The present invention relates to a method for determining parameters relevant to the print quality of a printed product.
Presently, measuring devices in the form of densitometers or colorimetric measuring devices are used on printing machines in order to determine parameters relevant to the print quality. These measuring devices are used, in particular, for inspecting the measuring fields of a print control strip of a printed product. Actual values of parameters relevant to the printing process can be determined from the measured values from the densitometer and/or the colorimetric measuring device and compared with predetermined nominal values for quality control purposes. Based on this comparison, the printing machine can be adjusted accordingly, e.g., the ink can be adjusted.
Densitometers as well as colorimetric measuring devices utilize an integral functional image of a measuring field to be inspected in order to determine an actual value of a parameter relevant to the print quality of this measuring field. However, this does not take into account whether the measuring field as such is neatly printed. If the measuring field is not neatly or homogenously printed due to insufficient contact pressure between the plate cylinder and the blanket cylinder or due to a defective or soiled rubber blanket, the densitometer or the colorimetric measuring device does not deliver an exact actual value such that, for example, an ink control system based on such an actual value can lead to inferior printing results.
In view of the foregoing, a general object of the present invention is to develop a novel method for determining the parameters relevant to the print quality of a printed product.
According to the invention, at least one macroscopic photogram of a measuring field is recorded with the aid of a camera that features a macro lens. At least one actual value of at least one parameter relevant to the print quality is determined from the macroscopic photogram or each of the macroscopic photograms recorded with the camera using an image processing method so as to determine if the measuring field is printed with adequate quality.
The present invention involves inspecting measuring fields with the aid of a camera that features a macro lens, particularly a miniature high-resolution camera, and recording corresponding macroscopic photograms during this process. Actual values of parameters relevant to the print quality can be determined from the recorded macroscopic photograms using an image processing method in order to verify that the measuring fields themselves are neatly printed. This method makes it possible to examine full-tone measuring fields as well as halftone measuring fields with respect to a clean print image. The result of this quality check, for example, can be used for deciding if the measured values of a measuring field provided by a densitometer and/or a colorimetric measuring device are suitable for use in ink control.
If the measuring field consists of a full-tone measuring field for a printing ink, an advantageous further aspect of the invention can involve determining an actual value for the full-tone measuring field from a gray scale value diagram of the complementary RGB-channel, namely in the form of a uniformity distribution or a noise of the gray scale value over the measuring field.
If the measuring field consists of a halftone measuring field for a printing ink, another advantageous aspect of the invention can involve determining an actual value for the halftone measuring field in the form of at least one geometric parameter for halftone dots of the halftone measuring field from the macroscopic photogram or a gray scale value diagram of the complementary RGB-channel.
An exemplary embodiment of the invention is described in greater detail below with reference to the figures. However, the present invention is not limited to this exemplary embodiment.
The present invention provides a method for determining parameters relevant to the print quality of a printed product, namely for verifying whether an inspected measuring field of the printed product is printed neatly and with adequate quality. Referring to
In
The camera 21 can be in the form of a separate component that can be displaced relative to the print control strip 20 independently of other components in order to inspect the measuring fields 22. Alternatively, the camera 21 can be integrated into a measuring head that contains a densitometer and/or a colorimetric measuring device and in which the camera can be displaced relative to the print control strip 20 together with the densitometer and/or the colorimetric measuring device in order to inspect the measuring fields 22.
According to the inventive method for determining the print quality of a measuring field 22 with the aid of a camera 21, at least one macroscopic photogram of the measuring field 22 is recorded in a first step 24. Subsequently, the macroscopic photogram or each macroscopic photogram is evaluated in a step 25 with the aid of an image processing method in order to determine at least one actual value of at least one parameter of the inspected measuring field 22 that is relevant to the print quality. In the next step 26, each determined actual value is compared with a corresponding nominal value in order to verify that the measuring field is printed or printed out with high or adequate quality. If it is determined that the measuring field is not printed out or printed with the required quality, an alarm or error message can be generated at the printing machine in a subsequent step 27 based on the comparison between the actual value and the nominal value carried out in step 26.
The camera 21 can be in the form of a multi-bit camera, particularly an 8-bit camera that inspects a measuring field 22 in the so-called RGB-channels and preferably outputs a macroscopic photogram of the measuring field 22 and a gray scale value diagram of the macroscopic photogram or the measuring field 22 for each RGB-channel. In instances in which an 8-bit camera is used, a total of 256 gray scale values can be illustrated in the gray scale value diagram.
A macroscopic photogram of a measuring field in the form of the full-tone measuring field 22a and printed with a special printing ink is shown in
The gray scale value diagram 28 of
In contrast,
It is therefore preferred to determine the uniformity distribution or the noise of the gray scale values relative to a nominal value or a limiting value based on the image coordinates of the full-tone measuring field 22a or the image coordinates of the macroscopic photogram of the full-tone measuring field in order to carry out a qualitative evaluation of the full-tone measuring field 22a. In addition, how frequently or at how many pixels the gray scale value exceeds the nominal value or limiting value of the uniformity distribution or the noise, respectively, is examined.
If substantial deviations from the nominal value or limiting value are detected at numerous pixels, it can be concluded that a full-tone measuring field of inferior print quality is examined. However, if only slight deviations from the nominal value or limiting value are detected at a relatively large number of pixels, it can be concluded that a full-tone measuring field of adequate print quality is examined.
The method of the present invention is also suitable for examining halftone measuring fields.
According to a first alternative embodiment of the present invention, the most frequent gray scale values are determined with the aid of a gray scale value diagram 30 of the halftone measuring field 22b using an image processing method so as to define a geometric parameter for round halftone dots of a halftone measuring field 22b. In this case, all image information that lies outside the most frequent gray scale values is filtered out of the macroscopic photogram.
Subsequently, a minimum halftone dot diameter DMIN and a maximum halftone dot diameter DMAX are determined for each halftone dot by utilizing the correspondingly filtered macroscopic photogram of the halftone measuring field 22b. A first halftone dot deformation value is determined for each halftone dot from the minimum halftone dot diameters DMIN and the maximum halftone dot diameters DMAX by utilizing the following formula:
wherein RPDW1 is the first halftone dot deformation value of a halftone dot, DMAX is the maximum halftone dot diameter of a halftone dot and DMIN is the minimum halftone dot diameter of a halftone dot.
If the maximum halftone dot diameter DMAX and the minimum halftone dot diameter DMIN have approximately the same size and the halftone dot deformation value RPDW1 of the halftone dots is consequently relatively small as shown in the example of the filtered macroscopic photogram of the halftone measuring field 22b in
However, if the minimum halftone dot diameter DMIN and the maximum halftone dot diameter DMAX deviate significantly and the first halftone dot deformation value RPDW1 is consequently relatively large as shown in the example of the filtered macroscopic photogram of the halftone measuring field 22b in
The difference between a halftone measuring field 22b of adequate print quality according to
According to further aspect of the present invention, another geometric parameter in the form of a second halftone dot deformation value can be determined for each round halftone dot of a halftone measuring field in addition to the above-mentioned first halftone dot deformation value, namely from a minimum surface of a halftone dot that is determined for a first defined gray scale value range and from a maximum surface of a halftone dot that is determined for a second defined gray scale value range. For this purpose, all pixels of the macroscopic photogram of the halftone measuring field that lie outside the first gray scale value range are filtered out with the aid of an image processing method after the first gray scale value range is defined. The minimum surface of the halftone dots of the halftone measuring field can then be calculated within this first gray scale value range. Subsequently, the gray scale value range is increased and the maximum surface of the halftone dots is determined within this gray scale value range. The second halftone dot deformation value is then calculated for each halftone dot from the minimum halftone dot surfaces and the maximum halftone dot surfaces by utilizing the following formula:
wherein RPDW2 is the second halftone dot deformation value of a halftone dot, AMAX is the maximum surface of a halftone dot and AMIN is the minimum surface of a halftone dot.
If the difference in surface between the minimum halftone dot surface and the maximum halftone dot surface is small and the second halftone dot deformation value consequently is comparatively small, it can be concluded that halftone dots of adequate print quality are examined and that the halftone dots have sharp flanks or edges. However, if the difference between the maximum halftone dot surface and the minimum halftone dot surface is relatively large, it can be concluded that bleeding of the halftone dots has occurred such that their edges or flanks are undefined.
The inventive method also makes it possible to detect smearing at the beginning of the printing process by analyzing the edges of a print control strip that was printed transverse to the transport direction of the material to be printed in the above-described fashion at the beginning of the printing process.
The inventive method for determining whether measuring fields of a printed product have an adequate print quality can be advantageously combined with a color control method in such a way that the actual values determined in the measuring fields with the aid of a densitometer and/or a colorimetric measuring device are only used for control purposes if it was determined beforehand that the measuring field has an adequate quality with the aid of the inventive method.
Number | Name | Date | Kind |
---|---|---|---|
4200932 | Schramm et al. | Apr 1980 | A |
5372921 | Gingello et al. | Dec 1994 | A |
20050105111 | Ott et al. | May 2005 | A1 |
20060152706 | Butland | Jul 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080246979 A1 | Oct 2008 | US |