The present invention relates to a method and an electronic circuit arrangement for determining the magnetic flux in at least one inductive component which is electrically drivable by way of a driver stage and, preferably, is an electromagnetically drivable valve or slide (actuator), as well as the implementation of the method and the circuit arrangement in a method for the calibration or mechanical adjustment or calculation of a drive current.
It is known in prior art to employ electromagnetically operable analogized valves for the precise control of the hydraulic pressure in ABS control units for motor vehicle brake systems but also in so-called driving dynamics controllers equipped with additional functions such as ESP, etc.
So-called analog/digital valves are used in up-to-date generations of hydraulic control units. An analog/digital valve is a switching actuator which is so operated that it has analog control properties. The valve is designed in such a manner that it allows both analog and digital operation.
EP 0 813 481 B1 (P 7565) discloses a method for the detection of the switch point of the valve, in particular for determining the pressure conditions from the current variation of the valve actuating current.
As can be taken from a non-published international patent application filed in parallel to the international patent application at topic, it is principally possible to adjust the pressure gradient or flow G of a corresponding pressure control valve in dependence on the differential pressure by way of the coil current. It is common to the valves employed that the volume flow Q depends, among others, on the differential pressure Δp and on the current I. However, normally this dependency (characteristic curve) is not precisely known because insignificant individual structural deviations of the valves from each other in a line of products, which deviations are induced by manufacture, have already a major effect on the functional interrelationship between flow and drive current. It is therefore necessary to draft characteristic fields for each individual valve what usually necessitates a sophisticated calibration in the plant or at the end of the assembly line at the site of the motor vehicle manufacturer. The determined characteristic fields can then be used, as has been described e.g. in WO 01/98124 A1 (P 9896), to adjust the desired pressure gradient.
The above-mentioned non-published international patent application solves the problem that the methods for determining characteristic curves as known from the state of the art still suffer from an undesirable deviation so that the desired pressure gradient cannot be adjusted with an appropriate rate of precision. This has a negative influence on the control performance of the overall system. Improvement would be achieved in that a calibration of the valves is carried out individually for each manufactured control unit at the supplier's site or at the assembly line. To this end, characteristic curves can be acquired by means of a suitable measuring device, or appropriate individual parameters KGind being obtained from these characteristic curves, can be transmitted to a controller connected or connectible to the control unit, in particular to an electronic accumulator contained in the controller. However, this method is rather sophisticated and, hence, cost-intense.
According to the above-mentioned, non-published patent application, proposals have been made to perform a more precise actuation of the hydraulic valves described hereinabove without using additional sensor elements or electronic components, and the actual value for the control circuit is provided by a complicated circuit arrangement to measure the time integral by way of the time-responsive induction voltage according to the non-published method, the said induction voltage being an indicator of the magnetic flux which prevails in the inductive component (magnet coil).
An object of the invention involves simplifying a circuit arrangement that can be implemented in the above method to measure the integral of an electric quantity for determining the magnetic flux in an inductive component, and further disclosing a method which allows determining the integral in a particularly simple fashion.
This object is achieved by a method for determining the magnetic flux in an inductive component and a circuit arrangement for determining the magnetic flux or inductance of an inductive device.
According to the method of the invention, the magnetic flux is determined in at least one inductive component which is electrically controllable by means of a drive signal using an electronic actuation or driver stage. The method is used to evaluate and adjust a measuring signal induced by the magnetic flux of the inductive component by means of an electronic measuring device. As this occurs, the magnetic-flux-responsive measuring signal measured at the inductive component is actively maintained at a substantially constant value by means of the measuring device or the electronic actuation or the driver stage. Furthermore, the time t1 or tc is determined during which the drive signal is triggered, which acts on the inductive component with production of the measuring signal.
The measuring signal can be one signal or more signals out of the group of
The inductive component is preferably an actuator component which is more particularly an electromagnetically controllable actuator in which an electrically controllable electromagnetic arrangement acts on a mechanical unit to adjust a fluid flow. It is particularly preferred that the actuator is a hydraulic or pneumatic solenoid valve.
Furthermore, calibration characteristic curves or parameters for calibration can be determined for the calibration of valves without using pressurizations of the valve. This obviates, for example, the need for the pressurization during the establishment of the characteristic curves or parameters by means of a pneumatic or hydraulic measuring arrangement, by means of which defined pressure differences at the valve being measured are adjusted according to the state of the art. This provision, among others, achieves the advantage that a manufactured valve or a complete hydraulic unit, unlike previously necessary, does not have to be measured individually in a test bench by using defined pressures.
According to another favorable method of the invention, the inductive component is inductively coupled to one or more additional measuring elements which make available in particular measuring coils for determining a measuring signal. This renders it likewise possible to determine the inductance or any other corresponding magnetic quantity from the inductive voltage or the variation of the disabling current.
Further preferred embodiments can be seen in the subsequent description of embodiments by way of Figures.
In the drawings:
The subsequently described examples are employed in an electrohydraulic control device for passenger vehicle brakes. Typically, corresponding control devices (EBS control unit) comprise a controller housing (ECU) with a microcontroller system 18, represented as a block in
The schematic view in
In the example of
When the valve coil is disabled, the magnetic flux in coil 1 of
The coil resistance RL, the coil voltage UL (constantly adjusted commutation voltage), as well as I0 (valve current) are known to the electronic controller (ECU). The time tc, which is proportional to the inductance L, is measured by means of square-wave forming circuit 4. The inductance of the coil can be determined from the current variation during the commutation in the sense of disabling between time t0 and time t1 according to the formula:
Due to the special actuation, where UL is maintained constant between times t0 and t1, the time integral of the current, which is to be calculated in order to determine the inductance of the coil, becomes especially simple. When the current is zero after the commutation in the sense of disabling, and the ohmic resistance of the coil is not taken into account, the inductance of the valve coil can be determined by way of
In consideration of the ohmic resistance RL, the inductance can be defined according to the equation
Feedback of the signal 20 of the measuring device 4 in microcontroller 18 allows achieving a flow regulation or flow control, which is illustrated in
The circuit arrangement in
Square-wave forming circuit 4 comprises voltage divider 51, composed of resistors R1 and 9R1, voltage divider 52 as well as comparator 53.
Voltage divider 51 reduces the high voltage values U0 at the signal input S+ of the comparator 53 by the factor 10, in order to be able to work with normal logic levels. Voltage divider 52 generates a reference voltage at the input S− of the comparator 53, which equals half the logic supply voltage. Comparator 53 thus assesses the difference between the signals S+ and S−, with the result that a suitable square-wave signal is produced at output 54. During a per se known pulse-width-modulated control (PWM) of the valve current, the voltage at U0 rises to a maximum of roughly 18 volt so that the input S+will never exceed 2.5 volt. The output 54 of the comparator thus stays on ‘logical 0’. At the commencement of a commutation in the sense of disabling, however, the voltage U0 rises to e.g. 35 volt, with the result that S+, being at 3.5 volt then, will be considerably higher than S−. The consequence is a change-over of the comparator to ‘logical 1’ until the voltage U0 drops again to 0 volt corresponding to the end of the commutation in the sense of disabling. Thereafter, the comparator 53 will change over to ‘logical 0’ again. Thus, the duration of the ‘logical 1’ at the output 54 corresponds precisely to the duration tc of the commutation in the sense of disabling. The comparator signal can be sensed very precisely with respect to time and further processed by means of the microcontroller illustrated in
It is also possible to determine the magnetic resistance RM of the valve coil by means of the interrelationship
In the formula indicated, N is the number of windings of the coil, and L represents the inductance which is obtained from the flux corresponding to the above.
With a low starting current I0, the procedure described can also be used to determine the magnetic resistance of the opened valve.
With the knowledge of spring force and magnetic force (due to the determination of the magnetic resistance), the current to be adjusted for a defined pressure gradient can be determined for a prevailing hydraulic force.
Number | Date | Country | Kind |
---|---|---|---|
103355863 | Jul 2003 | DE | national |
103558365 | Nov 2003 | DE | national |
1020040240582 | May 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/51636 | 7/28/2004 | WO | 1/31/2006 |