The present invention relates to petroleum reservoir fluid and petrophysical characterization. In particular, the present invention is useful for quantifying light hydrocarbons in a petroleum reservoir using NMR logging and core analysis as well as determining pore size and tortuosity of the light hydrocarbon-filled porosity using NMR core analysis.
Recent advances in horizontal drilling and hydraulic fracturing have enabled methane and natural gas liquids (NGLs) production from tight reservoirs. However, there is an economic difference in value between methane and the NGLs ethane, propane, butane and pentane. Whereas methane is a gas used for heating and electricity, with relatively low value in the US (˜$4.50/MCF), propane and butane sell for approximately the same value as oil (˜$60/barrel). Ethane is also highly prized because of its use as petrochemical feedstock in manufacturing ethylene. Pentane is a major component of gasoline and very valuable in the US market.
In addition to the economic differences, the methane and NGL composition play a critical role in reservoir engineering. For example, in unconventional tight rock shale, such as the Eagle Ford formation, the most economic regions are the wet gas plays with high NGL saturation, whereas the oil plays may have insufficient production rates, and the dry gas zones produce only a relatively low value product (methane).
Thus, being able to use NMR logging to predict the methane and NGL compositions in the petroleum reservoir can have significant utility to petroleum engineers.
The fast-paced growth in global gas and NGLs production has stimulated research in NMR logging for formation evaluation of tight reservoirs (Hürlimann et al., 2009; Kausik et al., 2011; Wang et al., 2014; Sigal et al., 2015; Fleury et al., 2016; Valori et al., 2017; Tinni et al., 2018; Thern et al., 2018).
NMR measurements on methane-saturated tight rocks are valuable but challenging due to the lower hydrogen index (HI) compared to other liquid-state hydrocarbons. Several recent NMR studies on methane demonstrate the capability of standard low-field NMR (2.3 MHz) bench-top spectrometer and logging tool to capture the signal from methane at achievable pressures. Kausik et al. (2011) investigates the dynamics of methane in kerogen and reports the T2 and diffusivity of methane are greatly reduced in shale, while the HI is increased, compared to the bulk state. Valori et al. (2017) develops a new methodology to estimate permeability of gas-bearing shale rock using NMR-measured methane-saturated T2. Tinni et al. (2018) conducts research to illustrate the effect of methane adsorption on gas production through laboratory NMR measurements.
Diffusivity D measurement by NMR is widely implemented for composition estimation. Hürlimann et al. (2009) reports that D-T2 measurement contains detailed information about the composition of hydrocarbons. It has been demonstrated that methane can be identified by high diffusivity values, even when dissolved in crude oil or kerogen (Hürlimann et al., 2009; Kausik et al., 2011).
Our invention relates to the evaluation of downhole methane and NGLs composition by integrating NMR logging and NMR core analysis. As core containing methane and NGLs is obtained from a downhole formation and brought to the surface, these light hydrocarbons are expelled and evaporate from the core as the pressure is reduced and the core is transported to a core analysis laboratory and stored. Thus, laboratory NMR on as-received cores do not detect the methane and NGLs that are measured with the downhole NMR logging tool. The main problem solved by this invention is how to evaluate the downhole methane and NGL composition and saturations in the NMR log even though they have been released from the core.
The mean pore size and tortuosity of the light hydrocarbon-filled porosity in a petroleum reservoir formation play critical roles in reservoir engineering because they are related to the permeability of the formation. For example, in unconventional tight rock shale, the oil and gas reservoirs must have high enough permeability for economic production rates. The smaller the mean pore size and the more tortuous the flow path, the lower the permeability of the reservoir.
Prior work has used xenon gas diffusion NMR studies at pressures to 6.5 bar for determining pore size and tortuosity in glass bead packs (Mair et al, 2002). Some of the problems with xenon NMR are the need to use high-field superconducting magnets; the need for isotopic enrichment with 129Xe; problems with the NMR pulse sequence due to diffusion during the gradient pulse; and problems with magnetic susceptibility contrast due to the high magnetic fields.
What is needed is a method for determining the mean pore size and tortuosity of the light hydrocarbon-filled porosity in a petroleum reservoir using a low-field NMR spectrometer that is suitable for core analysis laboratories.
In this invention, the core analysis consists of pressure saturation of the as-received reservoir core-plugs in a NMR overburden cell, followed by NMR T2 distributions and D-T2 measurements at reservoir conditions. The saturating fluids in the core-plugs include water and light hydrocarbons, including methane, ethane, propane, n-butane, n-pentane and n-decane.
The laboratory-measured T2 distributions of the hydrocarbons in saturated cores are converted to T2app (T2 apparent) distributions by simulating the effects of diffusion in the magnetic-field gradient of the NMR logging tool. The core data indicate a large contrast in T2app distributions between the different hydrocarbons due to different surface relaxivities and diffusivities. This contrast is used to estimate the downhole hydrocarbon composition by minimizing the least-square error in the T2app distributions between core and log data.
Each of the laboratory-measured T2 distributions of the methane and NGLs are transformed to downhole-measured T2app distributions by simulating the magnetic-field gradient effect from the logging tools. The T2app distributions of methane and NGLs are used as a basis set for numerically mixing the hydrocarbons to find the volume fractions that result in the best (least-squares) match with the log.
Once the volumetric composition of C1, C2, C3, C4, and C5 are known, one can compute the ratios of the various components, such as C2/C1, C3/C1, C2/C3, (C2+C3+C4+C5)/C1, etc. These ratios are important in geochemical exploration. For example, they relate to source rock maturity, leaking seals, etc.
The invention thus has the following steps:
a. Obtaining core in selected zones from the reservoir formation.
b. Obtaining density and NMR log of T2app (T2 apparent) distribution opposite the cored zones using a gradient-based NMR logging tool.
c. Estimating pressure and temperature of the methane and NGLs at depth in the formation to estimate fluid density and Hydrogen Index.
d. Re-saturating core in the laboratory with methane and pure NGLs (ethane, propane, butane and pentane) at estimated formation pressure and temperature.
e. Measuring NMR on the core in the laboratory including T2 distribution and D-T2 with C1-C5 (methane-pentane) in the core, at ˜2 MHz (i.e. the same magnetic field as the NMR logging tool).
f. Using the known magnetic field gradients of the NMR logging tool to convert T2 into T2app for the core data, thereby determining T2app distribution with C1-C5 in the core.
g. Using the known (1) pressure and temperature, and (2) T2app-distributions for C1-C5 saturated cores, computing the numerical mixture of methane and NGLs core data that best matches the T2app-distribution in the NMR logs, thereby determining the C1-C5 volumetric composition of the reservoir.
This invention is also a method for determining the mean pore-size and tortuosity of the light hydrocarbon-filled porosity using NMR restricted diffusion measurements. The mean pore-size and tortuosity of the light-hydrocarbon-filled porosity are closely related to the hydrocarbon permeability, which determines the hydrocarbon producibility of a formation. These petrophysical properties play critical roles in reservoir engineering.
The invention also consists of the following steps:
Some embodiments relate to a method of using NMR to determine methane plus NGLs composition in a reservoir formation by:
Some embodiments relate to a method of using NMR to determine the mean pore-size and tortuosity of the light hydrocarbon-filled porosity in a reservoir formation by:
Some embodiments relate to a method of measuring at least one of: (i) respective downhole concentrations in a subsurface formation of one or more members of the C1-C5 alkane group consisting of methane, ethane, propane, butane and pentane; and (ii) a mathematical relation between respective downhole concentrations of multiple members of the C1-C5 alkane group, the method comprising:
In some embodiments,
In some embodiments,
In some embodiments,
In some embodiments, the laboratory NMR data set comprises data obtained when core(s) sample(s) is saturated with a pressurized saturation fluid dominated by methane.
In some embodiments, the laboratory NMR data set comprises data obtained when core(s) sample(s) is saturated with a pressurized saturation fluid dominated by ethane.
In some embodiments, the laboratory NMR data set comprises data obtained when core(s) sample(s) is saturated with a pressurized saturation fluid dominated by propane.
In some embodiments, the laboratory NMR data set comprises data obtained when core(s) sample(s) is saturated with a pressurized saturation fluid dominated by butane.
In some embodiments, the laboratory NMR data set comprises data obtained when core(s) sample(s) is saturated with a pressurized saturation fluid dominated by pentane.
In some embodiments, the downhole pressure and temperature are estimated for the subsurface formation at the target depth, and wherein the 1st and/or 2nd and/or 3rd and/or 4th and/or 5th laboratory NMR data is obtained when the core sample(s) are saturated with the first and/or second and/or third and/or fourth and/or fifth pressurized fluid at the estimated pressure and temperature.
In some embodiments, the laboratory NMR data and/or downhole NMR log data comprises one or more of (i.e. any
combination of): T2 distribution data, T2apparent distribution data, T1 distribution data, T1/T2 data, T1/T2apparent, D (diffusion) vs. T2 data, D (diffusion) vs T2apparent data.
In some embodiments, the computing of the at
least one downhole parameter comprises optimizing a fit of:
In some embodiments, the computed downhole concentration and/or computed molar fraction of the 1st and/or 2nd and/or 3rd and/or 4th and/or 5th member of the C1-C5 alkane group corresponds to a weighting coefficient for the 1st and/or 2nd and/or 3rd and/or 4th and/or 5th laboratory NMR data.
In some embodiments, the method is performed to compute at least one of the following: (i) a ratio between a downhole methane concentration and a downhole ethane concentration; (ii) a ratio between a downhole methane concentration and a downhole propane concentration; (iii) a ratio between a downhole methane concentration and a downhole butane concentration; (iv) a ratio between a downhole methane concentration and a downhole pentane concentration; and/or (v) any ratio involving any of C1-C5 alkane group.
In some embodiments, the method is performed to compute at least one of the following: (i) a multi-alkane sum of downhole concentrations of ethane and/or propane and/or butane and/or pentane; and (ii) a ratio the multi-alkane sum and a downhole methane concentration.
In some embodiments, the method is performed for a plurality of target depths to characterize the subsurface reservoir at multiple target depths.
In some embodiments, the computing comprises converting T2 data into T2apparent data or vice versa using at least one of: (i) an estimated diffusion coefficient (e.g. restricted diffusion coefficient) for one or more members of the C1-C5 alkane group; and/or (ii) an estimated mean pore-size of the core sample(s).
In some embodiments, the restricted coefficient is computed by interpolating the following method:
In some embodiments, for two candidate saturation fluids (e.g. the 1st and 2nd saturation fluid, 1st and 3rd saturation fluid, 1st and 4th saturation fluid, 1st and 5th saturation fluid, 2nd and 3rd saturation fluid, 2nd and 4th saturation fluid, 2nd and 5th saturation fluid, 3rd and 4th saturation fluid, 3rd and 5th saturation fluid and/or 4th and 5th saturation fluid—this condition may apply for ANY two different saturation fluids that can be designated as ‘candidates’) selected from the group consisting of the 1st, 2nd, 3rd, 4th, and 5th saturation fluids:
In some embodiments, a mole fraction of the methane-richer saturation fluid is at least 0.1 or at least 0.2 or at least 0.3 or at least 0.4 or at least 0.5.
In some embodiments, a mole fraction of the methane-poorer saturation fluid is zero or at most 0.1.
In some embodiments, for two candidate saturation fluids (e.g. the 1st and 2nd saturation fluid, 1st and 3rd saturation fluid, 1st and 4th saturation fluid, 1st and 5th saturation fluid, 2nd and 3rd saturation fluid, 2nd and 4th saturation fluid, 2nd and 5th saturation fluid, 3rd and 4th saturation fluid, 3rd and 5th saturation fluid and/or 4th and 5th saturation fluid—this condition may apply for ANY two different saturation fluids that can be designated as ‘candidates’) selected from the group consisting of the 1st, 2nd, 3rd, 4th, and 5th saturation fluids:
In some embodiments, a mole fraction of the ethane-richer saturation fluid is at least 0.1 or at least 0.2 or at least 0.3 or at least 0.4 or at least 0.5.
In some embodiments, a mole fraction of the ethane-poorer saturation fluid is zero or at most 0.1.
In some embodiments, for two candidate saturation fluids (e.g. the 1st and 2nd saturation fluid, 1st and 3rd saturation fluid, 1st and 4th saturation fluid, 1st and 5th saturation fluid, 2nd and 3rd saturation fluid, 2nd and 4th saturation fluid, 2nd and 5th saturation fluid, 3rd and 4th saturation fluid, 3rd and 5th saturation fluid and/or 4th and 5th saturation fluid—this condition may apply for ANY two different saturation fluids that can be designated as ‘candidates’) selected from the group consisting of the 1st, 2nd, 3rd, 4th, and 5th saturation fluids:
In some embodiments, a mole fraction of the propane-richer saturation fluid is at least 0.1 or at least 0.2 or at least 0.3 or at least 0.4 or at least 0.5.
In some embodiments, a mole fraction of the
propane-poorer saturation fluid is zero or at most 0.1.
In some embodiments, for two candidate saturation fluids (e.g. the 1st and 2nd saturation fluid, 1st and 3rd saturation fluid, 1st and 4th saturation fluid, 1st and 5th saturation fluid, 2nd and 3rd saturation fluid, 2nd and 4th saturation fluid, 2nd and 5th saturation fluid, 3rd and 4th saturation fluid, 3rd and 5th saturation fluid and/or 4th and 5th saturation fluid—this condition may apply for ANY two different saturation fluids that can be designated as ‘candidates’) selected from the group consisting of the 1st, 2nd, 3rd, 4th, and 5th saturation fluids:
In some embodiments, a mole fraction of the butane-richer saturation fluid is at least 0.1 or at least 0.2 or at least 0.3 or at least 0.4 or at least 0.5.
In some embodiments, a mole fraction of the butane-poorer saturation fluid is zero or at most 0.1.
In some embodiments, for two candidate saturation fluids (e.g. the 1st and 2nd saturation fluid, 1st and 3rd saturation fluid, 1st and 4th saturation fluid, 1st and 5th saturation fluid, 2nd and 3rd saturation fluid, 2nd and 4th saturation fluid, 2nd and 5th saturation fluid, 3rd and 4th saturation fluid, 3rd and 5th saturation fluid and/or 4th and 5th saturation fluid—this condition may apply for ANY two different saturation fluids that can be designated as ‘candidates’) selected from the group consisting of the 1st, 2nd, 3rd, 4th, and 5th saturation fluids:
In some embodiments, a mole fraction of the pentane-richer saturation fluid is at least 0.1 or at least 0.2 or at least 0.3 or at least 0.4 or at least 0.5.
In some embodiments, a mole fraction of the pentane-poorer saturation fluid is zero or at most 0.1.
In some embodiments, the first pressurized saturation fluid is dominated by the first member of the C1-C5 alkane group.
In some embodiments, the second pressurized saturation fluid is dominated by the second member of the C1-C5 alkane group.
In some embodiments, the third pressurized saturation fluid is dominated by the third member of the C1-C5 alkane group.
In some embodiments, the fourth pressurized saturation fluid is dominated by the fourth member of the C1-C5 alkane group.
In some embodiments, the fifth pressurized saturation fluid is dominated by the fifth member of the C1-C5 alkane group.
In some embodiments, when a saturation fluid is ‘dominated by’ by a given member of the C1-C5 alkane group, a mole
fraction of the member of the C1-C5 alkane group is at least 0.501 or at least 0.505 or at least 0.51 or least 0.53 or at least 0.55 or at least 0.6 or at least 0.65 or at least 0.7 or at least 0.8 or at least 0.9 or at least 0.95 or at least 0.975 or at least 0.99 or at exactly 1.
In some embodiments, the NMR log is from a gradient-based NMR tool.
NMR Measurements
An Oxford Instruments (Oxfordshire, UK) GeoSpec2 rock-core analyzer with a resonance frequency of ω/2π=2.3 MHz for 1H (which is similar to downhole NMR logging tools) is used to acquire the NMR data. The GeoSpec2 is equipped with magnetic field gradients for diffusion measurements. The measurements are conducted in an Oxford Instruments P5 overburden core holder in either laboratory or reservoir conditions (elevated pressure and temperature), which are discussed in the following subsection. The 2-D T1-T2 data are acquired using 32 log-spaced points on an inversion-recovery curve ranging from 0.2 ms to 20,000 ms (typically). Each point on the inversion-recovery curve is followed by a series of CPMG echoes with an echo spacing of TE=0.2 ms. The 2-D D-T2 data are acquired using a unipolar stimulated-echo sequence (Mitchell et al., 2014) with 32 pulsed-field trapezoidal gradient steps ranging from zero to a maximum strength of gy=43 G/cm, a gradient encoding time of δ=9 ms, a diffusion evolution time of Δ=14.7 ms, and a dead time of Td=25 ms. The 2-D correlation maps are processed using the fast inverse Laplace transform (analogous to Venkataramanan et al., 2002) with 120 log-spaced bins for T2 and D. The units of the y-axis on the relaxation time distributions are in “pu/div”, which means porosity units per x-axis bin-size. In the case of T2 distribution, the bin size is “div=Δ log10T2=(log10T2,i+1−log10T2,i)”, which is independent of index “i” because of the log-spaced bin selection. This unit of the y-axis is also known as bin porosity.
Core Samples and Fluid Saturations
As an example of how to practice this invention, core samples were obtained from a reservoir of organic-rich bituminous chalks which was then logged by NMR. These organic-rich chalks are tight rocks with a permeability of ˜0.01 mD. The TOC (total organic carbon) of the organic-rich chalks is ˜10 wt % (or ˜20 vol %) and the kerogenous matter is early-stage mature Type II-S kerogen.
Petrophysically, the cores consist of water-wet micritic calcite and intergranular macropores containing kerogen, bitumen, light hydrocarbons, and small quantities of connate water.
The well was drilled with water-based mud. All downhole operations in the reservoir zone were underbalanced to prevent invasion and flushing. At the wellsite, the core was sealed in plastic wrap and aluminum foil and dip coated in low melting paraffin to prevent further evaporation. The core plugs used in this NMR study were drilled from the core with air mist to prevent adding water to the pore space.
The core plugs are 25 mm in diameter and 48 mm in length, which are compatible with the Oxford Instrument NMR overburden core holder. A series of “twin” cores (No. 1 to No. 6) originating from the same depth of the formation are selected for laboratory core analysis. The pore space of the “as-received” core samples consists of bitumen, connate water, and air, as detected by the laboratory NMR core-analyzer (shown in the following section). The cores are then saturated with either water, methane, ethane, propane, n-butane, n-pentane or n-decane for in-situ NMR measurements. Note that n-butane, n-pentane and n-decane are hereafter shortened to butane, pentane, and decane, respectively.
The apparatus diagram for in-situ saturation is shown in
In a preferred mode of practicing this invention, the laboratory NMR measurements are made at the same temperature and pressure as found in the reservoir.
In another mode of practicing this invention, all the NMR measurements are made at laboratory temperature and pressure conditions and the results are then corrected to reservoir conditions. In the following we show how this is done. All the laboratory NMR measurements presented here are performed at a temperature of 30° C. The targeted pore pressure (1,200 psia) is adjusted such that the density of ethane at laboratory conditions would be the same as that at reservoir temperature and pressure (68° C. and 2,755 psia). The pressurization to the targeted pore pressure takes two steps. The cores are initially pressurized from 14.7 psia (ambient pressure) to 500 psia, and then from 500 psia to 1,200 psia. The step-wise pressurization is meant to limit the pressure gradient and effective stress (a.k.a. net pressure, namely the net stress between overburden stress and pore pressure) to avoid irreversible change in the cores. The effective stress is kept constant at 1,000 psi during the NMR measurements.
The details of saturations and measurements are tabulated in Table 1.
These series of “twin” cores are used in parallel for different saturating fluids because the saturation slightly alters the cores. More specifically, a small amount of connate water may be mobilized and expelled during pressurization and depressurization of light hydrocarbons. Thus, although this invention could be practiced with a single core being saturated and desaturated with hydrocarbons shown in Table 1, it is preferable to use multiple twin samples, if they are available, and use a single hydrocarbon fluid per core plug.
The NMR results on the as-received cores reveal similar NMR responses (shown in the next section for T2). Therefore, no distinction is made between these as-received “twin” cores. The order of saturation listed in Table 1 for core No. 1 and No. 2 follows the order of actual experiments. After each fluid saturation on core No. 1 and No. 2, the cores are depressurized and taken out of the overburden cell to remove excess fluid for the next step. The deuterated core No. 1 (denoted as “D2O”) is prepared by immersing the core into fresh D20 brine twice. Each deuteration step lasts for one week at ambient conditions. It should be noted that the “C1 (D2O)” is done by injecting methane into core No. 1, which has been deuterated after propane saturation. The purpose of “C1 (D2O)” is to study the NMR responses of pure methane, without the interference from connate water so that the T2 and diffusivity of the methane can be readily observed.
Bulk Properties of Saturating Fluids
The bulk properties of water and hydrocarbons at both laboratory conditions (30° C., 1,200 psia) and downhole conditions (68° C., 2,755 psia) are acquired and summarized in Table 2. The density and viscosity of fluids are inferred from NIST REFPROP database with temperature and pressure as the inputs. The hydrogen indexes (HI) of fluids other than water are calculated by comparing the proton densities with that of water at the same temperature and pressure. Note that only methane shows significant differences in density and HI under different conditions. Also note that methane under both conditions is a supercritical fluid instead of a gas.
The diffusivity of water measured at 25° C. and ambient pressure is used for the laboratory conditions. For the reservoir conditions, Krynicki et al., 1978 measures the diffusivity of water at 70.05° C. and at around 1470 and 4410 psia respectively, which are similar to the reservoir conditions in this work. These two measurements at different pressures both yield diffusivities around 5.6 μm2/ms which is adopted here as the bulk diffusivity of water at reservoir conditions.
The diffusivity of ethane, propane, butane, pentane and decane are estimated by substituting the temperature and viscosity into Equation 1, which is an empirical correlation proposed by Lo et al., 2002:
where D0 is bulk diffusivity with a unit of μm2/ms, Tis temperature with a unit of K and μ is viscosity with a unit of cP.
The diffusivity of methane is obtained in a different way. It is inferred from the experimental data published by Oosting et al., 1971, who measured the bulk diffusivity of methane as a function of bulk density and temperature. The original data (Oosting et al., 1971) is re-organized and plotted in
The estimated diffusivities of bulk fluids at laboratory and reservoir conditions are used later to simulate downhole logs and to interpret the restricted diffusion.
Composition Estimation by T2
This section presents T2 laboratory measurements on as-received and saturated cores. This section also shows how the laboratory T2 is used to calibrate the log to estimate the light-hydrocarbon composition.
T2 Distributions of as-Received Cores
It should be noted that the reported “NMR porosity” of the as-received cores in
where ϕl/(pu) and ϕ(pu) are the actual liquid-filled and total porosity respectively, while ϕl/(pu1) and ϕ(pu1) are the reported NMR liquid-filled porosity and NMR total porosity assuming HI=1, respectively. It should be noted that a large fraction of the bitumen signal with short T2 due to its high viscosity is not detectible by the Geospec2. Therefore, the total porosity (i.e. NMR total porosity) reported in this study does not include the invisible portion of bitumen.
T2 Distributions of Saturated Cores
Saturating the as-received cores in the laboratory is critical to study the NMR responses of different fluids (see Table 1 for saturation details). In this study, we use the water and hydrocarbons respectively to saturate the core under the laboratory conditions. The T2 distribution acquired on the 100% water-saturated core provides the total NMR porosity.
The measurements illustrate different NMR porosity, especially in region C, which is due to the differences in HI between the hydrocarbons. Under laboratory conditions, methane is supercritical and yields a low HI of 0.13, while ethane, propane, butane, pentane, and decane are all liquids and yield much higher HI's (see Table 2). Since the HI of methane at reservoir conditions is twice that at laboratory conditions (also see Table 2), the simulated downhole T2 response (shown below) must be compensated.
The total NMR porosity of water-saturated core in region A is slightly lower than that of pentane- and decane-saturated cores, even though water, pentane and decane share similar HI (see Table 2). This is interpreted as the dissolution of alkanes into either bitumen or kerogen, as suggested by the increase in signal intensity of region A after pentane and decane saturation (see
In addition to the NMR porosity, there are other noticeable changes in T2 distributions of the saturated cores. For the water-saturated core (No. 3), a slight increase in T2 of connate water in region B is observed. This is because the connate water in micro pores in the micritic calcite (region B) is weakly diffusive-coupled with the water in the macro pores that are between the large grains of co-precipitated kerogen and calcite (region C). The diffusive coupling is weak because some bitumen clogging the pore throats limits the water exchange.
Since low-HI methane (“C1”) only contributes a small amount of signal in region C indicated by
The T2 response of ethane and longer alkanes in region C is separated into several peaks. The wettability may account for the distinct peaks. The pores for region C are located between the grains of co-precipitated kerogen and calcite. Therefore, the pores associated with region C are likely to be mixed wet. The longest T2 of decane in region C is close to its bulk T2 (about 3 s for deoxygenated decane). This may be because of a thin water film coating some surface of the mixed-wet pores, such that decane does not directly contact the pore walls. In such cases, the surface relaxation of decane is provided by the decane-water interface instead of the decane-solid interface. It can be expected that the surface relativity of the decane-water interface is much smaller compared to the decane-solid interface. Hence, decane contacting with kerogen solid surface may yield shorter T2 that is distinct from the bulk T2. The same interpretation applies to other alkanes that have distinct peaks in region C.
T2app Distributions and Composition Estimation
Due to their magnetic-field gradients, gradient-based NMR logging tools measure the “apparent” T2 relaxation, defined as T2app and given by:
T2 is the transverse relaxation time without applied magnetic-field gradients, as reported in the previous subsections. T2D is the additional term due to fluid diffusion in an applied magnetic-field gradient generated by the logging tool as such:
γ/2π=42.58 MHz/T is the gyromagnetic ratio of proton.
The Baker Hughes MREX NMR logging tool used in this example has an echo spacing TE of 0.4 ms. G is the magnetic-field gradient applied by the NMR logging tool. The MREX NMR logging tool provides six equal sensitive volumes with G's of 17.0, 22.0, 23.4, 27.4, 32.7 and 38.7 G/cm respectively. A diagram of the MREX logging tool 503 in an 8″ (502) and 12″ (501) borehole is shown in
D represents the diffusivity of hydrocarbons, where the restricted diffusivities under logging conditions are used. This is detailed in the following section on NMR restricted diffusion measurements using a Padé fit. Restricted diffusivities are used because the diffusion lengths of fluids, especially that of methane, are close to the pore diameter, which means the fluids experience restriction from the limited pore space. Note that in the cases where restriction is negligible (i.e. pore diameter is much greater than the diffusion length), the bulk diffusivity of fluids can be used to calculate the magnetic-field gradient effect, which leads to simpler implementation of this invention.
Other gradient-based NMR logging tools could be used within the scope of this invention, such as the Schlumberger MRX or the Halliburton MRIL.
For core-log comparison, the extra T2D term is added to the laboratory-measured T2 distributions. In addition, the first echo (at 0.2 ms) of the time-domain raw data for the laboratory measurements is dropped to match the first echo time of the logging tool. Note that increasing the echo spacing in the laboratory measurement to 0.4 ms had no impact on the T2 distributions in regions B and C, implying no internal gradient effects at 2 MHz. The simulated T2app is re-scaled by the HI of fluids, which means the porosity in the T2app distribution of methane is boosted by a factor of two because of the difference in HI under reservoir and laboratory conditions (see Table 2). As for longer alkanes and water, the effect of re-scaling is insignificant because those fluids share similar HI at both conditions.
Introducing the T2D term to laboratory—measured T2 has no impact on regions A and B where T2 is much shorter than T2D. However, introducing the T2D term leads to shorter relaxation time T2 in region C, with narrower and higher peaks. It is found that methane has shorter T2app than the log, while longer alkanes have higher T2app than the log; therefore, a combination of the hydrocarbons is expected to match with the log.
To determine the composition of light hydrocarbons in the reservoir, the T2app distributions of light hydrocarbons in the core are numerically mixed in data post-processing, by averaging their T2app distributions weighted by different volume fractions. This analysis assumes that hydrocarbons yield the same T2app distribution in the mixture as they would in single component form (i.e. the T2app distributions are linearly additive). It is also assumed that, in the ethane- and higher alkane-saturated core, the signal of region C is from hydrocarbons with negligible amount of connate water (i.e. only thin water films coating the water-wet portions of pores but not contributing to the signal intensity). This is suggested by measurements on de-saturated cores, of which the T2 distributions provide nearly zero signal in region C, except for methane. In the case of methane, “C1 (D2O)” is used instead of “C1” for “numerical mixing” because “C1 (D2O)” is measured after the propane experiment where the connate water in region C was expelled by propane. Hence, “C1 (D2O)” presents the T2app distribution when methane occupies the entire pore space of region C.
The “numerical mixing” of T2app makes use of the T2app of the “As-Received” cores as the baseline to represent the connate water in the reservoir. The T2app's of hydrocarbons are added to the “As-Received” after being multiplied by the total hydrocarbon saturation of region C and the volume fraction (i.e. composition) of individual hydrocarbon. The total light hydrocarbon saturation in region C is about 65% since the connate-water saturation is 4.7 pu/13.5 pu≈35%. Note that the NMR porosity of the fully decane-saturated (instead of water-saturated) core is adopted for the above saturation calculation because water in macro pores (region C) is diffusively-coupled to water in micro pores (region B), which leads to shorter T2app and less NMR porosity for region C.
A search algorithm is implemented to determine the optimal volume fraction of hydrocarbons that minimizes the mean square error MSE (i.e., sum of the squares of the deviations) between “numerically mixed” T2app distribution and the log for region C where T2app≥36.6 ms.
The optimal volumetric fractions of hydrocarbons obtained by the search are shown in
The optimal volumetric fraction of the mixture is illustrated in the legend. 700 is the log response, while 710 (methane, 27 vol %), 711 (ethane, 36 vol %), 712 (propane, 37 vol %), 713 (butane, 0 vol %), 714 (pentane, 0 vol %), and 715 (decane, 0 vol %) are the optimal volumetric fraction of hydrocarbons that fit the log. It is obvious that butane (713), pentane (714), and decane (715) do not contribute to the optimal mixture. Methane contributes about 27%, ethane 36% and propane 37% to the mixture. By converting the volumetric fraction to porosity units, the total fluid-filled porosity of the three hydrocarbons is 8.8 pu. Methane, ethane and propane occupy approximately 2.4, 3.2, and 3.2 pu respectively. The NMR porosity units are given with the assumption that HI=1.
The ratios of C2/C1, C3/C1, and C2/C3 as well as other ratios like (C2+C3+C4)/C1 may be computed from this data.
Because of linear additivity, the fluid compositions used in saturating the cores can themselves be mixtures of the pure alkanes, (e.g. 50% C2 and 50% C3) if the compositions of the mixtures are known. This is included within the scope of this invention.
It is also within the scope of this invention to saturate the core with the volumetric mixture of C1-C5 that has been determined to be the optimal mixture at reservoir conditions, then make the laboratory NMR measurements at reservoir conditions, and compare the laboratory NMR measurements with the downhole NMR log. This can be done as a final verification step.
Although, in this example chalk formation, region C (720) containing light hydrocarbons starts at T2app≥36.6 ms, in other formations it may start at other values, such as 30, 20, or 10 ms.
Restricted Diffusion and Pore Size
This section presents D-T2 measurements conducted in the laboratory on as-received and saturated cores to measure restricted diffusion of the fluids in the core. The diffusivities of light hydrocarbons are fitted to the Padé approximation to estimate the mean pore-size, the heterogeneity length scale, and the tortuosity of the light hydrocarbon-filled porosity.
D-T2 Measurements
Td=Δ+δ, (5)
where Δ is the diffusion evolution time (a.k.a. observation time) and δ is the gradient encoding time. During the laboratory NMR measurements, Δ=14.7 ms and δ=9 ms. In this example, the T2 from region A and B are mostly less than 7 ms where the diffusion measurement is limited, even though a small portion of region B can be seen. However, the signal from region C which contains the light hydrocarbons can be measured without significant loss. The restricted diffusivity at the peak of region C was picked for later analysis (see the following subsection on interpretation of restricted diffusion).
Interpretation of Restricted Diffusion
The normalized restricted diffusivity is a function of the restriction experienced during the diffusion evolution time. Water and decane share similar bulk diffusivity, therefore almost the same amount of restriction (i.e., the same normalized restricted diffusivity). In contrast, methane and NGLs have much higher bulk diffusivities, and therefore more restriction (i.e. lower values of normalized restricted diffusivity compared with water or decane). Furthermore, the restriction experienced by hydrocarbons becomes less as the carbon number increases (e.g. as bulk diffusivity decreases). The measured restricted diffusivity of methane suggests that a cutoff of 3 μm2/ms (indicated by the horizontal dashed line 910 in the top subplot of
In
LD=√{square root over (D0Δ)}, (6)
where D0 is the bulk diffusivity on laboratory conditions and Δ=14.7 ms is the diffusion evolution time. Based on the Padé approximation, Hürlimann et al., 1994 suggests that the normalized restricted diffusivity D/D0 follows a relationship with diffusion length LD as in Equation 4:
S is the pore surface area and V is the pore volume, and we assume spherical pores that yield S/V≈3/rp, where rp stands for the pore radius of the hydrocarbon-filled space in region C. τ is the tortuosity of the hydrocarbon-filled space in region C, and can be expressed by Equation 5:
D∞ is the diffusivity at the tortuosity limit. LM is the macroscopic heterogeneity length scale. It should be noted that in the model suggested by Latour et al. 1993, LM is expressed by (D0θ)1/2, where θ is the fitting parameter for a fluid. However, since there are different fluids with various D0 in this invention, the LM is used as the overall fitting parameter, which means θ changes to accommodate different fluids.
According to the above model, there is a total of three free parameters: rp, τ and LM. A least-square fit based on this model is applied to the log10—transformed restricted diffusivity shown in
Another hydrogen-bearing fluid that can be included in
It should be noted that the original model proposed by Hürlimann et al., 1994 is for the case of 100% saturation and 100% wetting. Minh et al., 2015 suggests the equation should be changed accordingly if the investigated case is not 100% saturation nor 100% wetting. In this invention, only the hydrocarbon-filled porosity (region C) is considered. Therefore, the original model by Hürlimann et al., 1994 is adopted in this invention. It is within the scope of this invention that other numerical models could also be used.
The macroscopic heterogeneity length scale LM is 5.1 μm, which is close to the mean pore radius of 4.6 μm. Empirically the LM should scale with mean pore-size as suggested by Latour et al., 1993 and Hürlimann et al., 1994.
According to the Padé fit acquired in the laboratory conditions, the restricted diffusivities experienced by fluids during downhole logging can be determined by extrapolating the Padé fit to the downhole diffusion length LD. To achieve this, the bulk diffusivity D0 in laboratory conditions in Equation 4 is replaced by the bulk diffusivity in the reservoir conditions (as illustrated in the top subplot of
In addition, the diffusion evolution time in Equation 5 is changed to echo spacing TE=0.4 ms for the NMR logging tool instead of Δ=14.7 ms for the laboratory NMR core analyzer.
The diffusion lengths for logging conditions (T2app) are plotted in
The middle subplot 1201 of
The pore radius derived by the Padé fit can then be used to estimate the surface relaxivities, ρ1 and ρ2, of fluids in macropores (region C) under laboratory conditions by Equation 6:
where T1,s and T2,s are the surface relaxation components of T1 and T2 respectively. They are approximated by T1 and T2 at the peak of region C where contributions from the bulk relaxation terms, T1,b and T2,b, are negligible. The comparison of surface relaxivities of Land T2, 1300 and 1301, respectively, experienced by fluids in macro pores (region C) is shown in
Fluid Typing by T1/T2 AND T1/T2app
This section presents T1-T2 measurements conducted in the laboratory on as-received and saturated cores. The contrasts in T1/T2 and T1/T2app are discussed in detail for fluid typing and saturation estimation.
Laboratory-Measured T1/T2
The laboratory-measured 2-D T1-T2 correlation map can be transformed into a T1/T2 vs. T2 correlation map, as shown in
As for region B (1411) and C (1412),
The T1/T2 ratios at the peak of region B (1411, 1511, 1611, 1711) and C (1412, 1512, 1612, 1712) in
The signal in region B is dominated by connate water, except for the case (“C1 (D2O)”) where the core is deuterated beforehand. It is readily observed that the T1/T2 of light hydrocarbons in region C peaks at butane.
The light hydrocarbons in region C have higher T1/T2 than water. As a result, a T1/T2 cutoff˜1.5 (indicated by the horizontal dashed line in the bottom subplot of
Simulated Downhole-Measured T1/T2app
The concept of calculating T2app by introducing the effect of magnetic-field gradient is then applied to 2-D T1-T2 correlation maps for T1-T2app correlation maps (not shown). As a result, the T1/T2app acquired by logging tools is reproduced from the laboratory measurements. The projected 1-D T1/T2app distributions of the signal in region C are isolated and plotted in
It should be noted that unlike the numerical mixing of T2app, the connate-water signal is not compensated here because only the peak values of the T1/T2app distributions in
Thus, in an analogous way to which we obtained an optimal mix of T2app distributions of methane and the NGLs that best fit the T2app of the NMR log, it is also within the scope of this invention to obtain an optimal mix of T1/T2app distributions of methane and NGLs that best fit the T1/T2app distribution of the NMR log. This provides another measurement of the volumetric composition of methane and the NGLs in the reservoir.
It is readily observed that the methane and NGLs (i.e. ethane, propane, butane and pentane) yield higher values of T1/T2app due to higher diffusivities compared to water and decane. Hence, a T1/T2app cutoff about 2, denoted by the dashed lines in
In addition to T1/T2app cutoff, T2app can provide additional information for fluid typing. The peak values on the T1/T2app vs. T2app correlation maps (not shown) are plotted in
The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons skilled in the art.
This patent application claims the benefit of U.S. Provisional Patent Application No. 62/832,276 filed on Apr. 10, 2019, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6991045 | Vinegar | Jan 2006 | B2 |
7309983 | Freedman | Dec 2007 | B2 |
7526953 | Goodwin | May 2009 | B2 |
7940043 | Gao | May 2011 | B2 |
8061444 | Mullins | Nov 2011 | B2 |
8714246 | Pop | May 2014 | B2 |
9405036 | Kadayam Viswanathan | Aug 2016 | B2 |
9552462 | Walters | Jan 2017 | B2 |
9645277 | Edwards | May 2017 | B2 |
10094949 | Chen | Oct 2018 | B2 |
10190413 | Smith | Jan 2019 | B2 |
10260336 | Smith | Apr 2019 | B2 |
10488545 | Chen | Nov 2019 | B2 |
10494919 | Smith | Dec 2019 | B2 |
20060055403 | Freedman | Mar 2006 | A1 |
20090256562 | Gao | Oct 2009 | A1 |
20090288881 | Mullins | Nov 2009 | A1 |
20110088895 | Pop | Apr 2011 | A1 |
20120296617 | Zuo | Nov 2012 | A1 |
20130113480 | Kadayam Viswanathan | May 2013 | A1 |
20130161502 | Pomerantz | Jun 2013 | A1 |
20130234703 | Chen | Sep 2013 | A1 |
20140225607 | Edwards | Aug 2014 | A1 |
20140238670 | Pop | Aug 2014 | A1 |
20150168588 | Vinegar | Jun 2015 | A1 |
20150184500 | Vinegar | Jul 2015 | A1 |
20150210917 | Vinegar | Jul 2015 | A1 |
20150329785 | Vinegar | Nov 2015 | A1 |
20160091389 | Zuo | Mar 2016 | A1 |
20180195383 | Smith | Jul 2018 | A1 |
20180306031 | Smith | Oct 2018 | A1 |
20180355717 | Smith | Dec 2018 | A1 |
20190017377 | He | Jan 2019 | A1 |
20190025453 | Chen | Jan 2019 | A1 |
20200224080 | Nevison | Jul 2020 | A1 |
Entry |
---|
Chen, Z.; Singer, P. M.; Jun, K.; Vargas, F. P.; Hirasaki, G. J.; Jun, K.; Vargas, F. P.; Hirasaki, G. J. Effects of Bitumen Extraction on the 2D NMR Response of Saturated Kerogen Isolates. Petrophysics 2017, 58, 470-484. |
Fleury, M.; Romero-Sarmiento, M. Characterization of Shales Using T1-T2 NMR Maps. Journal of Petroleum Science and Engineering 2016, 137, 55-62. |
Hürlimann, M. D.; Helmer, K. G.; Latour, L. L.; Sotak, C. H. Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity. Journal of Magnetic Resonance, Series A 1994, 111, 169-178. |
Hürlimann, M. D.; Freed, D. E.; Zielinski, L. J.; Song, Y. Q.; Leu, G.; Straley, C.; Minh, C. C.; Boyd, A. Hydrocarbon Composition from NMR Diffusion and Relaxation Data. Petrophysics 2009, 50, 116-129. |
Kausik, R.; Minh, C. C.; Zielinski, L.; Vissapragada, B.; Akkurt, R.; Song, Y.; Liu, C.;Jones, S.; Blair, E. Characterization of Gas Dynamics in Kerogen Nanopores by NMR. SPE 147198, 2011, 1-16. |
Kausik, R.; Fellah, K.; Rylander, E.; Singer, P. M.; Lewis, R. E.; Sinclair, S. M. NMR Relaxometry in Shale and Implications for Logging. Petrophysics 2016, 57, 339-350. |
Krynicki, K.; Green, C. D.; Sawyer, D. W. Pressure and Temperature Dependence of Self-Diffusion in Water. Faraday Discussions of the Chemical Society 1978, 66, 199-208. |
Latour, L. L.; Mitra, P. P.; Kleinberg, R. L.; Sotak, C. H. Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio. Journal of Magnetic Resonance, Series A 1993, 101, 342-346. |
Lo, S.-W.; Hirasaki, G. J.; House, W. V.; Kobayashi, R. Mixing Rules and Correlations of NMR Relaxation Time with Viscosity, Diffusivity, and Gas/Oil Ratio of Methane/Hydrocarbon Mixtures. Society of Petroleum Engineers (SPE) Journal 2002, 7, 1-4. |
Minh, C. C.; Crary, S.; Singer, P. M.; Valori, A.; Bachman, N.; Hursan, G. G.; Ma, S. M.; Belowi, A.; Kraishan, G. Determination of Wettability from Magnetic Resonance Relaxation and Diffusion Measurements on Fresh-State Cores. SPWLA 56th Annual Logging Symposium 2015. |
Mitchell, J.; Gladden, L. F.; Chandrasekera, T. C.; Fordham, E. J. Low-Field Permanent Magnets for Industrial Process and Quality Control. Progress in Nuclear Magnetic Resonance Spectroscopy 2014, 76, 1-60. |
Wang, H. J.; Mutina, A.; Kausik, R. High-field Nuclear Magnetic Resonance Observation of Gas Shale Fracturing by Methane Gas. Energy & Fuels 2014, 28, 3638-3644. |
Yang, Z.; Hirasaki, G. J.; Appel, M.; Reed, D. A. Viscosity Evaluation for NMR Well Logging of Live Heavy Oils. Petrophysics 2012, 53, 22-37. |
Oosting, P. H.; Trappeniers, N. J. Proton Spin-Lattice Relaxation and Self-Diffusion in Methanes. IV. Self-diffusion in methane. Physica 1971, 51, 418-431. |
Singer, P. M.; Chen, Z.; Hirasaki, G. J. Fluid Typing and Pore Size in Organic Shale using 2D NMR in Saturated Kerogen. Petrophysics 2016, 57, 604-619. |
Singer, P. M.; Chen, Z.; Alemany, L. B.; Hirasaki, G. J.; Zhu, K.; Xie, Z. H. Z. H.; Vo, T. D. NMR Relaxation of Polymer-Alkane Mixes, A Model System for Crude Oils. SPWLA 58th Annual Logging Symposium 2017. |
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J. Molecular Dynamics Simulations of NMR Relaxation and Diffusion of Bulk Hydrocarbons and Water. Journal of Magnetic Resonance 2017, 277, 15-24. |
Singer, P. M.; Chen, Z.; Alemany, L. B.; Hirasaki, G. J.; Zhu, K.; Xie, Z. H.; Vo, T. D. Interpretation of NMR Relaxation in Bitumen and Organic Shale Using Polymer-Heptane Mixes. Energy & Fuels 2018, 32, 1534-1549. |
Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J. NMR Spin-Rotation Relaxation and Diffusion of Methane. The Journal of Chemical Physics 2018, 148. |
Singer, P. M.; Asthagiri, D.; Chen, Z.; Valiya Parambathu, A.; Hirasaki, G. J.; Chapman, W. G. Role of Internal Motions and Molecular Geometry on the NMR Relaxation of Hydrocarbons. Journal of Chemical Physics 2018, 148. |
Sigal, R. F. Pore-Size Distributions for Organic-Shale-Reservoir Rocks from Nuclear-Magnetic-Resonance Spectra Combined with Adsorption Measurements. Society of Petroleum Engineers (SPE) Journal 2015, 20, 1-7. |
Them, H.; Horch, C.; Stallmach, F.; Li, B.; Mezzatesta, A.; Zhang, H.; Arro, R. Low-field NMR Laboratory Measurements of Hydrocarbons Confined in Organic Nanoporous Media at Various Pressures. Microporous and Mesoporous Materials 2018, 269, 21-25. |
Tinni, A.; Sondergeld, C.; Rai, C. New Perspectives on the Effects of Gas Adsorption on Storage and Production of Natural Gas from Shale Formations. 2018, 59, 99-104. |
Valori, A.; Van Den Berg, S.; Ali, F.; Abdallah, W. Permeability Estimation from NMR Time Dependent Methane Saturation Monitoring in Shales. Energy & Fuels 2017, 31, 5913-5925. |
Venkataramanan, L.; Song, Y.; Hürlimann, M. D. Solving Fredholm Integrals of the First Kind with Tensor Product Structure in 2 and 2.5 Dimensions. IEEE Transaction on Signal Processing 2002, 50 (5), 1017-1026. |
Number | Date | Country | |
---|---|---|---|
62832276 | Apr 2019 | US |