FIELD OF THE INVENTION
The present invention relates in general to scanning and in particular to determining a skew angle and location of a document in an over-scanned image.
BACKGROUND OF THE INVENTION
When a paper document or a photograph is scanned by a scanning device such as flatbed type or rotary (production) type, the sensor scan width is often set to a wider range relative to the document to order to contain different size of documents. This results in an unwanted border, either in black or in white, surrounding the original document in the digital image. In addition, the resulting digital image is often skewed, either due to the mechanical imperfection of paper transportation in a production scanner or the improper placement of a print in a flatbed scanner or scanner input feeder. To reproduce a digital version which is identical to the appearance and size of the original document requires skew angle and location detection of the document in the digital image.
Various methods related to the skew angle and location of a digital image were published in U.S. Pat. Nos. 5,818,976; 5,452,374; and 5,974,199. These methods in the prior art detect a skew angle based on the slope of the detected document borders inside a digital image. In most cases the slope of the top border in the detected document is taken as the skew angle of the document so that the completed document can be reconstructed and located.
The success of the prior art in detecting document skew and in locating a document requires a clean straight border of a document. Any jaggedness on a border, or incomplete border, or partially torn border of a document, or irregular shape of a document, often results in the failure of skew and location detection. This dependence on a clean border for detecting skew and location of a document greatly reduces the robustness of these methods for use in heavy duty scanning environment. There is a need for a method of detecting skew angle and location of a document independent of the roughness of document borders and the irregularity of a document shape.
SUMMARY OF THE INVENTION
Briefly, according to one aspect of the present invention a method for determining skew angle and location of a document in an over-scanned digital image comprises the steps of:
- a) scanning a document;
- b) capturing a gray scale image;
- c) detecting outline pixels of a document from the captured gray scale image;
- d) connecting the detected pixels in a sequential order to form an outline polygon;
- e) setting angle θ=0
- f) determining a x-minimum, y-minimum, x-maximum, and y-maximum of the polygon;
- g) calculating a rectangular boundary area based on the x-minimum, y-minimum, x-maximum, and y-maximum;
- h) recording the boundary area and θ;
- i) rotating the polygon z-degrees;
- j) resetting θ=θ+z-degrees
- k) repeating step f-j n-times;
- l) selecting a minimum boundary area from the boundary areas recorded in step h);
- m) recording a corresponding angle at the minimum boundary area; and
- n) assigning the rotation angle having the minimum bounding area as the skew angle of the document.
The invention and its objects and advantages will become more apparent in the detailed description of the preferred embodiment presented below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of an image processing system for detecting skew angle and location of a captured document.
FIG. 2 is a graphical illustration of detecting the outline pixels of a document.
FIG. 3 shows the locations of the detected outline points of a document.
FIG. 4 is the polygon of a document outline constructed from the detected points in FIG. 3.
FIG. 5 shows the width and height of the bounding box of a polygon calculated from the coordinates of the vertices of the polygon in FIG. 4.
FIG. 6 displays the dependence of the width and height of a bounding box on the rotation angle (θ) of a polygon.
FIG. 7 displays the graphical relationship between the bounding area of a polygon and the rotation angle.
FIG. 8 graphically shows the final result of the skew angle and location detection of a document
DETAILED DESCRIPTION OF THE INVENTION
The steps of the detection method are shown in detail in FIG. 1. Referring to FIGS. 1 and 2, the document outline points 1 are detected based on the first black-to-white transition from four directions, top-to-bottom 11, bottom-to-top 12, left-to-right 13, right-to-left 14, as shown in FIG. 2. A noise filter may be applied to bypass the speckle noises in a noisy border. The spatial locations of the detected outline points 15 as shown in FIG. 3 are collected and saved as data. The data points are connected 2 and organized in sequential order according to their spatial locations along the document outline. Every pair of adjacent data points vI and vI+1 forms a vector 21. The sequence of vectors as show in FIG. 4 forms a polygon. The vertices of the polygon are labeled by (v0, v1, v2, v3, . . . vi, vi+1, . . . vn−1) and their respective coordinates are denoted by ((x0 y0), (x1 y1), (x2 y2), (x3 y3), . . . (xi yi), (xi+1 yi+1), . . . (xn−1 yn−1)). The interior area (Ap) of the polygon is calculated 3 from the sum of cross products of polygonal vectors according to the following formula:
Where the V0Vi and V0Vi+1 are the two vectors connecting the vertex “0” and both vertices “i” and “i+1”, respectively. The “X” symbol is the cross product of the two vectors.
The width, W(0), of the polygon is the difference of the x-coordinates between the left-most vertex and the right-most vertex, and the height, H(0), of the polygon is the difference of y-coordinates between the top-most vertex and the bottom-most vertex. The upper left corner of the bounding box at the coordinate of (xr yr) as shown in FIG. 5 is selected as the point (Pr) of origin, for rotation of the polygon. For every new angle (θ), after the polygon is rotated with respect to the origin (Pr), there is a corresponding width (W(θ)) and height (H(θ)) calculated as shown in FIG. 6. The corresponding bounding area (A(θ)) 4 is obtained by multiplying W(θ) with H(θ). The new coordinates of the vertices (xn yn) 41 of the polygon after rotation are based on the equation as following:
xn=xi* cos(θ)+yi* sin(θ)−xr
yn=−xi* sin(θ)+yi* cos(θ)−yr
Where the (xn yn) are the new coordinates of a vertex (xi yi) 40 after rotation by (θ) degree with respect to the rotating point (xr yr).
FIG. 7 plots the relation of rotation angle (θ) and the corresponding area difference of the bounding box (A(θ)) and the interior area (Ap) of the polygon. The minimum area difference (Ar) at rotation angle (θr) indicates that when the polygon rotates to the angle (θr), the best fit is made between the bounding box and the outline of the polygon. In case of a perfect rectangular document which is originally skewed at minus θr angle (counterclockwise skew), when the rectangular polygon is rotated (clockwise rotation) to angle (θr). The bounding box of the rectangular polygon will exactly match with the polygon itself in which the minimum area difference, Ar, is zero. It implies that the skew angle of a scanned document is identical to the rotation angle, θr, except in different orientation, in where the minimum area difference (A(θr)−Ap) occurs. Hence, the detected skew angle (θs) 5 is equal to the negative rotation angle (−θr). The location of the upper left corner of the skew document 5 as shown in FIG. 8 is calculated according to the following geometric transformation:
xo=(xr+xi) cos(θs)−(yr+yi) sin(θs)
yo=(xr+xi) sin(θs)+(yr+yi) cos(θs)
The width and height of the document are the width (W(θr)) and height (H(θr)) 5 of the polygon when it is rotated at the angle of the θr degree.
The ratio, R=(Ap)/(W(θr)*H(θr)), of the polygon interior area and its bounding area is taken as the measure of the detection confidence 6. When the R value is closer to one, it indicates the document is more like the shape of a typical document (rectangular). The lower R value indicates the more irregular shape of a document.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
PARTS LIST
1 Document outline points
2 Data points connected
3 Interior area of polygon calculated
4 Corresponding bounding area
5 Detected skew angle
6 Detection confidence
11 Top-to-bottom
12 Bottom-to-top
13 Left-to-right
14 Right-to-left
15 Detected outline points
21 Vector
40 Vertex
41 Vertex