The present invention relates, in general, to a method for diagnosing the state of a capacitor and, more particularly, to a method for diagnosing the state of a capacitor in a modular converter, in which the Mean Time Between Failures (MTBF) of a capacitor in a modular converter is extracted using the cumulative mean of the input voltage and the temperature of the capacitor, whereby the state of the corresponding capacitor is diagnosed.
Recently, power systems have been greatly changed with new forms of renewable energy and emphasis on the quality of power, and such changes increase the need for devices such as High-Voltage Direct Current (HVDC) systems or Static Synchronous Compensator (STATCOM) devices.
Recently, a modular configuration is newly applied to converters for HVDC systems or converters for STATCOM devices. Specifically, an HVDC system or a STATCOM device is not configured using a single converter having a large capacity but is configured such that modular converters, each having a small capacity, are connected in series so as to make a large system.
In modular converters, expensive passive elements, such as high-capacity capacitors or discharge resistors, are used, and the lifespan of the device itself is determined by these elements, but it is difficult to actively determine the state thereof due to the characteristics of these passive elements.
Generally, the state of a capacitor may be checked through regular maintenance, but because heat generated in a modular converter when the system operates, and vibration, shock, dust and the like, generated near the device during the operation may degrade the performance of elements, technology for detecting the states of these elements during the operation thereof is required.
To this end, Japanese Patent No. 4011016 discloses technology in which a device for measuring voltage, current, and ambient temperature is installed in a power apparatus to which a capacitor is applied, capacitance is acquired from the result of the measurements acquired using the device, and the remaining life of the capacitor is determined using the capacitance. However, in Japanese Patent No. 4011016, it is necessary to additionally consider the internal resistance of the capacitor, but because the internal resistance frequently changes depending on the environment in which the capacitor is used, it is difficult to accurately determine the remaining life of the capacitor.
In order to compensate for this, Korean Patent No. 10-1133478 provides a device for diagnosing the remaining life of a capacitor, in which the remaining life of a battery device, constituted by a capacitor, is diagnosed in the state in which the discharge time period, for which the battery device can perform discharge while outputting rated power or power required by a load, exceeds a rated compensation time period required depending on each power compensation device (i.e. the time period for which the rated power can be output). However, it is disadvantageous in that the life of the battery device is determined only when the discharge time period exceeds the rated compensation time period.
Additionally, a technique for diagnosing the life of a condenser depending on the charging time thereof and the characteristics of a charging voltage (Japanese Patent No. 4812368) and a technique for diagnosing the life of a condenser depending on the temperature of the DC electrolytic condenser and charging/discharging current (Japanese Patent Application Publication No. 1995-092213) are disclosed. However, the former has low reliability because temperature, which affects the life of a capacitor, is not considered in the determination, and the latter is problematic in that it is difficult to accurately reflect the actual temperature of a capacitor because the internal temperature of the condenser is calculated using an equation.
An object of the present invention is to provide a method for diagnosing the state of a capacitor in a modular converter, in which, in order to diagnose the state of a capacitor applied to a modular converter, the input voltage and temperature of the capacitor are measured, and the MTBF is calculated using the cumulative mean of the measurements, whereby the state of the capacitor may be diagnosed.
A method for diagnosing a state of a capacitor in a modular converter according to an embodiment of the present invention includes setting a Failures in Time (FIT) table depending on an input voltage and a temperature of an internal capacitor for multiple sample modular converters; detecting, by an input voltage detection unit, an input voltage of a capacitor in a target modular converter, a state of the capacitor of which is to be diagnosed, during a preset period; detecting, by a temperature detection unit, a temperature of the capacitor of the target modular converter during the preset period; calculating a cumulative mean for the input voltage and the temperature, which are respectively detected by the input voltage detection unit and the temperature detection unit during the preset period; selecting, by a control unit, a FIT value, corresponding to the calculated cumulative mean for the input voltage and temperature, from the FIT table; and extracting a Mean Time Between Failures (MTBF) of the capacitor from the FIT value.
In the present invention, the setting the FIT table includes determining a FIT value based on an input voltage and a temperature of the capacitor for each of the multiple sample modular converters; generating a FIT graph from the determined FIT value for each of the multiple sample modular converters; and setting the FIT table by extracting a FIT value, corresponding to preset ranges of the input voltage and temperature, from the FIT graph.
In the present invention, the extracting the MTBF includes calculating a failure rate (λ) for the multiple sample modular converters using (N=N0×e−λt); and extracting the MTBF from the failure rate (λ) and the FIT value, using (MTBF=λ×FIT value).
In the present invention, after the extracting the MTBF, generating a warning sound when a failure occurrence time, predicted based on the extracted MTBF of the capacitor, arrives is further included.
According to the present invention, in the case of a modular converter applied to an HVDC system or a STATCOM device, because a high voltage is input thereto, this input voltage and a temperature are measured, and the MTBF is acquired using the cumulative mean of each of the measurements, whereby the reliability of diagnosis of the state of the capacitor may be improved.
Also, according to the present invention, because the MTBF for the capacitor in a modular converter is calculated, the maintenance time for the capacitor may be accurately predicted.
Hereinafter, some embodiments of the present invention will be described in detail with reference to exemplary drawings. Reference should now be made to the drawings, in which the same reference numerals are used throughout the different drawings to designate the same or similar components. In the following description, it is to be noted that, when the functions of conventional elements and the detailed description of elements related with the present invention may make the gist of the present invention unclear, a detailed description of those elements will be omitted.
It will be understood that, although the terms “first,” “second,” “A,” “B,” “(a),” “(b),” etc. may be used herein to describe various elements, these terms are only used to distinguish one element from another element, and the essentials or the order of these elements should not be limited by these terms. When a first element is described as being “connected,” “combined,” or “coupled” to a second element, it should be understood that the first element may be directly connected or coupled to the second element, or that another element may alternatively be “connected,” “combined” or “coupled” therebetween.
Referring to
To this end, the apparatus for diagnosing the state of a capacitor in a modular converter according to the present embodiment is configured to include an input voltage detection unit 110 for detecting the voltage input to the capacitor, a temperature detection unit 120, installed so as to be in contact or not in contact with the capacitor, for detecting the temperature of the capacitor, a calculation unit 130 for receiving the input voltage and the temperature, respectively detected by the input voltage detection unit 110 and the temperature detection unit 120, cumulatively adding the received input voltage and temperature during a preset time period, and calculating the cumulative mean of the cumulatively added values, and a control unit 140 for extracting an MTBF from the cumulative mean.
The input voltage detection unit 110 detects the input voltage, which is input to the capacitor from the front thereof. Here, the input voltage means the magnitude of the voltage supplied to the capacitor, which is different from the charging voltage of the capacitor. Also, the temperature detection unit 120 detects the temperature of the capacitor while in contact with the capacitor, or alternatively detects the temperature of the capacitor or the ambient temperature without being in contact therewith.
Here, in order to extract the MTBF of the capacitor from the cumulative mean of the input voltage and temperature, the present invention uses a Failure In Time (FIT) table for a modular converter. The FIT table is a table in which FIT values are defined based on the temperature and input voltage of a capacitor in a modular converter, which is the same product as the modular converter, the state of the capacitor of which is to be diagnosed. Here, a FIT value is a value that defines the time at which a failure occurs in the capacitor of the corresponding modular converter. That is, it is the fault occurrence time based on the temperature and input voltage of the capacitor of a modular converter. This FIT table may be determined based on reliable data on capacitor products produced by a manufacturer. Alternatively, in another example, the temperature and input voltage are measured through multiple experiments targeted at a plurality of the same modular converter products, and the time at which a fault occurs is measured based on the measured values, whereby the FIT table based on the temperature and input voltage of a capacitor of the corresponding modular converter may be determined.
Therefore, in the method for diagnosing the state of a capacitor in a modular converter according to the present invention, a FIT table for the modular converter, the state of the capacitor of which is to be diagnosed, is prepared in advance, and a FIT value is extracted by applying the cumulative mean of the temperature and input voltage of the capacitor of the corresponding modular converter to the FIT table, whereby the MTBF corresponding to the FIT value is extracted. Here, the Mean Time Between Failures (MTBF) is the arithmetic mean time between failures when a component, a device, or a system operates, and means the mean interval between failures. This MBTF is one of the indicators for representing how reliable a component, a device, or a system is, and the higher the MBTF, the higher the reliability.
Meanwhile, the present embodiment may further include a warning generation unit 150, and the warning generation unit 150 determines whether a fault occurrence time, predicted based on the MTBF of the capacitor, extracted by the control unit 140, has arrived, and generates a warning sound when the fault occurrence time arrives. This is intended to prompt the performance of preventive repairs, replacement, or inspection via the warning sound when the fault occurrence time, predicted based on the MTBF of the capacitor, arrives.
Referring to
Referring to
Subsequently, the calculation unit 130 calculates the cumulative mean of the multiple values, acquired by measuring the input voltage and temperature at the preset regular intervals at step S107. The cumulative mean is the arithmetic mean of the input voltage and the temperature, which are measured and cumulatively added at a preset regular interval. Then, at step S109, the control unit 140 selects the FIT value corresponding to the cumulative mean from the FIT table, which is set at step S101. Subsequently, the control unit 140 extracts the MTBF of the capacitor from the selected FIT value at step S111. Then, whether a fault occurrence time, predicted from the extracted MTBF of the capacitor, has arrived is determined at step S113. Here, when it is determined that the fault occurrence time has arrived, a step of generating a warning sound (S115) may be further included. This serves to prompt for the performance of operations such as preventive repairs, replacement, inspection, or the like via the warning sound when a fault occurrence time, predicted based on the extracted MTBF, arrives while the capacitor is in use.
Hereinafter, the process of extracting an MTBF is described. In an embodiment of the present invention, a failure rate (λ) for the multiple sample modular converters is calculated. The failure rate (λ) is calculated using the following Equation 1:
N=N
0
×e
−λt [Equation 1]
where N0 denotes the number of multiple sample modular converters, N denotes the number of modular converters that remain in a normal state after an experiment, λ denotes the failure rate, and t denotes the experiment time.
The failure rate λ may be calculated using the number of modular converters that remain in a normal state without a fault after a preset time t has passed, among the multiple sample modular converters. An MTBF is extracted from the calculated failure rate λ and the selected FIT value, using the following Equation 2:
MTBF=λ×FIT value [Equation 2]
The calculated MTBF becomes the criterion for determining how often a fault occurs, on average, in the capacitor of the corresponding modular converter. Therefore, in the present invention, the current state of the capacitor may be diagnosed using the MTBF, and when a fault occurrence time, predicted based on the MTBF, arrives, a process such as maintenance, inspection, or replacement is performed, whereby an accident that may arise from the fault of the capacitor in the modular converter may be prevented in advance.
As described above, although all components constituting an embodiment of the present invention have been described as being combined into one element or being operated as a single unit, the present invention is not limited thereto. That is, all components may be selectively combined into one or more components and operated. Also, the terms such as “include,” “comprise,” or “have” specify the presence of the stated element but do not preclude the addition of one or more other elements unless otherwise specified. Unless differently defined, all terms used here including technical or scientific terms have the same meanings as the terms generally understood by those skilled in the art to which the present invention pertains. The terms identical to those defined in generally used dictionaries should be interpreted as having meanings identical to contextual meanings of the related art, and are not interpreted as having ideal or excessively formal meanings unless they are definitely defined in the present specification.
The above description is merely an illustration of the technical spirit of the present invention, and those having ordinary knowledge in the technical field to which the present invention pertains can make modifications and variations within the range that does not depart from the essential characteristics of the present invention. Accordingly, the disclosed embodiments of the present invention are not intended to limit the technical spirit of the present invention but to illustrate the technical spirit of the present invention, and the scope of the technical spirit of the present invention is not limited to these embodiments. The range of protection of the present invention should be interpreted based on the following claims, and all technical spirit within the range equivalent to the claims should be construed as falling within the range of the rights of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0195574 | Dec 2014 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2015/014492 | 12/30/2015 | WO | 00 |