_NS4B/5A_out_F
CCCTAGCGGCCTA
NS4B/5A
Amplification




CTGCTTG
genotyping assay






151
3a_NS4B/5A_in_F
GGCCTACTGCTTG
NS4B/5A
Amplification




TCAGTCGG
genotyping assay






152
3a_NS4A_F1s
GCCTACTGCTTGT
NS4B/5A
Sequencing




CAGTCGG
genotyping assay






153
3a_NS4B_R1s
ATACCCCCTATGG
NS4B/5A
Sequencing




CAGCG
genotyping assay






154
3a_NS4B_F2s
ACAGTGGATGAA
NS4B/5A
Sequencing




CAGGCTCAT
genotyping assay






155
3a_NS5A_R1s
TGACAGGAAATG
NS4B/5A
Sequencing




AAGGGCAG
genotyping assay






156
3a_NS5A_F1s
TGAAGTGGATGG
NS4B/5A
Sequencing




GGTGAGA
genotyping assay






157
3a_NS5A_R2s
TGAGGCCTATGC
NS4B/5A
Sequencing




GTCTGG
genotyping assay






158
3a_NS5A_F2s
CACCAACTGTCG
NS4B/5A and
Sequencing




ATGGATG
Polymerase






(NS5B)






genotyping assay






159
3a_NS4B/5A_in_R
TTATGATGTCTCA
NS4B/5A
Amplification




ACAAGGAGTTGC
genotyping assay
and




TGA

sequencing





160
3a_NS5B_out_R
AGTGTTATCTTAC
Polymerase
Amplification




CAGCTCACCGAGC
(NS5B)






genotyping assay






161
3a_NS5B_in_R
ATCTTACCAGCTC
Polymerase
Amplification




ACCGAGCTGGC
(NS5B)
and





genotyping assay
sequencing





162
3a_NS5B_out_F
GTATCCTCCAGCC
Polymerase
Amplification




CTTCCTATCTG
(NS5B)






genotyping assay






163
3a_NS5B_in_F
CAGCCCTTCCTAT
Polymerase
Amplification




CTGGGCTAG
(NS5B)
and





genotyping assay
sequencing





164
3a_NS5B_F1s
TCGGGTATAGTGC
Polymerase
Sequencing




GAAGGA
(NS5B)






genotyping assay






165
3a_NS5B_R1s
CTTCAGCAGACGT
Polymerase
Sequencing




TCGACC
(NS5B)






genotyping assay






166
3a_NS5B_F2s
TACATCAAGGCC
Polymerase
Sequencing




ACAGCG
(NS5B)






genotyping assay






167
3a_NS5B_R2s
CTGGAGTGTGAC
Polymerase
Sequencing




GAGCTGTT
(NS5B)






genotyping assay






168
3a_NS5B_F3s
CTTGGAGACATC
Polymerase
Sequencing




GGGCAC
(NS5B)






genotyping assay






169
4a/d_NS3/4A_in_F
GCGCGTCCCTTAC
Protease (NS3/4A)
Amplification




TTCGTGAG
genotyping assay






170
4a/d_NS3/4A_out_F
GCTCCTGCGCGTC
Protease (NS3/4A)
Amplification




CCTTAC
genotyping assay






171
4a/d_NS3/4A_in_R
GTAGCCAGCGAG
Protease (NS3/4A)
Amplification




GATGTCCACTAG
genotyping assay
and






sequencing





172
4a/d_NS3/4A_out_R
CATCTCGCCGCTC
Protease (NS3/4A)
Amplification




ATGATCTT
genotyping assay






173
4a/d_NS2_F1s
GCGTCCCTTACTT
Protease (NS3/4A)
Sequencing




CGTGAG
genotyping assay






174
4a/d_NS3_F1s
CCGTGCGCAGGA
Protease (NS3/4A)
Sequencing




GAGG
genotyping assay






175
4a/d_NS3_F2s
CACGGTCTTGGAC
Protease (NS3/4A)
Sequencing




CAAGC
genotyping assay






176
4a/d_NS3_F3s
GCCTGGTACGAA
Protease (NS3/4A)
Sequencing




CTGACACC
genotyping assay






177
4a/d_NS3_R2s
GCCACTTCCTGTT
Protease (NS3/4A)
Sequencing




GGTGC
genotyping assay






178
4a/d_NS3_R3s
CTGAGTCAAAGT
Protease (NS3/4A)
Sequencing




CGCCGGT
genotyping assay






179
4a/d_NS3_R4s
GACATGCAGGCC
Protease (NS3/4A)
Sequencing




ATGATGTA
genotyping assay






180
4a/d_NS3_in_F
TAAGGGGATTAC
N-terminal 181aa
Amplification




CTGTCTCGGC
of NS3 genotyping
and





assay
sequencing





181
4a/d_NS3_out_F
AGTTGTGTTCACG
N-terminal 181aa
Amplification




CCCATGGAG
of NS3 genotyping






assay






182
4a/d_NS3_in_R
GGGACTTTGGTGC
N-terminal 181aa
Amplification




TCTTGCC
of NS3 genotyping
and





assay
sequencing





183
4a/d_NS3_out_R
TCGATGCCATATG
N-terminal 181aa
Amplification




CCTTGGAC
of NS3 genotyping






assay






184
4a/d_NS4B/5A_out_F
TTTCAGTGGGCAG
NS4B/5A
Amplification




CGTGGT
genotyping assay






185
4a/d_NS4B/5A_in_F
AGCGTGGTGATC
NS4B/5A
Amplification




GTCGGGAG
genotyping assay
and






sequencing





186
4a/d_NS4B/5A_out_R
CCTGCAGGCGGT
NS4B/5A
Amplification




CGAAGG
genotyping assay






187
4a/d_NS4B/5A_in_R
CGAAGGTCACCTT
NS4B/5A
Amplification




CTTCTGCCG
genotyping assay
and






sequencing





188
4a/d_NS4B_R1s
AGACATGAGGGA
NS4B/5A
Sequencing




AGCAATGG
genotyping assay






189
4a/d_NS4B_F1sb
TGTGCAGTGGAT
NS4B/5A
Sequencing




GAACCG
genotyping assay






190
4a/d_NS5A_R1s
ACTCTGCGAACCT
NS4B/5A
Sequencing




CCACG
genotyping assay






191
4a/d_NS5A_F1s
GTTGACAGACCC
NS4B/5A
Sequencing




ATCACACAT
genotyping assay






192
4a/d_NS5A_R2s
TCGTCTGTCTCAA
NS4B/5A
Sequencing




CCCTGGT
genotyping assay






193
4a/d_NS5A_F2sb
TCTTACTCGTCAA
NS4B/5A
Sequencing




TGCCTCC
genotyping assay






194
4a/d_NS5B_out_F
CGGGGTAACACA
Polymerase
Amplification




AGATAACATCAAG
(NS5B)






genotyping assay






195
4a/d_NS5B_out_R
ACCCTAAGGTCG
Polymerase
Amplification




GAGTGTTAAGCT
(NS5B)






genotyping assay






196
4a/d_NS5B_in_F
ACAAGATAACAT
Polymerase
Amplification




CAAGTGCCCCTG
(NS5B)






genotyping assay






197
4a/d_NS5B_in_R
AAGGTCGGAGTG
Polymerase
Amplification




TTAAGCTGCCTA
(NS5B)
and





genotyping assay
sequencing





198
4a/d_NS5A_F2sc
CTTATTCGTCAAT
Polymerase
Sequencing




GCCTCCAC
(NS5B)






genotyping assay






199
4a/d_NS5B_F1s
ATCATGGCCAAA
Polymerase
Sequencing




AATGAGGT
(NS5B)






genotyping assay






200
4a/d_NS5B_F2s
GCCTTCACGGAG
Polymerase
Sequencing




GCTATGAC
(NS5B)






genotyping assay






201
4a/d_NS5B_F3bs
TGTGGCATATACC
Polymerase
Sequencing




TCTTTAACTGG
(NS5B)






genotyping assay






202
4a/d_NS5B_R2s
GGAGTCAAAGCA
Polymerase
Sequencing




GCGGG
(NS5B)






genotyping assay






203
4a/d_NS5B_R3s
CAGGAATTGACT
Polymerase
Sequencing




GGAGTGTGTC
(NS5B)






genotyping assay






204
4a/d_NS5B_R4s
GCACAGGAGTAA
Polymerase
Sequencing




ATAGCGGG
(NS5B)






genotyping assay








Claims
  • 1. Method for determining drug resistance mutations in any of the non-structural protein regions NS3 to NS5B of Hepatitis C Virus (HCV) for genotypes 1 to 6, more in particular for subtype specific genotypes 1a, 1b, 2a, 2b, 3a, 4a and 4d, present in a sample comprising: a) obtaining said sample from a patient,b) extracting viral genetic material from said sample,c) amplification of the NS5B region of HCV to generate a DNA amplicon of 388 base pairs by using primers having the sequences selected from the group consisting of SEQ ID NO's 1-5,d) sequencing of the amplicon to obtain a sequence of 329 base pairs by using the sequences selected from the group consisting of SEQ ID NO's 3-5,e) performing phylogenetic tree analysis using the 329 base pair sequence information of NS5B to obtain HCV-subtype information in said patient sample,f 1) using subtype-specific primers having the sequences selected from either the group consisting of SEQ ID NO's 6-9, 42-45, 104-107, 120-123, 145-148 or 180-183 for the generation of a DNA amplicon comprising the non-structural protein NS3 (N-terminal 181 amino acids),g 1) sequencing the NS3 amplicon to obtain a sequence of 543 base pairs by using the sequences selected from the group consisting of SEQ ID NO's 8 and 9; 43 and 45-46; 104 and 106; 120 and 122; 146 and 148 or 180 and 182h) aligning the sequence obtained in step (g 1), (g 2), (g 3) or (g 4) with a reference or wild-type HCV sequence,i) determining drug resistance mutation(s) in the viral genetic material present in patient sample,j) generating a NS3 amplicon starting from the DNA amplicon comprising the NS3 (N-terminal 181 amino acids) as obtained in step (f 1) using primers having the sequence of SEQ ID NO 11 and 12,k) inserting, by InFusion™ cloning or in vitro recombination, said amplicon obtained in step (i) into a NS3 deleted replication incompetent marker containing shuttle vector having the sequence of SEQ ID NO 10 to obtain a NS3 replication competent recombinant HCV replicon,l) generating RNA, by in vitro transcription, from said HCV replicon obtained in step (k)m) transfecting said RNA into suitable cells,n) determining, based on the expression of the marker gene, the EC50 value and/or fold change as a measure for the presence of drug resistance mutations in a sample.
Priority Claims (1)
Number Date Country Kind
08165949 Oct 2008 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/062986 10/6/2009 WO 00 4/5/2011
Publishing Document Publishing Date Country Kind
WO2010/040756 4/15/2010 WO A
US Referenced Citations (1)
Number Name Date Kind
7329732 Graham et al. Feb 2008 B2
Foreign Referenced Citations (9)
Number Date Country
1801116 Jun 2007 EP
WO 9727480 Jul 1997 WO
WO 2004080406 Sep 2004 WO
WO 2006021896 Mar 2006 WO
WO 2008002165 Jan 2008 WO
WO 2008002165 Jan 2008 WO
WO 2008046922 Apr 2008 WO
WO 2008060608 May 2008 WO
WO 2008090 185 Jul 2008 WO
Non-Patent Literature Citations (21)
Entry
Sandres-Saune et al. (J Virol Methods. May 2003;109(2):187-93).
NCBI Accession Nos. DQ220824 (Sep. 30, 2006), DQ220904 (Sep. 30, 2006), DQ061343 (2005), DQ061300 (Jun. 20, 2005), AF238481 (Sep. 5, 2007), AY232735 (Sep. 5, 2007), AF046866 (Sep. 5, 2007), AM423035 (Dec. 12, 2007), Y11604 (Nov. 10, 2005), AY685579 (Aug. 14, 2004).
Rozen et al. (Primer3 on the WWW for General Users and for Biologist Programmers, in Methods in Molecular Biology, vol. 132: Bioinformatics Methods and Protocols, 2000).
Okimoto et al. (Improved PCR Amplification of Multiple Specific Alleleso(PAMSA) Using Internally Mismatched Primers, BioTechniques 26 (Jul. 1996)).
Kwok et al. (A Guide to the Design and Use of Mismatched and Degenerate Primers, Genome Res. 1994 3: S39-S47).
Buck et al. (“Design Strategies and Performance of Custom DNA Sequencing Primers” Biotechniques. 1999. 27(3): pp. 528-536).
Lowe et al. (Nucleic Acids Research, vol. 18, No. 7, p. 1757-1761, 1990).
Hamano, Kosei et al. “Mutations in the NS5B Region of the Hepatitis C Virus Genome Correlate with Clinical Outcomes of Interferon-Alpha Plus Ribavirin Combination Therapy”. Journal of Gastroenterology and Hepatology, (2005) 20, pp. 1401-1409.
Tomei, Licia, et al. “HCV Antiviral Resistance: The Impact of In Vitro Studies on the Development of Antiviral Agents Targeting the Viral NS5B Polymerase”. Antiviral Chemistry & Chemotherapy, (2005), 16, pp. 225-245.
Simmonds, P. et al. “Classification of Hepatitis C Virus into Six Major Genotypes and a Series of Subtypes by Phylogenetic Analysis of the NS-5 Region”. Journal of General Virology (1993) 74, pp. 2391-2399. (Published Great Britain).
Khromykh, Alexander et al. “Coupling between Replication and Packaging of Flavivirus RNA: Evidence Derived from the Use of DNA-Bases Full-Length cDNA Clones of Kunjin Virus”. Journal of Virology, (May 2001) vol. 75, No. 10, pp. 4633-4640.
Hertogs, Kurt at al. “A Rapid Method for Simultaneous Detection of Phenotypic Resistance to Inhibitors of Protease and Reverse Transcriptase in Recombinant Human Immunodeficiency Virus Type 1 Isolates from Patients Treated with Antiretroviral Drugs”. Antimicrobial Agents and Chemotherapy, (Feb. 1998), pp. 269-276.
Lin, Chao et al. “In Vitro Studies of Cross-Resistance Mutations Against Two Hepatitis C Virus Serine Protease Inhibitors, VX-950 and BILN 2061” Journal of Biological Chemistry, (Nov. 2005), vol. 280, No. 44, pp. 36784-36791.
Kellam, Paul et al. “Recombinant Virus Assay: A Rapid, Phenotypic Assay for Assessment of Drug Susceptibility of Human Immunodeficiency Virus I Isolates”, Antimicrobial Agents and Chemotherapy, (Jan. 1994), vol. 38, No. 1, pp. 23-30.
Prabhu, Ramesh, et al. “Interferon Alpha-2b Inhibits Negative-Strand RNA and Protein Expression from Full-Length HCV1a Infectious Clone”, Experimental and Molecular Pathology (2004), 76, pp. 242-252.
Dumont, S. et al. “Development of a Platform to Detect Drug Resistance Mutations in the Non-Structural Protein Region of the Hepatitis C Virus Genotypes 1,2,3, and 4”, Journal of Hepatology, (Apr. 2009), vol. 50, p. S124 #319.
Vizmanos, J.L. et al. “Degree and Distribution of Variability in the 5′ Untranslated E1, E2/NS1 and NS5 Regions of the Hepatitis C Virus (HCV)”, Journal of Viral Hepatitis, (1998), 5, pp. 227-240.
Sandres-Saune, K. et al. “Determining Hepatitis C Genotype by Analyzing the Sequence of the NS5B Region”, Journal of Virological Methods, (2003), 109, pp. 187-193.
Lohmann, Volker et al. “Viral and Cellular Determinants of Hepatitis C Virus RNA Replication in Cell Culture”, Journal of Virology, (Mar. 2003), vol. 77, No. 5, pp. 3007-3019.
Le Guillou-Guillemette, H. et al. “Genetic Diversity of the Hepatitis C Virus: Impact and Issues in the Antiviral Therapy”, World Journal of Gastroenterology, (May 2007), pp. 2416-2426.
Krieger, N. et al. “Enhancement of Hepatitis C RNA Replication by Cell Culture-Adaptive Mutations”, Journal of Virology, (May 2001), vol. 75, No. 10, pp. 4614-4624.
Related Publications (1)
Number Date Country
20110189684 A1 Aug 2011 US