The present invention relates to a method for determining the position of a newly installed device in a hazard detection system, the devices of which have an isolator and are linked to a control centre by way of a signaling line.
Devices in this context in particular include hazard detectors, such as fire or gas detectors, but they can also be actuators, such as optical or acoustic alarm emitters, relays, alarm displays, transmission devices for forwarding alarms, etc. When the term detector is used in the description which follows it should not be understood as restrictive.
When a new detector is installed in an already operational network, its position must be determined within the topology. This can be done by determining the overall topology by restarting the entire network, for example by means of a specific command to all detectors or no-load switching of the signaling line. The alarms are then started up in sequence, each being allocated a unique communication address. Such methods are known as chain synchronization or daisy chain and have been used for a long time. See also EP-A-0 042 501 for example.
EP-A-0 485 878 describes a method for determining the configuration of detectors in a hazard detection system, wherein the control centre has to implement a number of steps before the communication addresses are assigned to the detectors, which takes a relatively long time. Determining the position of a newly installed detector by restarting the entire network is time-consuming, particular in the case of larger networks, and is definitely not efficient.
EP-A-0 880 117 describes a method for the automatic location of detectors, wherein the detectors are equipped with means for communicating with adjacent detectors. To locate a detector, all the detectors open up their disconnectors and the detector to be located transmits a corresponding message, which is only received by its neighbors. The disconnectors are then closed and it is determined which detectors are those neighbors, allowing unique determination of the position of the detector to be located. This method is relatively fast but requires that the detectors are equipped with the said communication means.
The invention is intended to specify a method of the type mentioned above, which allows fast and simple location of newly installed devices and requires no further equipping of the devices.
The stated object is achieved according to the invention in that the newly installed device is scanned a number of times from one side of the signaling line, with the isolator of a device already known in the topology being opened previously and the signaling line thereby being divided into two branches and it is determined in which of the branches the newly installed device is located and this method is continued until the precise position of the newly installed device is located.
A first preferred embodiment of the inventive method is characterized in that first the isolator of a device disposed as close as possible to the centre of the signaling line is opened and it is then determined based on the availability of the newly installed device from the selected end of the signaling line whether it is in the branch before or after the device with the opened isolator.
A second preferred embodiment of the inventive method is characterized in that the isolator just opened is then closed and the isolator of a device disposed as close as possible to the centre of the branch of the signaling line containing the newly installed device is opened and it is determined based on the availability of the newly installed device from the selected end of the signaling line whether the newly installed device is before or after the device with the opened isolator.
A third preferred embodiment of the inventive method is characterized in that the described method of interval halving is implemented until the precise position of the newly installed device is established, which in the case of a hazard detection system containing a total of n detectors is after (log 1/n)/(log ½) steps, rounded to the nearest natural number. Thus for 30 detectors after 5 steps and for 100 detectors after 7 steps, each only lasting in the order of one second. It therefore only takes a short period of several seconds without any additional outlay to locate the precise position of the newly installed device.
The invention is described in more detail below with reference to an exemplary embodiment and the drawings, in which:
As already mentioned in the introduction, detectors M refer not only to a hazard detector but quite generally to an addressable device installed in a signaling line. As well as a hazard detector it can also be an actuator, such as an optical or acoustic alarm emitter, a relay, an alarm display, a transmission device for forwarding alarms, etc.
Let it be assumed that the detector M8 with the communication address 8 is a newly installed detector. The detector M8 is scanned a number of times from one end, according to the diagram the upper end of the signaling line ML, to determine its position. The isolator of a detector already known in the topology is thereby previously opened in each instance. In a first step a detector is selected for this purpose, which is as close as possible to the centre of the signaling line ML. According to
In the case of the exemplary embodiment shown the newly installed detector M8 is not available from the upper end of the signaling line ML due to the opened isolator S4, so it must be located in the branch after the detector M4. The isolator S4 of the detector M4 is then closed and the interval halving method is continued in the branch after the detector M4. According to
By closing the isolator S6 of the detector M6 and then opening the isolator S5 of the detector M5, the newly installed detector M8 is finally located precisely after only three steps in all.
It can generally be said that for a hazard detection system containing a total of n detectors, it takes (log 1/n)/(log ½) steps, rounded to the nearest natural number, to locate a newly installed detector, in other words for 30 detectors 5 steps and for 100 detectors 7 steps, each only lasting in the order of a second.
It therefore only takes a short period of several seconds without any additional outlay to locate the precise position of the newly installed detector.
The inventive method is not restricted to a ring signaling line ML of the type shown in
Number | Date | Country | Kind |
---|---|---|---|
EP05002480.1 | Feb 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/050054 | 1/5/2006 | WO | 00 | 8/23/2007 |