METHOD FOR DETERMINING THE CONCENTRATION OF BLOOD GLUCOSE

Information

  • Patent Application
  • 20070225583
  • Publication Number
    20070225583
  • Date Filed
    April 03, 2007
    17 years ago
  • Date Published
    September 27, 2007
    16 years ago
Abstract
The present invention provides a method for determining concentration of blood glucose by using the change in the rising time. The chemical reaction between the blood glucose and enzyme within the test strip to generate the analog source that used to determine the concentration of the blood glucose in the measuring meter. Thus, the rising curve can be obtained after the analog source is treated, such that the concentration of the blood glucose can be determined.
Description
BACKGROUND

1. Field


The present invention generally relates to a method for determining the concentration of blood glucose, and more particularly to a method for determining the concentration of blood glucose by using the change in rising curve.


2. Description of the Prior Art


In the past, many systems have been developed for monitoring blood characteristics. For example, devices have been developed which are capable of determining such blood characteristics as blood oxygenation, glucose concentration, and other blood characteristics. However, significant difficulties have been encountered when attempting to determine blood glucose concentration accurately using noninvasive blood monitoring systems such as by means of spectroscopic measurement.


The difficulty in determining blood glucose concentration accurately may be attributed to several causes. One of the significant causes is that blood glucose is typically found in very low concentrations within the bloodstream (e.g., on the order of 100 to 1,000 times lower than hemoglobin) so that such low concentrations are difficult to detect noninvasively, and require a very high signal-to noise ratio. Additionally, with spectroscopic methods, the optical characteristics of glucose are very similar to those of water, which is found in a very high concentration within the blood. Thus where optical monitoring systems are used, the optical characteristics of water tend to obscure the characteristics of optical signal due to glucose within the bloodstream. Furthermore, since each individual has tissue, bone, and unique blood properties, each measurement typically requires calibration for the particular individual.


Test strips are known that contain a testing reagent that turns a different shade of color, depending on the concentration of glucose in a blood sample that has been applied to the strip. The blood glucose concentration is measured by inserting a strip into a meter that is basically a reflectance photometer, which determines the concentration from the change in color caused by the reaction between the testing reagent and blood glucose. The testing reagent typically contains an enzyme, such as glucose oxidase, which is capable of oxidizing glucose to gluconic acid lactone and hydrogen peroxide; and oxidizable dye; and a substance having peroxidative activity, which is capable of selectively catalyzing oxidation of the oxidizable dye in the presence of hydrogen peroxide.


In the conventional measuring meter, the measuring time is usually of about 10 to 30 seconds which is too long to obtain an exact concentration of the blood glucose, when the concentration of the blood glucose is determined by sampling the data that is basically a fixed sampling time.




BRIEF DESCRIPTION OF THE DRAWINGS

Subject matter is particularly pointed out and distinctly claimed in the concluding portions of the specification. The claimed subject matter, however, both as to organization and the method of operation, together with objects, features and advantages thereof, may be best understood by a reference to the following detailed description when read with the accompanying drawings in which:



FIG. 1 is a flow chart showing the step for determining the concentration of the blood glucose immediately in accordance with a method disclosed herein;



FIG. 2 is a block diagram showing the step for determining the concentration of the blood glucose by using the rising curve in accordance with a method disclosed herein;



FIG. 3 is schematic representation showing the wave pattern for different concentration of the blood glucose that after treatment in accordance with a method disclosed herein; and



FIG. 4 is a schematic representation showing the relative diagram between the rising time and concentration of the blood glucose.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Some sample embodiments of the invention will now be described in greater detail. Nevertheless, it should be recognized that the present invention can be practiced in a wide range of other embodiments besides those explicitly described, and the scope of the present invention is expressly not limited except as specified in the accompanying claims.


According to the conventional determining method, the time to determine the concentration of blood glucose is of about 10 to 30 seconds, that is too long to increase the inaccuracy in concentration estimation. Thus, the present invention provides a method for determining the concentration of blood glucose by utilizing the rising curve to estimate the exact the concentration.


Referring to FIG. 1, FIG. 1 is a flow chart showing the steps for determining the concentration of the blood glucose by using the rising curve. Step 10 indicates the blood glucose may react with the enzyme within the test strip to generate the analog source; step 12 indicates the treatment device may be used to treat the analog source to convert the analog source from the analog signal into the digital signal, and that the wave pattern is displayed by an outputting device, wherein the wave pattern represents the relationship between the concentration of the blood glucose and rising time. In accordance with the present invention, the outputted signal is represented by voltage; wherein the unit of the voltage is milli-volt (mv.)


Then, the turning point is found from the wave pattern, and the time can be found which is relative to the turning point, wherein the turning point may be named the initial point (step 14.) Next, the maximum value is found from the wave pattern, wherein the maximum value of the wave pattern is the peak value (step 16.) Thereafter, the time point relative to the peak value of the wave pattern can be estimated, wherein the time point relative to the peak value is end point (step 18;) next, the difference value between the initial point and the end point is estimated by subtracting the initial point and the end point, wherein the difference value is the rising time (step 20;) and finally, a relative diagram is constructed by the concentration of the blood glucose and the rising time. Therefore, when the unknown concentration of the blood glucose is inserted into the measuring meter, the concentration of the blood glucose can be obtained immediately from the relative diagram (step 22.)


Furthermore, FIG. 2 is a block diagram showing the steps for determining the concentration of the blood glucose. The reference character 30 denotes the analog source, wherein the analog source is generated by the chemical reaction between the blood glucose and the enzyme within the test strip, and the chemical reaction is an oxidation-reduction reaction. Then, the analog source is inputted into a treatment device 32 to convert the analog source from the analog signal into a digital signal. The treatment device 32 comprises an operational amplifier 32A, a converting device 32B, and a treating-controlling device 32C. The operational amplifier 32A may be used to transfer the analog signal into the converting device 32B, and the converting device 32B may convert the analog signal into the digital signal, wherein the converting device 32B can be an AFE (analog-front-end) device or ADC (analog-to-digital converting system), and the treating-controlling device 32C is a MCU (microprocessor control unit). Then, the digital signal is displayed by a wave pattern shape in an outputting device 34.


Then, the FIG. 3 shows a wave pattern for the different concentration of the blood glucose and the reaction time, wherein the x-coordinate is reaction time, the unit is milli-second (ms), and the y-coordinate is outputted voltage, the unit is milli-volt (mv). Thus, the reaction time of the rising curve will become longer when the blood glucose has a higher concentration, so that the concentration of the blood glucose can be determined by the reaction time of the rising curve.


The preferred embodiment of the present invention provides a method to estimate the different concentration of the blood glucose. First, the turning point of the rising curve can be found, and the time point relative to the turning point of the rising curve also can be found, wherein the turning point is an initial point or first time. Then, according to the value of the first order differential that is greater than the zero, the maximum value of the each concentration of the blood glucose can be found, and the time point relative to the maximum value also can be found, herein the time point is the end point or second time. Next, the difference value between the initial point and end point is estimated by subtracting the initial point and the end point, wherein the difference value is the rising time of the rising curve.


In accordance with the present invention, the rising time is very short and could determine the concentration of the blood glucose immediately. Therefore, the exact concentration value can be estimated by the change in the rising time. To compare the estimating time between the conventional measuring meter and the rising time of the present invention, this invention only needs about 5 seconds to obtain the exact concentration of the blood glucose, nevertheless, the conventional measuring meter requires more than 10 seconds to obtain the concentration of blood glucose.



FIG. 4 is a relative diagram between the different concentration of the blood glucose and the rising time, wherein the x-coordinate is rising time, and the y-coordinate is voltage that expresses the concentration of the blood glucose. Thus, the unknown concentration of the blood glucose can be estimated by the relative diagram.


Although specific embodiments have been illustrated and described, it will be clear to those skilled in the art that various modifications may be made without departing from what is intended to be limited solely by the appended claims.

Claims
  • 1. An apparatus capable of determining the concentration of blood glucose comprising: a measuring circuit comprising: an amplifier capable of receiving an analog source; an analog to digital conversion device to convert said analog source to a digital signal; a processing device capable of: converting said digital signal to a wave pattern having a first time and a second time; calculating a difference value between said first time and said second time, wherein said difference value comprising a rising time of said wave pattern; correlating a concentration of said blood glucose to said rising time; and an outputting device capable of displaying said digital signal.
  • 2. The apparatus of claim 1, wherein said processing device is a microprocessor-controlling unit.
  • 3. An apparatus comprising: a conversion device capable of converting an analog source to a digital signal; and a processing device capable of: calculating a rise time associated with the digital signal, wherein the rise time includes the difference between an initial time and a time corresponding to a peak value, and correlating a concentration of blood glucose with the rise time.
  • 4. The apparatus of claim 3, wherein the processing device includes a microprocessor-controlling unit.
  • 5. The apparatus of claim 3, wherein the analog source is derived in at least part from a test strip comprising an enzyme.
  • 6. The apparatus of claim 5, wherein the analog source includes an analog signal representing a change in the product of a chemical reaction associated with the test strip.
  • 7. The apparatus of claim 6, wherein the chemical reaction includes an oxidation-reduction reaction.
  • 8. The apparatus of claim 6, wherein the chemical reaction includes a chemical reaction that occurs in response to a blood glucose solution introduced to the test strip.
  • 9. The apparatus of claim 3, further including a display capable of displaying the digital signal.
  • 10. The apparatus of claim 9, wherein the display is also capable of displaying the concentration of blood glucose.
  • 11. The apparatus of claim 3, wherein the conversion device includes an amplifier capable of receiving the analog signal.
  • 12. The apparatus of claim 3, wherein the processing device is capable of converting the digital signal to a wave pattern.
  • 13. The apparatus of claim 12, wherein the processing device is further capable of calculating a rise time utilizing, at least in part, the wave pattern.
  • 14. A system comprising: at least one test strip capable of producing a chemical reaction; and a blood glucose concentration tester including: a conversion device capable of converting an analog source to a digital signal; and a processing device capable of: calculating a rise time associated with the digital signal, wherein the rise time includes the difference between an initial time and a time corresponding to a peak value, and correlating a concentration of blood glucose with the rise time.
  • 15. A method comprising: producing a digital signal utilizing an analog signal, wherein the analog signal is associated with blood glucose; calculating a rise time associated with the digital signal, wherein the rise time includes the difference between an initial time and a time corresponding to a peak value; and correlating a concentration of blood glucose with the rise time.
  • 16. The method of claim 15, further comprising: detecting a change in a product of a chemical reaction occurring, at least in part, in response to a blood glucose solution being provided to a test strip; and representing the change in product of a chemical reaction as an analog signal.
  • 17. The method of claim 15, wherein calculating a rise time includes: generating a wave pattern utilizing, at least in part, the digital signal; wherein the wave pattern includes an initial time and a time corresponding to a peak value.
  • 18. The method of claim 15, further including calculating the peak value utilizing a value of the first order differential that is greater than zero.
  • 19. The method of claim 15, wherein correlating a concentration of blood glucose includes utilizing a look-up table.
  • 20. The method of claim 15, wherein the initial time is associated with a turning point associated with the digital signal.
Priority Claims (1)
Number Date Country Kind
091138108 Dec 2002 TW national
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 10/410,292 filed Apr. 10, 2003, which in turn claims priority from Taiwan Patent Application No. 091138108 filed Dec. 31, 2002.

Continuations (1)
Number Date Country
Parent 10410292 Apr 2003 US
Child 11695967 Apr 2007 US