Method for determining whether or not a mammal is affected with a lung cancer

Information

  • Patent Grant
  • 8021886
  • Patent Number
    8,021,886
  • Date Filed
    Thursday, December 2, 2010
    13 years ago
  • Date Issued
    Tuesday, September 20, 2011
    12 years ago
Abstract
The present disclosure relates to a method for assessing if a patient is affected with a lung cancer. The method includes analyzing the presence and amount of cyclohexanone contained in the urine excreted from the patient and determining if the presence and amount of cyclohexanone is indicative of lung cancer.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present disclosure relates to a method for determining whether or not a patient is affected with a lung cancer. Patients which are to be the subjects of the method of the present disclosure are preferably mammals including humans.


2. Description of the Related Art


Substances that are present in large amounts in cancer cells but are either not present, or only present in small amounts in normal cells are known. Such substances are referred to as “tumor markers”. Tumor marker tests, in general, quantitatively determine a tumor marker in blood, and have been used for the purpose of aiding diagnosis of cancer, or confirming the degree of progression of cancer. As such, in order to determine the presence of a tumor marker in a patient, it is typical that a sample of blood is drawn from the patient.


Conventional tumor markers are high molecular substances such as hormones, enzymes, isozymes, or fragmented proteins. Since there are great differences among individuals in blood levels of these conventional tumor markers, usability in diagnosing cancer has been unsatisfactory due to the occurrence of false negatives and false positives.


SUMMARY OF THE INVENTION

The present Applicants investigated utilization of a volatile low molecular compound, which has otherwise has not been investigated as a tumor marker, and consequently discovered that by quantitatively determining cyclohexanone contained in the urine excreted from a mammal, determination is enabled as to whether or not the mammal is affected with a lung cancer. Accordingly, the present disclosure was accomplished.


An aspect of the present disclosure relates to a method for determining whether or not a patient is affected with a lung cancer, the method comprising the steps of:


obtaining a urine sample from the patient;


measuring the concentration of cyclohexanone contained in the urine sample; and


determining that the patient is suffering from lung cancer if the concentration is equal to or greater than 1 μM.


The patients preferably a primate or a human


According to the present disclosure, a method of determination is provided which is useful for diagnosing lung cancer in mammals.


The above objects, other objects, features and advantages of the present disclosure will be apparent from the following detailed description of preferred embodiments with reference to attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a scheme for illustrating a procedure of ultrafiltration of a urine sample.



FIG. 2 shows a schematic view for illustrating a trapping method of volatile components contained in a urine sample by a SPME method.



FIG. 3(
a) shows a gas chromatogram of a control urine sample.



FIG. 3(
b) shows a gas chromatogram of a urine sample from a human lung cancer patient.



FIG. 4 shows graphs demonstrating the peak area of a specified component A in gas chromatograms.



FIG. 5(
a) shows a MS spectrum of the specified component A.



FIG. 5(
b) shows a MS spectrum of cyclohexanone listed in NIST database.



FIG. 6(
a) shows a GC chromatogram of a urine sample from a human lung cancer patient.



FIG. 6(
b) shows a GC chromatogram of cyclohexanone.



FIG. 7 shows a standard curve of cyclohexanone.



FIG. 8 shows a graph illustrating distribution of cyclohexanone concentration in the urine excreted from the human lung cancer patients and the control urine.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In a general aspect of the disclosure, urine from a patient is collected and the concentration of the cyclohexanone contained in the urine excreted from the patient is measured. Based on the concentration of the cyclohexanone measured, it determined that the patient is suffering from lung cancer if the concentration is equal to or greater than 1 μm.


A feature of the above general aspect of the invention may be that the concentration of the cyclohexanone is measured using gas chromatography, liquid chromatography or any other known method or combination of methods of measuring organic compounds.


Another feature of the above general aspect of the disclosure may be that the lung cancer is selected from the group consisting of squamous cell, adenocarcinoma, non-small cell lung carcinoma (NSCLC), large cell carcinoma and adenosquamous carcinoma.


1. Collection of Urine, and Ultrafiltration of Urine


(1) Collecting Method of Urine


Urine of a human lung cancer patient was collected from 19 lung cancer patients (Table 1a) corresponding to stages 1A to 3B who participated as volunteers. Control urine was collected from 19 human non-lung cancer patients who were from 36 to 86 years old (Table 1b), and participated as volunteers. Each 1 mL of the urine collected from each patient was dispensed into a 1.5 mL tube, and stored at −80° C. until subjecting to an ultrafiltration treatment.


Table 1a shows age, sex (represented by “Gender”), race, tissue type, stage, and smoking history (represented by “Tobacco History”) of the human lung cancer patients. Table 1b shows age, sex, race, diagnosis, and smoking history of the human non-lung cancer patients. Blank columns in the smoking history mean that the subject had no history of smoking. The abbreviation of “COPD” in Table 1b means “Chronic Obstructive Pulmonary Disease”.















TABLE 1a





Subject




Overall
Tobacco


No.
Age
Gender
Race
Histology
Stage
History





















1
81
F
White
Squamous Cell
1A
Current


2
84
F
White
Adenocarcinoma
1A



3
81
F
White
NSCLC-NOS
1A
Former


4
69
M
White
Squamous Cell
1A
Current


5
65
F
White
Adenocarcinoma
1A
Former


6
68
M
White
Adenocarcinoma
1B
Former


7
73
F
White
Adenosquamous
1B
Former


8
69
M
White
Squamous Cell
1B
Former


9
71
M
White
Squamous Cell
2A
Former


10
54
M
White
Squamous Cell
2B
Former


11
53
M
White
Large Cell
2B
Former


12
69
F
White
Adenocarcinoma
3A
Former


13
64
F
Asian
Adenocarcinoma
3A



14
64
M
White
Adenocarcinoma
3A
Former


15
76
F
White
Adenocarcinoma
3A
Current


16
62
M
White
NSCLC-NOS
3B
Former


17
81
M
White
Adenocarcinoma
3B
Former


18
62
M
White
Squamous Cell
3B
Former


19
55
M
White
Adenosquamous
3B
Former





Race (White: Caucasian, Asian: Asian)


Gender (M = male, F = female)


















TABLE 1b





Subject




Tobacco


No.
Race
Age
Gender
Diagnosis
History




















1
White
72
F
COPD



2
White
83
M
COPD



3
Asian
49
M
COPD



4
Asian
62
M
COPD



5
White
54
F
Asthma



6
White
48
F
Healthy
Former


7
White
49
F
Healthy
Former


8
Asian
50
F
Healthy
Current


9
Asian
38
F
Healthy
Current


10
White
48
F
Healthy
Former


11
White
38
F
Healthy
Current


12
White
47
F
Heart disease
Former


13
White
51
F
Thyroid disease
Current


14
White
59
M
Healthy
Current


15
White
55
M
Asthma
Current


16
Asian
49
F
Healthy
Current


17
White
61
M
Heart disease
Current


18
White
62
M
Hypertension
Current


19
White
36
F
Hypertension
Current





Race: White = Caucasian, Asian = Asian


Gender: M = male, F = female






(2) Ultrafiltration of Urine Sample


The urine of the human lung cancer patient and the control urine were subjected to ultrafiltration according to the procedure shown in FIG. 1. The urine of the human lung cancer patient and the control urine (each 1 mL) which had been frozen and stored at −80° C. were thawed on ice. After thawing, centrifugal separation (13,000 g×10 min) was carried out to remove insoluble matter. The thus obtained supernatant was set on a Microcon centrifugation system filter unit YM-30 (30-kDa cutoff, Millipore, Bedford, Mass.), and subjected to centrifugal separation (12,000 G, 0° C., 90 min). The urine that passed through the filter was set on a Microcon centrifugation system filter unit YM-10 (10-kDa cutoff, Millipore, Bedford, Mass.), and subjected to centrifugal separation in a similar manner as described above. The urine that passed through the filter was set on a Microcon centrifugation system filter unit YM-3 (3-kDa cutoff, Millipore, Bedford, Mass.), and subjected to centrifugal separation in a similar method as described above.


When the urine remained on the filter after each centrifugal separation, the remaining urine was transferred on a new filter, and similar centrifugal separation was repeated until no urine remained on the filter. The filtrate that passed through the filter unit YM-3 was dispensed into 1.5 mL tube. The filtrate was stored at 4° C. as a urine sample for analysis until it is analyzed with gas chromatography.


2. Analysis of Volatile Components Using Solid Phase Micro Extraction (SPME) Method


(1) Extraction of Volatile Components


Volatile components in the urine sample for analysis were extracted by a solid phase micro extraction. Each urine sample for analysis in a volume of 50 μL was placed into a 1.5 mL glass vial, and the vial was sealed airtight using a lid with septum. The vial was set into a heating block, and incubated at 40° C. for 10 min. As shown in FIG. 2, a Stable Flex DVB/CAR/PDMS fiber (SUPELCO, Inc., 2-layer fiber, film thickness: 50 μm/30 μm) was inserted into the vial for 40 min, to extract the volatile components in the head space to the fiber.


Before extracting of the volatile components, the fiber was subjected to a heat treatment at 230° C. for 30 min to eliminate any volatile component from the fiber, and thereafter inserted into the vial.


(2) Method for Analyzing Volatile Components


After extraction, the volatile components were thermally desorbed and analyzed. The analysis was performed using a gas chromatography (GC) or a gas chromatography-mass spectrometry (GC-MS). The extracted fiber was inserted into the injector of each instrument.


As a gas chromatography with a flame ionization detector (FID), GC-4000 (GL Sciences Inc.) was used. Analysis conditions were as shown below.


Column: INERTCAP Pure-WAX; internal diameter: 0.25 mm, length: 30 m, film thickness=0.25 μm


Column temperature: 40° C. (5 min)→temperature elevation at a rate of 4° C./min→250° C. (5 min)


Carrier gas: helium 100 kPa


Injection: 230° C., splitless (closed 5 min)


Detector: FID (250° C.)


As the gas chromatography-mass spectrometry apparatus, GCMS-QP2010 (Shimadzu Corporation) was used. Analysis conditions were as shown below.


Column: InertCap® Pure-WAX; internal diameter: 0.25 mm, length: 30 m, film thickness=0.25 μm


Column temperature: 40° C. (5 min)→temperature elevation at a rate of 4° C./min→250° C. (5 min)


Carrier gas: helium 100 kPa


Injection: 230° C., splitless (closed 5 min)


Ionization process: Electron Impact method


3. Identification and Quantitative Determination of Specified Component that Serves as Marker of Cancer


(1) Comparison of Gas Chromatogram


A gas chromatogram (FIG. 3a) of the control urine (urine of a human non-lung cancer patient) was compared with a gas chromatogram of the lung cancer urine (urine of a human lung cancer patient) (FIG. 3b). An increased peak present in the urine of the human lung cancer patient was identified by visual inspection. Hereinafter, the peak is referred to as “specified component A”.


The peak areas of the specified component A in all samples of the lung cancer urine and the control urine were calculated from each gas chromatogram. FIG. 4 shows the peak areas of the specified component A. Numerical values presented along the horizontal axis of FIG. 4 show the patient number listed in Table 1a and Table 1b. As is seen from FIG. 4, the peaks of the specified component A for the urine of the human lung cancer patient had significantly greater area than the peaks of the specified component A for the control urine.


(2) Searching of Candidate Compound FIG. 5a shows an MS spectrum of the specified component A. Based on the m/z value on the MS spectrum of the specified component A observed, a candidate compound of the specified component A was searched using NIST database (NIST147.LIB) attached to the gas chromatography-mass spectrometry. As a result, cyclohexanone corresponded to the information from the NIST database with a similarity of 98 (perfect match=100). FIG. 5b shows the MS spectrum of cyclohexanone listed in the NIST database.


(3) Identification of Specified Component A


For the purpose of identifying the specified component A, cyclohexanone (Wako Pure Chemical Industries, Ltd., guaranteed reagent) was purchased. Cyclohexanone was placed into a 1.5 mL vial, and subjected to a gas chromatography analysis on cyclohexanone using the solid phase micro extraction method similarly to the case of the urine samples. As a result, the present Applicants ascertained that the retention time of the specified component A (see, FIG. 6a) corresponded to the retention time of cyclohexanone (see, FIG. 6b). From the agreement on the MS spectrum and of the retention time, the specified component A was identified as being cyclohexanone.


(4) Production of Standard Curve of Cyclohexanone


Aqueous cyclohexanone solutions of 1 μM, 10 μM, and 100 μM were prepared. The aqueous cyclohexanone solution of each concentration in a volume of 50 μL was placed into a 1.5 mL vial, which was then sealed airtight using a lid with septum. The vial was set into a heating block, and incubated at 40° C. for 10 min. A Stable Flex DVB/CAR/PDMS fiber (SUPELCO, Inc., 2-layer fiber, film thickness: 50 μm/30 μm) was inserted into the head space for 40 min. After the volatile components were extracted to the fiber, the analysis was carried out using the gas chromatography analysis conditions which were similar to those described above. The analysis was repeated three times for the aqueous cyclohexanone solution of each concentration. A standard curve was produced by plotting the peak areas and the concentrations of the aqueous cyclohexanone solutions.



FIG. 7 shows a standard curve of cyclohexanone. The longitudinal axis represents the area of the peak corresponding to cyclohexanone, whereas the horizontal axis represents the concentration (μM) of the aqueous cyclohexanone solution. The coefficient of correlation between the concentration of the aqueous cyclohexanone solution and the peak area was 0.9994, indicating high linearity. As shown in Table 2, the coefficient of variation at a concentration of 1 μM was 20.3%. However, the coefficient of variation at each concentration of 10 μM and 100 μM were 1.6% and 0.8%, respectively.









TABLE 2







Peak Area, Standard Deviation, and Coefficient of Variation


of Cyclohexanone



















Coef-








ficient of


Cyclo-
First
Second
Third

Standard
variation


hexanone
analysis
analysis
analysis
Average
deviation
(%)
















 1 uM
56541
43076
65163
54927
11131.6
20.3


 10 uM
415539
427250
415539
419443
6761.3
1.6


100 uM
3580449
3602729
3544006
3575728
29644.8
0.8









(5) Measurement of Cyclohexanone Concentration in Urine


Using the standard curve shown in FIG. 7, cyclohexanone concentrations in the urine of the human lung cancer patient and the control urine were calculated. As shown in Table 3a, the average cyclohexanone concentration in the urine of the human lung cancer patients was 3.4 μM (from minimum concentration of 1.4 μM to maximum concentration of 7.2 μM). On the other hand, as shown in Table 3b, the average cyclohexanone concentration in the control urine was 0.22 μM (from minimum concentration of 0.2 μM to maximum concentration of 0.4 μM).









TABLE 3a







Cyclohexanone Concentration in Urine of


Human Lung Cancer Patients












Subject


Cyclohexanone



No.
Histology
Overall Stage
(μM)
















1
Squamous Cell
1A
7.2



2
Adenocarcinoma
1A
1.4



3
NSCLC - NOS
1A
3.8



4
Squamous Cell
1A
3.5



5
Adenocarcinoma
1A
2.1



6
Adenocarcinoma
1B
2.5



7
Adenosquamous
1B
2.3



8
Squamous Cell
1B
3.2



9
Squamous Cell
2A
2.0



10
Squamous Cell
2B
2.6



11
Large Cell
2B
3.3



12
Adenocarcinoma
3A
3.4



13
Adenocarcinoma
3A
5.8



14
Adenocarcinoma
3A
3.3



15
Adenocarcinoma
3A
2.0



16
NSCLC - NOS
3B
5.2



17
Adenocarcinoma
3B
2.5



18
Squamous Cell
3B
5.8



19
Adenosquamous
3B
3.0

















TABLE 3b







Cyclohexanone Concentration in Control Urine









Subject

Cyclohexanone


No.
Diagnosis
(μM)












1
COPD
0.3


2
COPD
0.4


3
COPD
0.3


4
COPD
0.2


5
Asthma
0.2


6
Healthy
0.2


7
Healthy
0.2


8
Healthy
0.2


9
Healthy
0.2


10
Healthy
0.2


11
Healthy
0.2


12
Heart
0.2



disease



13
Thyroid
0.2



disease



14
Healthy
0.2


15
Asthma
0.2


16
Healthy
0.2


17
Heart
0.2



disease



18
Hypertension
0.2


19
Hypertension
0.2










FIG. 8 shows distribution of cyclohexanone concentration in the urine of the human lung cancer patients and control urine. From the aforementioned experimental results, it was identified that the urine excreted from a human contains not less than 1 μM cyclohexanone if he or she is affected with a lung cancer. The dotted line in FIG. 8 indicates 1 μM that is considered to be a threshold as a marker for lung cancer.


Various types of tumor markers have been extensively used in clinical field as markers for diagnosing malignant tumor, determining therapeutic effects, or examining signs of recurrence after surgery. Since almost all conventional tumor markers are proteins or hormones, it has been necessary to collect blood from a subject (mammal), and to measure the concentration in plasma. However, according to the present disclosure, since the tumor marker which is a target of detection is a volatile component contained in urine, an inspection sample can be noninvasively obtained without imposing a burden to the subject.


By comparing volatile components contained in the urine excreted from human lung cancer patients and human non-lung cancer patients, cyclohexanone was specified as one component in the urine that increases when affected with a lung cancer, irrespective of the race and the presence/absence of smoking history. Furthermore, Applicants discovered that a patient is affected with a lung cancer when the cyclohexanone concentration in the urine is not less than 1 μM.


Thus, the cyclohexanone concentration in urine is useful as a marker for lung cancer. According to the present disclosure, efficient determination as to whether or not a patient is affected with a lung cancer is enabled.

Claims
  • 1. A method for determining whether or not a patient is affected with a lung cancer, the method comprising the steps of: obtaining a urine sample from the patient;measuring the concentration of cyclohexanone contained in the urine sample; anddetermining that the patient is suffering from lung cancer if the concentration is equal to or greater than 1 μM.
  • 2. The method according to claim 1, wherein the patient is a mammal.
  • 3. The method according to claim 2, wherein the mammal is a primate.
  • 4. The method according to claim 3, wherein the primate is a human.
  • 5. The method according to claim 1, wherein the cyclohexanone concentration is measured using gas chromatography.
  • 6. The method according to claim 1, wherein the lung cancer is selected from the group consisting of squamous cell, adenocarcinoma, non-small cell lung carcinoma (NSCLC), large cell carcinoma and adenosquamous carcinoma.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to provisional application Ser. No. 61/302,818, filed Feb. 9, 2010, the contents of which are incorporated by reference herein.

US Referenced Citations (2)
Number Name Date Kind
20060160237 Du Jul 2006 A1
20100126254 Du May 2010 A1
Provisional Applications (1)
Number Date Country
61302818 Feb 2010 US