The present invention pertains to a method for determining hearing device features which are useful to an individual user of the hearing device.
Hearing devices such as hearing aids (also referred to as hearing prostheses or hearing instruments) for hard of hearing people or hearing enhancement devices for augmenting the hearing capability of normal hearing persons, as well as hearing protection devices designed to prevent noise-induced hearing loss, commonly comprise an input transducer, e.g. a microphone, for picking up sound from the surroundings, a signal processing unit for processing the signal from the input transducer, and an output transducer, e.g. a miniature loudspeaker also called a receiver, for converting the processed signal into a signal perceivable by the user of the hearing device. Typically, such hearing devices are adapted to be worn at the ear (e.g. a behind-the-ear, BTE hearing device) or within the ear canal (e.g. an in-the-ear, ITE or completely-in-canal, CIC hearing device), or alternatively to be partly anchored in the scull (e.g. a bone-anchored hearing aid, BAHA) or partly implanted in the middle or inner ear (e.g. a direct acoustic cochlear stimulation, DACS, or cochlear implant). Furthermore, such hearing devices commonly incorporate a number of different functionalities or features, each one potentially providing a specific benefit to the user in order to improve the user's hearing experience to various degrees. Usually, some basic features are provided in all hearing devices, whereas advanced features, for instance employing more sophisticated audio signal processing such as adaptive beamforming and binaural signal processing, or providing more complex functionalities such as wireless audio streaming, are only offered by high-end hearing devices, which are therefore more expensive.
A hearing device professional, such as an audiologist or hearing aid acoustician, often referred to a hearing device “fitter”, is challenged with selecting a suitable hearing device model along with appropriate features depending on the needs and preferences of an individual user. It is difficult to determine which features will be useful to a certain user, i.e. will provide an individual benefit to this user in terms of improving the user's hearing capability or hearing experience. Because the user has to pay for additional hearing device features, such as extra hearing programs, or may even have to buy a more advanced and therefore more expensive hearing device, users will often decide to do without features which they think will provide little or no benefit to them. It is therefore usually difficult for both a hearing device professional as well as for a hearing device user to make a sound decision regarding which hearing device features are useful for the user. Hence, there is a need for means that allow a hearing device professional and/or a hearing device user to determine whether a certain hearing device feature will likely be useful to the user, i.e. will provide an individual benefit to this user in terms of improving the user's hearing capability or hearing experience.
It is an object of the present invention to provide a method for determining hearing device features which will likely be useful to an individual user of the hearing device, more specifically a method for suggesting such hearing device features to a hearing device professional and/or to the user of a hearing device.
This object is achieved by the method according to claim 1. Specific embodiments of the proposed method are provided in the dependent claims 2 to 12. A hearing device capable of supporting the proposed method is specified in claims 13 and 14.
The present invention provides a method for determining hearing device features which are useful to an individual user of the hearing device, the method comprising:
Sound classification can for instance be performed by the methods such as provided in EP 1 348 315 B1, WO 02/32208 A2, U.S. Pat. No. 7,653,205 B2 and WO 2011/027004 A2. Specific sound classes may for instance be speech, noise, speech in noise, speech in quiet, speech in a crowd, reverberated speech, music and wind noise. Specific signal types may for example be a sound signal pickup by one or more microphones, an audio signal from a t-coil or an audio signal wirelessly transmitted from a remote location, e.g. from a remote microphone, a telephone signal or a streamed audio signal from a multimedia player, radio or television.
In this way the specific hearing situations a certain individual user is commonly confronted with can objectively be determined based on the sound classes and/or signal types identified by a classifier. Based upon the individual overall usage quantities logged by the hearing device during actual use of the hearing device by the user those hearing situations that the user is in most frequently can be established and from this the hearing device features which are known to be effective in these hearing situations can be identified. This information is then provided to the hearing device professional and/or the user of the hearing device, so that a well-founded decision can be made as to which hearing device features will be useful to the user and therefore provide a hearing benefit, thus being worth the extra cost.
In an embodiment the method further comprises the user or a hearing device fitter, such as an audiologist, selecting at least one of the useful hearing device features for being provided in the hearing device of the user.
In a further embodiment the method further comprises providing at least one of the useful hearing device features in the hearing device of the user.
In a further embodiment the method further comprises removing or disabling at least one hearing device feature, which is not a useful hearing device feature, from or in the hearing device of the user. By employing the proposed method for determining hearing device features which are useful to the user of the hearing device it is also possible to establish that a hearing device feature presently available in the hearing device is superfluous, i.e. provides little or no benefit to the user in terms of improving his hearing performance. Therefore, the user may decide to drop this feature, e.g. in order to save cost, or to replace it with a better, e.g. more useful feature.
In a further embodiment of the method, as part of providing information in step g) a degree of usefulness is provided for each useful hearing device feature based on the logged usage quantities.
In a further embodiment of the method the information, in particular the suggestion, mentioned in step g) is provided within a fitting system, in particular presented, such as visualised, as part of a fitting process. In this way, e.g. by providing a graphical bar or pie diagram depicting the usefulness of each feature, the fitter and/or user can very quickly identify hearing device features which are useful to achieve good hearing performance for this user as well as those that are less or not at all useful for this user.
In a further embodiment the method further comprises:
prior to step a)
In known hearing devices a certain number P1 of hearing programs (e.g. combinations of features for instance with certain predefined settings) are available and can be selected either automatically by hearing device itself or manually by the user. Automatic selection is typically based on the hearing situation identified by a classifier in terms of the sound class representative for the current hearing situation. Therefore, there is usually a one-to-one mapping of sound classes to hearing programs, i.e. a distinct hearing program is associated with each sound class. Hence, the number P=P1 of hearing programs is equal to the number N of sound classes (or signal types). Consequently, the classifier in a more advanced (version of a) hearing device with a larger number P=P1 of hearing programs (i.e. having more hearing device features) will be able to distinguish between a larger number N of sound classes. According to the present invention, an advanced classifier is even used in a lower end hearing device having only a small number P=P1<N of hearing programs (i.e. features) in order to be able to identify hearing situations that would profit from more advanced hearing programs (or additional features). Providing information for instance regarding the amount of time a certain user is faced with hearing situations for which the user's hearing device is not equipped with the necessary features to provide optimal hearing performance, helps the fitter and/or user to identify additional features which would be useful (i.e. provide a performance benefit) to the user in the future when such hearing situations occur. In this way, the user will be far more willing to buy the extra features (or alternatively a more advanced hearing device), because he is then convinced that he will clearly benefit from these extra features.
In a further embodiment the method further comprises determining a coverage score dependent on whether a hearing program was associated with the classified sound class and/or signal type or whether no hearing program was available for the classified sound class and/or signal type. In this way, the coverage score can be an immediate indication (e.g. in a single value) of the proportion of individual hearing situations which the user is exposed to are dealt with optimally with the features presently available in the hearing device, and on the other hand the proportion of individual hearing situations which the user is exposed to that could be dealt with more optimally using additional features presently not available in the hearing device.
In a further embodiment the method further comprises providing an indication of a degree of possible performance improvement achievable for the user by providing further hearing device features based on the coverage score. In this way, an immediate indication (e.g. in a single value) can be provided to the fitter and/or user in terms of how much performance improvement could be gained by providing certain additional hearing device feature based on the individual hearing situations the user is normally exposed to, as determined from the sound classes identified by the classifier.
In a further embodiment the method further comprises:
subsequent to step g)
In this way, increased hearing performance is achieved for the user by providing additional hearing programs in the hearing device of the user, which are capable of dealing with hearing situations the user is commonly in.
In a further embodiment of the method the usage quantity is one of:
In a further embodiment of the method the overall usage quantity is one of:
It is explicitly pointed out that combinations of the above-mentioned embodiments of the proposed method can yield even further, more specific embodiments of the method according to the present invention.
In a further aspect, the present invention provides a hearing device comprising:
Embodiments of the proposed hearing device are further adapted to support the method according to the previously mentioned embodiments of the proposed method.
The present invention is further explained in the following by means of non-limiting specific embodiments and with reference to the accompanying drawings, which show:
After using the hearing device 1 for a period of time, such that the user of the hearing device 1 has been exposed to a range of real-life hearing situations which are typical for the specific user, the sound classes or signal types having an overall usage quantity exceeding a minimum overall usage quantity are identified as relevant sound classes or signal types for the user. Then hearing device features, such as a hearing program, are identified for each of the determined relevant sound classes or signal types, which are suitable for processing an input sound signal associated with the relevant sound class or signal type. The identified hearing device features will be referred to as “useful” hearing device features, because they improve the hearing performance of the user in those situations when the received sound is determined to belong to the corresponding sound class or signal type. Information regarding the useful hearing device features can then be provided to the user and/or fitter of the hearing device. A fitting system can for instance suggest to incorporate (or enable) a certain useful hearing device feature, which is presently not provided by the hearing device 1, in the hearing device 1. An additional hearing program identified as being useful, could then be uploaded to the hearing device 1 or enabled for use in the hearing device 1 (if already store therein, but inhibited from being employed by some means until the feature has been unlocks, e.g. against payment of a fee).
An exemplary graphical presentation of the overall usage quantity for each sound class is shown on the display 3 of the fitting terminal 2 in the lower half of
The hearing situations encountered by another user B can be quite different to those of previous user A as illustrated in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/055351 | 3/13/2015 | WO | 00 |