The technical disclosure herein relates to a method of determining pixel dropout in a printhead having multiple print elements such as thermal printheads and ink jet printheads with multiple jets.
Pixel dropout is a common issue within the printing industry. The dropout could result from a number of problems, for example a failed resistor element in the case of a thermal printhead or a blocked jet in the case of a multiple jet inkjet printhead. When pixel dropout occurs, it typically results in a vertical or horizontal line on the substrate being printed on, depending upon the printing direction since ink or dye is not being transferred from the failed print element to the substrate.
Substrates that are printed with pixel dropout are often considered defective and need to be disposed of, and are often remade which increases costs. Therefore, if pixel dropout does occur, it is best if the dropout is detected as soon as possible to minimize the number of defectively printed substrates.
A technique is described for determining pixel dropout in a printhead that has a plurality of print elements arrayed along an axis. In the technique, an image is analyzed for symmetries that result in a statistically significant signature indicating the possible occurrence of pixel dropout. In one example, a dataset of integrated intensity values, in the printing direction on a substrate, of a captured image is generated and used to determine if pixel dropout has or may have occurred.
In one embodiment, a method of determining pixel dropout of a printhead that has a plurality of print elements arrayed along a first axis includes printing on a surface of a substrate using the printhead by moving the substrate and the printhead relative to one another in a printing direction that is generally perpendicular to the first axis. After printing, a mechanical image capture device is used to capture an image of the surface of the substrate or a portion of a print ribbon that was used to print on the substrate. The captured image is then inputted into a processing device which generates a dataset of integrated intensity values, in the printing direction, of the captured image. The dataset is then used to determine if pixel dropout has occurred.
In another embodiment, a system includes a printhead having a plurality of print elements arrayed along a first axis, a mechanical image capture device associated with the printhead to capture an image printed on a surface of a substrate using the printhead or to capture an image of a portion of a print ribbon that was used to print on the substrate using the printhead, and a processing device connected to the mechanical image capture device and receiving the captured image from the mechanical image capture device. The processing device is configured to generate a dataset of integrated intensity values, in a printing direction, of the captured image, and the processing device is configured to analyze the generated dataset to determine if pixel dropout has occurred and to generate an alert signal if pixel dropout has occurred.
The printhead can be any type of printing device that has a generally linear array of individual print elements disposed generally along an axis, where any one or more of the individual print elements can fail or dropout. Examples of printheads include, but are not limited to, a thermal printhead that includes a line of individual resistor print elements, or a multiple jet inkjet printhead that includes a linear array of individual jets that form print elements. The printhead can perform monochrome (i.e. single color) printing or multi-color printing. A single printhead can be used, or multiple printheads can be provided. Also, the printhead can be stationary and the substrate being printed moves relative to the printhead, or the printhead can move while the substrate remains stationary.
The substrate can be any substrate that can be printed on. Examples of substrates include, but are not limited to, paper, cards, passport pages, retransfer films used in retransfer printing, and others.
The mechanical image capture device can be any device that is capable of capturing a two dimensional image. Examples of mechanical capture devices include, but are not limited to, cameras and scanners.
The captured image can be an image of the surface of the substrate, for example a sheet of paper, a plastic card, a passport page, a retransfer film. Alternatively, in the case of printing using a print ribbon that transfers dye to a substrate, the captured image can be a portion of the print ribbon that was used to print on the substrate, since a reverse of the image that is printed on the substrate will be left on the print ribbon.
As used herein, the language “pixel dropout has occurred” is intended to mean that the described method can determine actual pixel dropout, as well as detect one or more indicators that pixel dropout may have occurred. A user is alerted if it appears that pixel dropout has occurred, allowing the user to investigate further whether or not pixel dropout has actually occurred or if some other problem has occurred that resulted in the pixel dropout detection even if the printhead is operating correctly. For sake of convenience, “pixel dropout has occurred” may be used in this description and is intended to encompass both actual pixel dropout as well as the possibility that pixel dropout may have occurred.
With reference initially to
The printhead that performs the printing can be any type of printing device that has a generally linear array of individual print elements disposed generally along an axis, where any one or more of the individual print elements can fail or dropout. Examples of printheads include, but are not limited to, a thermal printhead that includes a line of individual resistor print elements, or a multiple jet inkjet printhead that includes a linear array of individual jets that form print elements. An example of such a multiple jet printhead is available from Memjet of San Diego, Calif. The printhead can perform monochrome (i.e. single color) printing or multi-color printing. A single printhead can be used, or multiple printheads can be provided. Also, the printhead can be stationary and the substrate being printed moves relative to the printhead, or the printhead can move while the substrate remains stationary.
The substrate can be any substrate that can be printed on. Examples of substrates include, but are not limited to, paper, cards, passport pages, retransfer films used in retransfer printing, and others. In one embodiment, the substrates are personalized security documents, for example plastic cards including but not limited to financial (e.g. credit and debit) cards, drivers' licenses, national identification cards, gift cards, employee badges, and other plastic cards which bear personalized data unique to the card holder and/or which bear other card or document information, as well as passports or passport pages.
The image is captured by a mechanical image capture device which can be any device that is capable of capturing a two dimensional image. Examples of mechanical capture devices include, but are not limited to, cameras and scanners. In an embodiment, the image capture device has a resolution greater than or approximately equal to a resolution of the printhead. For example, if the printhead prints at around 300 DPI, the image capture device should have a resolution of at least about 300 DPI.
The captured image can be an image of the surface of the substrate, for example a sheet of paper, a plastic card, a passport page, a transfer film. Alternatively, in the case of printing using a print ribbon that transfers dye to the substrate, the captured image can be a portion of the print ribbon that was used to print on the substrate, since a reverse of the image that is printed on the substrate will be left on the print ribbon.
The processing device used to process the captured image, generate the dataset of integrated intensity values, determine if pixel dropout has occurred, generate the alert signal, and perform other processing tasks described herein, can be one or more data processors, the general construction of which are known, but which is programmed to perform the described processing tasks.
With reference to
The printhead 30 is illustrated as being a thermal printhead that includes a plurality of individual resistor elements 40 arrayed along an axis X-X. The construction and operation of thermal printheads is well known in the art. By electrically stimulating select resistor elements 40, the stimulated elements are heated. The heated elements transfer dye from a ribbon that is disposed between the substrate 32 and the printhead 30 as the substrate and the printhead are moved relative to one another in a printing direction Y-Y. In one embodiment, the substrate 32 is moved relative to the printhead 30 which remains stationary. However, it is possible to move the printhead in the printing direction while the substrate remains fixed. The printhead 30 can be used with a monochrome print ribbon such as black, or be used with a multi-color print ribbon such as a CMYK ribbon. Therefore, the printing on the substrate 32 can be monochromatic or multi-color.
The substrate 32 has a surface 42 that will be printed on by the printhead 30 in the printing direction Y-Y. The printing direction Y-Y is typically intended to be substantially perpendicular to the axis X-X ignoring normal manufacturing tolerances. However, the printing direction Y-Y can vary by any amount as long as the integration occurs along the path of relative travel between the printhead and the substrate.
After printing, the image capture device 38 captures the image. As indicated above, the image can be of the surface 42 of the substrate 32. Alternatively, the image can be a portion of the print ribbon that was used to print on the substrate. In either case, the image capture device 38 is suitably positioned to capture the image.
In one specific embodiment, the substrate 32 can be a plastic card, a passport or a page of a passport, in which case the printing system 34 can be a processing system for processing plastic cards or passports. In one example, the processing system can be a desktop processing machine which has a relatively small footprint intended to permit the processing machine to reside on a desktop. In another example, the processing system can be part of a large volume batch production machine, often configured with multiple processing stations or modules, that processes multiple documents at the same time.
The printheads 52a-d each print onto a substrate 56 in the form of a retransfer film to form a multi-color image on the retransfer film. The retransfer film moves past the printheads 52a-d in a printing direction similar to that discussed above for
Similar to the system 34 in
With reference now to
As illustrated by the arrows 80 in
One way of determining whether pixel dropout has occurred is for the processing device to process the captured image by generating a dataset of integrated intensity values, in the printing direction Y-Y, of the captured image along the entire width W of the image 70. The right-hand side of
In the case of the integrated intensity values being generated from a captured image of the substrate, the delta function-like discontinuity is characterized by a rapid decrease in the integrated intensity value and that just as quickly returns to an expected background level. In the case of the integrated intensity values being generated from a print ribbon used to print ribbon, the delta function-like discontinuity would be characterized by a rapid increase in the integrated intensity value and that just as quickly falls back down or reduces to an expected background level (i.e. essentially opposite of the plotted intensity values shown in
In one embodiment, a delta function-like discontinuity can be determined to exist based on an amount or percentage of change in the integrated intensity value relative to an expected background level determined by the intensity on either side of the discontinuity. For example, a delta function-like discontinuity can be determined to exist if the percentage change relative to the expected background is equal to or greater than about 25%, or equal to or greater than about 50%, or equal to or greater than about 75%. In another example, a delta function-like discontinuity can be determined to exist if the integrated intensity value reaches or approaches zero.
Therefore, the processing device can generate a dataset of integrated intensity values like that shown in
The processing device can perform other mathematical calculations on the dataset of integrated intensity values, for example performing first derivative calculations as shown in
The mathematical calculations described herein for determining pixel dropout signature are for illustrative purposes only. It will be apparent to those of ordinary skill in the art that there are alternative mathematical calculations that could be employed to identify the pixel dropout signature.
Another option for determining whether pixel dropout has occurred is to compare the generated dataset of integrated intensity values from the captured image to an expected dataset of integrated intensity values generated from the print “input data” used to generate the printed image. A plot, much like that shown in
In an embodiment, rather than generating an alert signal when a delta function-like discontinuity is discovered, the alert signal can be generated based on a user definable number of substrates having a delta function-like discontinuity. For example an alert signal can be generated if pixel dropout has occurred on a predetermined number or ratio of the substrates or print ribbon portions (for example 3 out of 5 consecutive substrates), or if pixel dropout has occurred on a predetermined consecutive number of the substrates or print ribbon portions (for example 5 consecutive substrates).
Another option is to generate an alert signal if an amount of pixel dropout exceeds a predetermined threshold on a predetermined number of the substrates or print ribbon portions. For example, an alert can be generated if there is at least a 25% change (i.e. delta function-like discontinuity) on a first predetermined number of consecutive substrates, a 50% change on a second, lower predetermined number of consecutive substrates, or a 75% change on a third, still lower predetermined number of consecutive substrates.
With reference now to
The processing device processes the captured image to generate a dataset of integrated intensity values, in the printing direction Y-Y, of the captured image along the entire width W of the image 90, with right-hand side of
In the particular example of
Therefore, with reference to
By performing this decomposition analysis, not only can the controller inform the operator of pixel dropout, but it can also point the operator in the direction of which printhead may have a failed element (in this case magenta).
In addition to, or separately from the decomposition software, one or more colored filters can be used to obtain the decomposed color images for generating the color plots 96a-d.
In an embodiment, instead of analyzing the full color image as in
In another embodiment, the pixel dropout detection techniques described herein are combined with one or more quality assurance or verification processes used to verify other processing on the substrate. For example, in the case of personalized security documents, verification processes include, but are not limited to, verification of printed data and images (both the content and quality), verification of embossing, verification of topping of embossed characters, verification of data on a chip, and verification of data on a magnetic stripe.
In a preferred embodiment, the printing, image capture, and processing to determine if pixel dropout has occurred are performed in the same system at generally the same time. This reduces the number of bad substrates that may be produced, and that may need to be reproduced, if any of these steps are performed at significantly different times. However, it is possible for one or more of the steps to be performed by different entities at different times, or by the same entity at different times. For example, the printing and image capture can occur at different times by the same or different parties, or the data processing to look for the delta function-like discontinuity can be performed at a time much later than the printing and/or image capture or performed by a party different than the party conducting the printing and image capture.
The description above specifically discusses monochromatic black and color utilizing the discrete colors of cyan, magenta, yellow, and black. Those skilled in the art will recognize that the techniques described herein can be utilized on any monochrome color (e.g. red, gold, silver, black, etc.) or with any discrete color components that make up the color spectrum (e.g. red, green, blue or cyan, light cyan, magenta, light magenta, yellow, and black).
The embodiments and individual features and steps described and illustrated in
Aspects:
It is noted that any of aspects 1-18 below can be combined with each other in any combination and combined with any of aspects 19-35 in any combination, and any of aspects 19-35 can be combined with each other in any combination.
a) using a mechanical image capture device to capture an image printed on a surface of a substrate using the printhead or to capture an image of a portion of a print ribbon that was used to print on the substrate using the printhead;
b) inputting the captured image into a processing device and using the processing device to generate a dataset of integrated intensity values, in a printing direction, of the captured image; and
c) using the dataset to determine if pixel dropout has occurred.
using the processing device to analyze the dataset for a delta function-like discontinuity in the integrated intensity values; and
the processing device generating an alert signal if a delta function-like discontinuity is discovered.
using the processing device to compare the dataset generated from the captured image to an expected dataset generated from print data used to generate the printing.
analyzing each of the color datasets to determine if pixel dropout has occurred for a particular color.
capturing an image of the substrate surface or print ribbon portion after one or more of the printheads print; and
for each captured image, generate a dataset of integrated intensity values, in the printing direction, of the captured image.
verification of printed data;
verification of a printed image;
verification of embossing;
verification of topping;
verification of data on a chip; and
verification of data on a magnetic stripe.
a mechanical image capture device associated with a printhead to capture an image printed on a surface of a substrate using the printhead or to capture an image of a portion of a print ribbon that was used to print on the substrate using the printhead; and
a processing device connected to the mechanical image capture device and receiving the captured image from the mechanical image capture device, the processing device is configured to generate a dataset of integrated intensity values, in a printing direction, of the captured image, and the processing device is configured to analyze the generated dataset to determine if pixel dropout has occurred and to generate an alert signal if pixel dropout has occurred.
one of the mechanical image capture devices associated with each of the printheads.
The embodiments disclosed in this application are to be considered in all respects as illustrative and not limitative. The scope of the claimed invention is indicated by any appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
6792161 | Imaizumi et al. | Sep 2004 | B1 |
7176941 | Stamm et al. | Feb 2007 | B2 |
20040141209 | Marumoto | Jul 2004 | A1 |
20060114258 | Stamm et al. | Jun 2006 | A1 |
20060125902 | Figov | Jun 2006 | A1 |
20090009812 | Sirringhaus et al. | Jan 2009 | A1 |
20110221808 | Onishi | Sep 2011 | A1 |
20120092409 | Wu et al. | Apr 2012 | A1 |
20130057611 | Wu et al. | Mar 2013 | A1 |
20140192104 | Toyama | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
102991157 | Mar 2013 | CN |
2000050062 | Feb 2000 | JP |
2006056808 | Jun 2006 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2014/031682, mailed Jul. 16, 2014, 12 pgs. |
“Dirac delta function” found online at http://en.wikipedia.org/wiki/Dirac—delta—function, last modified on Jul. 26, 2013 (30 pages). |
“Memjet Technology,” found online at http://www.memjet.com/technology, Aug. 13, 2013 (3 pages). |
Office Action of Chinese Application No. 201480041632.0, dated Jun. 24, 2016, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150314623 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13902193 | May 2013 | US |
Child | 14796210 | US |