The present invention relates to initiating an involuntary reflex cough test for diagnosing physiological abnormalities, and more particularly, to testing and diagnosing at least the urethral sphincter.
Commonly assigned U.S. patent application Ser. No. 13/456,841 discloses a system and method that tests the gastric valve and urethral sphincter in a patient. A contrast agent is administered into the esophagus of a patient followed by inducing an involuntary reflex cough epoch within the patient to isolate the gastric valve from the lower esophageal sphincter (LES) and isolate the external urethral sphincter from the internal urethral sphincter. An imaging sensor detects the flow of the contrast agent during the involuntary reflex cough epoch and determines whether stomach reflux occurred indicative of a malfunctioning gastric valve. A determination is made if urine leakage occurs indicative of stress urinary incontinence (SUI).
The flow of contrast agent can be detected at the level of the LES using a fluoroscopic instrument configured to image the contrast agent. A chemo-irritant can induce the involuntary reflex cough epoch using a nebulizer. Barium sulfate is a preferred contrast agent that is swallowed by the patient. Typically, the involuntary reflex cough epoch is induced following the administration of that contrast agent.
A urinary catheter having a pressure sensor is inserted within the bladder. An EMG is obtained from the involuntary cough activated intercostals and the data processed from the pressure sensor with the EMG to estimate the severity of the SUI. The EMG can be obtained from the paraspinals.
It is desirable if further analysis and treatment of the internal urethral sphincter (IUS) and internal anal sphincter (IAS) are accomplished by observing the pulmonary inspiration efferents that illicit a pattern reflex motor response to test and diagnose lower esophageal sphincter (LES) and/or the internal urethral sphincter (IUS).
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
A method for treating at least one of the urethral and anal sphincters in a patient includes inducing an involuntary reflex cough event within the patient to determine whether a dysfunction exists in at least one of the urethral and anal sphincters. If a dysfunction is determined to exist, then contracting a muscle located at one of at least the urethral and anal sphincters during an inspiratory phase of respiration.
The method includes detecting changes in intra-abdominal pressure to determine the inspiratory phase of respiration. The method also includes detecting movement of the ribs in a patient during inspiration and expiration for determining the inspiratory phase of respiration. The method also includes detecting movement of the ribs using sensors placed at the anterior surface of the medial border of the costal margin of ribs 8, 9 or 10. The muscle may be contracted by applying a current into the muscle. Electrodes may be implanted on the muscle and applying current to the electrodes for stimulating the muscle to contract. Control signals may be transmitted to the electrodes to initiate electrical stimulation from a control unit in communication with the electrodes. The control unit is embedded in the abdominal wall. The control signals may be transmitted from the control unit to the electrodes through either microwires connecting the control unit and electrodes or wirelessly from the control unit to the electrodes. A muscle may be activated by a mechanical mechanism on at least one of the urethral or anal sphincters to close the sphincter. Endpoints for rib cage movement may be determined.
Other objects, features and advantages of the present invention will become apparent from the detailed description of the invention which follows, when considered in light of the accompanying drawings in which:
Different embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments are shown. Many different forms can be set forth and described embodiments should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope to those skilled in the art.
Commonly assigned U.S. patent application Ser. Nos. 13/456,882 and 13/456,841 filed on Apr. 26, 2012, (U.S. Patent Publication Nos. 2012/0277583 and 2012/0277547) by the same inventors and which are hereby incorporated by reference in their entirety, disclose system and methods for testing the gastric valve and urethral sphincter and with analysis of the lower esophageal sphincter. Further developments, however, have now been made at observing the effect of respiration on intrinsic sphincters such as the lower esophageal sphincter (LES) and internal urethral sphincter (IUS).
The functions of the lower esophageal sphincter (LES) an internal urethral sphincter (IUS) have now been analyzed during voluntary and involuntary respiratory maneuvers. A prospective barium videoflouroscopy study (BSV) of the LES on four healthy adult men during voluntary cough (VC) was performed together with the laryngeal expiration reflex (LER), breath-hold maneuvers, and normal inspiration. One subject had fiber-optic pressure catheters placed in the LES and IUS, and electromyographic recording of the right T7-8 intercostals during respiration. The BSV showed closure and relaxation of the LES corresponding to the inspiration and expiration of VC. The LES was patent during the LER. There was closure of the LES during the deep inspiration/breath-hold event. Pressure catheters in the LES and IUS showed increased pressure during inspiration. These observations suggest that pulmonary inspiration afferents elicit a patterned reflex motor response in the LES and IUS, referred to as the inspiration closure reflex (ICR).
Test results have determined there is an Inspiration Closure Reflex (ICR) control of the IUS (Internal Urethral Sphincter). An IAP (Intra abdominal Pressure) transducer has been used for the study and data. A processor is programmed to correlate the IA (Intra abdominal) pressure changes and the associated duration of each event (as detected by the pressure transducer) with corresponding stimulation of the smooth muscle of the IUS, and/or the striated muscle of the EUS (external urethral sphincter) and/or AS (anal sphincter). Muscle stimulators may be implanted using trans-urethral or trans-vaginal approaches and connected to a processor as part of a receiver either directly such as with microwires or indirectly such as using wireless communication, for example, Bluetooth or other wireless communication.
A trans-vaginal approach is favored when a microwire is inserted via subcutaneous trochar as from the mid-line, suprapubic and inferior border of the pubic ramus. Vaginal palpation occurs at the distal end of the microwire for a muscle stimulator to the IUS, EUS, and/or AS. The confirmation of placement may be accomplished by the use of a urethral pressure catheter. It is possible to palpate the wire passing posterior to the vagina and palpate its placement adjacent to the AS surrounding the anus as distal about one inch of the rectum. The AS stimulation is confirmed by a rectal pressure catheter. The transducer and microprocessor may be connected to the stimulator via a wireless connector. A power source and electronic stimulator may be proximate to the targeted sphincter muscles in this system and apparatus.
Displacement of the diaphragm may be detected by one or two sensors 32a, 32b or other type of transducers, which are implanted at or on the medial costal border of the eighth rib using a trochar device to implant the small, cylindrical transducers. These motion sensors 32a, 32b as transducers detect the movement of the lower rib cage during deep inspiration. This movement of the rib cage during inspiration occurs as a result of contraction of the diaphragm and the corresponding expansion of the thoracic cavity and abdominal cavity. During inspiration, the costal margins of ribs 8-10 move supero-laterally and the two motion sensors 32a, 32b as illustrated in
It is possible to calibrate the system using a remote control device or computer 52 that is linked to the control unit 34 and operative as a transmitter/receiver and may be used to set the inspiration/expiration endpoints of the rib cage movement via transmission of signals wireless in this example using a transmitter/receiver circuit 52a in the remote device 52. This calibration is performed in the clinical setting by a clinician. The clinician will ask the patient to completely exhale and will then press a [set] button 52b on the remote device 52 at the end of complete exhalation. The motion sensors 32a, 32b may be directly or indirectly connected to the devices 42, 44 as electrodes in this example that close the IUS and/or IAS through muscle contraction, which will control intrinsic sphincter closure based on deep inspiration and the associated inspiration closure reflex as a normal neurological event linked to significant inspiration.
The clinician will ask the patient to deeply inhale (inspiration) and then press the [set] button 52b at the end of deep inspiration. The remote device computer 52 is linked by radio frequency, Blue-Ray or other similar communications link such as to the control unit 34 or directly to the sensors 32a, 32b and will record the inspiration/expiration endpoints and the associated range of rib cage movement. The mode of transmission of signals from the motion transducers 32a, 32b is transmitted by, but not limited to, direct or indirect communication connections to the implanted control unit 34, which can also act as a communications receiver for signals from the sensors 32a, 32b, and through a transmitter function, initiate one or more devices that cause: (1) electronic simulation of the IUS and/or IAS smooth muscle, which will contract these smooth muscle sphincters and prevent voiding and/or evacuation through electronic means; or (2) mechanical closure of the IUS and/or IAS, which contract these smooth muscle sphincters and prevent voiding and/or evacuation; through mechanical means. There can be direct or indirect connection to a mechanical and/or electronic devices, which will close these sphincters through electronic or mechanical means. The closure of these sphincters by these devices may be synchronized with the inspiration closure reflex (ICR), a normal neurological event, which occurs with deep inspiration and thereby increases intrinsic sphincter tonicity prior to a potential increase in intra-abdominal pressure (IAP).
The control unit 34, which is usually implanted, will detect the start of inspiration through the sensors 32a, 32b and initiate corresponding simulation of the microelectrodes or other devices 42, 44 at the internal urethral sphincter (IUS) 46 and/or internal anal sphincter (IAS) 48 and thereby increase sphincter tonicity. The device operates through its communications circuitry 35. During urinary voiding or evacuation of the bowel, the control unit 34 may be temporarily turned off and permit volitional voiding and/or evacuation of the urinary bladder or bowel, respectively. Pressing an ‘on’ button again, resets the device to the previous setting for respiration and control of sphincter tone and allows synchronizing of the devices or electrodes 42, 44 with the patient's inspiration.
The description relative to
The process shown relative to
Detection of diaphragmatic contraction is anatomically complicated by its close proximity to adjacent structures. Any implants or electrodes in the diaphragm may damage or injure these structures, e.g., heart, lungs, gastrointestinal tract, abdominal organs, etc., or cause a pneumothorax, hemothorax or similar breech of the pleural cavity. Thus, such a device may not be desirable. The system usually will not use a device to detect electrical activity of the phrenic nerve.
This type of system is more reliable than a phrenic nerve stimulator. If neuropathy is the cause of the ICR breakdown, it is possible to assume all nerves have some degree of ongoing neuropathy, which may get worse. If the phrenic nerve fails to activate the diaphragm, thus causing shorter movements, it may be assumed that the same process occurs with the Inferior Hypogastric Plexus to the ICR. It is possible to override these deficits to the ICR and reset the closure variables, adjustable over time, using a more reliable method than nerve assessment or activation.
The phrenic and diaphragm may be adequate but the lumbosacral stenosis injures the nerves that close the IUS. Any closure settings by this detection would be different compared to the phrenic nerve and diaphragm function. IUS activation is based in this instance on the present ability to activate the diaphragm, reflected by rib movements. If a subject is restricted in inspiration, COPD, arthritis, kyphosis or restrictive patterns of breathing, the system resets the IUS closure sensitivity to less activation from the ribs. These settings may be individually customized by the Urologist and may occur in many different patterns. Based on the ICR deficit, they are adjustable by the urologist in the clinic or with an urodynamics examination. The adjustment may be compared to other adjustment technologies, e.g., insulin, pain medicine or intrathecal Baclofen pumps. There is an override to void if the subject cannot relax and possibly deactivate a sensitive ICR setting, similar to a restrictive, kyphotic type patient. Many other options are possible.
Tunneling for the microwires 50 to the electrodes 42, 44 is straightforward to the level of the pubis. Connecting a microwire 50 to an electrode 42, 44 (or electrode array arranged on a tape), however, may require another step. It is possible to use a curved trochar or instrument similar to that used for a supra-pubic urinary bladder suspension. The wire is connected to the tape when electrodes are contained on the tape and pulled into place by palpating the placement per vagina.
The electrodes 42, 44 adjacent to the IUS and IAS may require a power supply and there may not be room for the power supply in the area of the pelvis, but there are improvements in power supply, especially since MEMS technology may be used for sensors and power supplies. The electrodes 42, 44 as stimulators are small and do not migrate. Another consideration for design and placement is the vascular layout of vessels and pathway of nerves, which in this area may be problematic.
It may be possible to use sensors 32a, 32b that are programmed to work with each other and the transponder devices such as the electrodes 42, 44 by movement changes. It is possible to activate the electrodes 42, 44 without wire placements. Electrodes may also be activated by sensors directly attached to them so that there are no wires and the sensors/electrodes are formed as integrated units. Possible communication linkages include Bluetooth or similar wireless technology to activate the electrodes from the control unit 34.
IRCT (involuntary reflex cough test) testing will provide more reliable data sampling of extubation failure risk than VC (voluntary cough) and especially tracheostomies, which are the majority of prolonged intubated patients. There are many variables to the possible scenarios and they require clinical judgment. It is possible to add a micro tube with a transducer that can plug into a processing device, such as the handheld processing device shown in
Many prolonged intubated patients are converted from Ng/Og tubes to PEGS or J tubes for feeding, and many intubated patients are changed to tracheostomy tubes if it is a prolonged illness. Doctors continually attempt to determine what variables are required to extubate from the larynx or decannulate safely from the larynx with the least risk of reintubation. Some patents require this for post operative pneumonia prevention. Patients that receive tracheostomies are usually sicker, weaker and have a higher risk of decannulating. If it fails, the patient is not in a good place with airway management, and stomas close quickly. Many tracheostomies are usually accompanied by tube feeding from Ng, PEG or J-tubes. The doctor or the clinician may have these tubes with pressure sensors for measurement already in place with the ability to plug into a processing device to measure, or have the ability to insert a transducer to measure through these tubes, which can be removed.
It should be understood that function of the lower esophageal (LES) and internal urethral (IUS) sphincters has not been reported during voluntary and involuntary respiratory maneuvers. As noted before, prospective, barium videofluoroscopy study (BSV) of the LES was performed on four healthy adult males during voluntary cough (VC), laryngeal expiration reflex (LER), breath hold maneuvers and normal inspiration. One subject had fiberoptic pressure catheters placed in the LES and IUS, and EMG recording of the right T7-8 intercostals during respiration.
The BSV showed closure and relaxation of the LES corresponding to the inspiration and expiration of VC. The LES was patent during the LER. There was closure of the LES during the deep inspiration/breath hold event. Pressure catheters in the LES and IUS showed increased pressure during inspiration. These observations suggest that pulmonary inspiration afferents elicit a patterned reflex motor response in the LES and IUS, referred to as the Inspiration Closure Reflex (ICR).
The respiratory cycle is modified in many ways and by many influences that also activate the expiratory muscles for respiration. When the lung was distended by inspiration, pulmonary afferent impulses were conveyed to the brainstem via the Vagus nerve, and these afferent impulses reflexively initiated expiration. When the lung was deflated, other pulmonary afferent receptors were stimulated, and their impulses, also conveyed to the brainstem by the Vagus nerve, reflexively initiated the next inspiration.
Voluntary cough (VC) and the laryngeal expiration reflex (LER) as an involuntary cough have been used for assessment of stress urinary incontinence (SUI) in women and neurological airway protection in humans. The urodynamic tracings from SUI clinical trials suggest that the inspiration during VC stimulates pulmonary afferent fibers that may directly activate closure of the internal urethral sphincter (IUS).
Commonly assigned U.S. application Ser. No. 13/354,100 filed Jan. 19, 2012 by the same inventors, the disclosure which is hereby incorporated by reference in its entirety, discloses a system and method of diagnosing acid reflux using an involuntary reflex cough test. In one example as disclosed, a nasogastric/orogastric (Ng/Og) device is inserted into the stomach and the involuntary reflex cough epoch induced. The intra-abdominal pressure and elevational reflux along the Ng/Og device is measured. In an example, the functional status of the gastric valve is determined based on the measured intra-abdominal pressure and elevational reflux along the catheter.
Use of the involuntary reflex cough test with or without a voluntary cough test is also disclosed in commonly assigned U.S. patent application Ser. Nos. 11/608,316 filed Dec. 8, 2006; 11/550,125 filed Oct. 17, 2006; 12/643,134 filed Dec. 21, 2009; 12/643,251 filed Dec. 21, 2009; 12/878,257 filed Sep. 9, 2010; 12/878,281 filed Sep. 9, 2010; and 12/878,316 filed Sep. 9, 2010; the disclosures which are all hereby incorporated by reference in their entirety. The '257, '281 and '316 applications disclose oral-esophageal-gastric devices, some with esophageal cuffs and/or reflux measurement systems that can be used to assess GERD or determine stress urinary incontinence in some examples using the involuntary reflex cough tests alone or in combination with the voluntary cough test.
There now follows a discussion of materials and testing method. The test included a prospective, barium swallow videofluoroscopy (BSV) study. Four normal, healthy male subjects participated in the BSV study. One of the subjects also underwent evaluation of the IUS and LES using fiberoptic pressure catheters. After review of the study protocol, informed consent was obtained from all subjects. BSV studies of the LES were performed using only thin barium solution in each subject. The subjects were standing for all BSV test maneuvers using a standing anterior-posterior view. Videofluoroscopic photomontages were captured at three second intervals and analyzed for each maneuver.
For the VC, each subject swallowed a small cup of thin barium solution followed immediately by a deep inspiration and a VC. The BSV captured, at the level of the LES, a photomontage of the barium flow during the VC.
The breath hold maneuver required the subject to perform a deep inspiration and breath hold followed immediately by swallowing a small cup of thin barium solution. The BSV captured, at the level of the LES, a photomontage of the barium flow during the breath hold voluntary maneuver. All of the photomontages were visually analyzed to determine the relationship of the barium to the position of the LES and diaphragm.
The induced reflex cough test is a cough provocation test that stimulates the laryngeal expiratory reflex (LER). The LER is a series of expiratory coughs (cough epoch) without a significant preceding inspiration. This LER cough epoch caused 5 coughs (C5) with an average duration of 14.8 seconds. The following materials were used to perform the IRCT: a) vial containing a 20% solution of tartaric acid (Nephron Pharmaceutical, Inc; Orlando, Fla.); b) Pari LCD jet nebulizer (Bonn, Germany); c) oxygen flow meter; d) oxygen tank; and e) gloves and safety mask. The jet nebulizer was FDA approved for use in the U.S. and bore the CE Marking designating the manufacturer's compliance with Council Directive 93/68/EEC.
For the BSV study using the IRCT, the subject swallowed 50 ml. of thin barium solution immediately followed by administration of the IRCT. The BSV captured, at the level of the LES, a photomontage of the flow of barium, during the LER involuntary cough maneuver.
One subject also had both nasogastric and urethral fiberoptic, disposable catheters (#10 and #7 French catheters, respectively) with the pressure sensors placed at the level of the LES and IUS, respectively. Electromyography (EMG) electrodes were placed at the mid-axillary line of the T7-8 intercostal space and were used to confirm the inspiratory activity of the intercostal muscles. The Lumax TS Pro was used to record LES and IUS pressures and EMG activity. All urodynamic (UD) equipment and catheters used in this study were FDA approved for use in the U.S. and bore the CE Marking designating the manufacturer's compliance with Council Directive 93/68/EEC.
The one subject, who participated in the catheter portion of the study, was positioned in a semi-recumbent lithotomy position (approximately 60 degrees head up) such as using the structure shown in
BSV followed immediately by VC showed transient interruption of barium at the LES during inspiration, which released with expiration such as shown in the images in
Deep inspiration and breath hold immediately followed by BSV showed complete interruption of barium at the LES during the entire breath hold event as shown in
In
BSV followed immediately by LER activation, using the IRCT, showed no interruption of barium at the LES during expiratory coughs as shown in
In the subject, who participated in the catheter portion of the study, the rapid closure and pressure elevation of the IUS after the initiation of each inspiration is shown in
Breath hold caused sustained pressure elevation in the LES (PLES) and IUS (PIUS) and corresponded to overlying voluntary contractions of the external urethral sphincter EUS (PEUS) and pelvic floor musculature as shown in the graph of
Respiratory physiology. Bishop further identified expiratory muscle activation as an extension and component of the Breuer reflex. The studies described above suggest that the respiratory maneuvers for control of the closure and pressure of the IUS and LES during inspiration and release with expiration appear to be coordinated and synchronized with the rate and depth of inspiration. This is referred to as the Inspiration Closure Reflex as shown in
In
During slow, deep breathing and rapid, shallow breathing, pressure waves indicated the respiratory rate and depth dependent variation (
Control of the LES may be due to upper and lower esophageal reflexes and diaphragmatic reflexes, i.e., a crural reflex. Some studies refer to transient relaxation or inhibition of the LES in association with swallowing obstructive sleep apnea, mechanical ventilation and a negative pressure body ventilator. In previous animal and human studies, respiration pressure “artifacts” in the LES and IUS were not noted or were electronically filtered by manometry instruments. There may be respiratory influences on intrinsic sphincter function that have not been adequately evaluated.
In animal models that require cannulation for respiration and/or positive mechanical ventilation, or in anesthetized animals or humans, the ICR may not have been observed. There has been some description of a “straining crural reflex” during the Valsalva maneuver that caused LES closure by esophageal-diaphragmatic reflexes. In human studies with a negative pressure body ventilator (“iron lung”), pulmonary inspiration afferent fiber activity was abolished during negative pressure inspiration in healthy, non-anesthetized subjects. This type of negative inspiration pressure ventilation and the absence of the subject's initiation of pulmonary inspiration afferent fibers abolished or significantly diminished manometric pressure of the LES during inspiration.
During breath hold, the elevated pressures of the IUS and LES were sustained during the entire breath hold event. The volitional contractions of the EUS and pelvic floor muscles were observed on top of the IUS pressure wave, which were not present on the elevated LES pressure tracing (
These studies on IUS and LES activity, during respiratory events, suggest that if pulmonary inspiration afferent fibers are activated, these intrinsic sphincters close with every inspiration and release with every expiration. During voluntary maneuvers such as VC, Valsalva maneuver, or sneezing, these intrinsic sphincters release tonicity with expiration. The degree of intrinsic sphincter closure appears to vary with the rate, depth or volitional modification of inspiration. The LES and IUS pressure responses seen in this study appear similar to the “respiration artifacts” in other studies. It is possible that the IUS closure and pressure elevation related to inspiration could give a structural advantage at the neck of the urinary bladder to prevent incontinence as shown in
There were a small number of subjects in the study, but the findings were method-dependent and reproduced in the four normal, healthy subjects for BSV and the one subject who had both the BSV and catheter studies.
As noted before, there is a control unit 34 as shown, for example, in
There now follows detail of the disclosure from the incorporated by reference '841 patent application.
Research on the LES and gastric valve indicates that problems arise with the gastric valve and there is a need for an available test to assess the competency of the gastric valve. In accordance with a non-limiting example, the involuntary maneuver, i.e., the involuntary cough test is employed.
The sequence begins with a barium swallow (block 130) immediately followed by the involuntary reflex cough test, i.e., iRCT, such as by inhaling a chemo-irritant such as L-tartrate through a nebulizer in one non-limiting example (block 132). The involuntary reflex cough test isolates the gastric valve from the LES. A determination is made using video fluoroscopy, for example, if the reflux has occurred (block 134). If not, the gastric valve is competent and correctly functioning (block 136). If reflux occurs, then the gastric valve is incompetent and is malfunctioning since it is allowing the reflux (block 138). It is possible to determine the severity of the reflux (block 140), for example, by measuring the amount of reflux that occurs during the involuntary reflex cough epoch to estimate the severity of the malfunctioning gastric valve. This can be accomplished using enhanced fluoroscopy or using a Ng/Og catheter located at the LES or other location as later described to determine the extent of reflux.
The process begins by inserting a urinary catheter in the patient with a pressure sensor in one example and a sensor located at the internal urethral sphincter in an example. The Ng/Og tube may include at least one sensor to be positioned at the LES and pH sensor at different positions. EMG pads can also be positioned at appropriate locations at the mid-axillary line of the T7-8 internal space (block 150). This could also include the paraspinals. The bladder is filled such as with saline solution (block 152). Barium or other contrast material is swallowed (block 154) and the involuntary reflex cough test induced (block 156). Two analysis paths are shown. A determination is made whether urine leakage occurred (block 158). If not, then the external urethral sphincter is competent and functioning adequately (block 160). If yes, then the external urethral sphincter leaked indicative of stress urinary incontinence (SUI) (block 162). Some determination of the severity of SUI or other problems can possibly be determined through analyzing the EMG results together with any intra-abdominal pressure that has been recorded during the involuntary reflex cough epoch. Reference is also made to the incorporated by reference applications for appropriate data and analysis regarding same. A determination is also made whether reflux occurred (block 164). If not, then the gastric valve is competent and functioning adequately (block 166). If yes, then the gastric valve is incompetent and is not functioning correctly (block 168). By using a Ng/Og tube or advanced imaging of the contrast agent, e.g., Barium Sulfate, it is possible to determine the severity of the reflux (block 170) such as measuring the amount of reflux at the LES and other locations within the esophagus.
A patient kit for assessing the gastric valve in conjunction with fluoroscopy and the EUG can be provided and an example is shown in
1) Pneumoflex or USA Flex 20% tartaric acid in 3 ml unit dose vial 202;
2) 1000 ml Barium sulfate USP 204;
3) Ion Nebulizer or Crossfire Nebulizer 206;
4) Swivel adapter for nebulizer 208;
5) Protocol information sheet 210;
6) EMG pads 212;
7) Ng/Og tube or catheter 214; and
8) Urinary catheter 216.
The purpose of this kit 200 is to simplify the assessment of the gastric valve functioning (and/or external urethral sphincter) using the involuntary maneuver, i.e., involuntary reflex cough test (iRCT) to increase the intra-abdominal pressure to isolate the gastric valve while inhibiting the LES and, in some examples, isolating the external urethral sphincter. Evidence of gastric reflux can be observed directly using video fluoroscopy and evidence of SUI determined by isolating the external urethral sphincter to determine when there is urine leakage.
As shown in
It is well known that the gastric valve allows food to enter the stomach but prohibits reflux of gastric acid into the esophagus. As to the patient kit 200, one aspect is the use of the swivel adapter 208 for the nebulizer such that when the patient is turned over, the nebulizer through use of the swivel adapter can be more readily used by a doctor.
There have been a number of previous tests to distinguish different urinary incontinence problems including: 1) increasing the intra-abdominal pressure using a Valsalva maneuver; 2) having the patient jump up and down; or 3) generating one or more strong voluntary coughs. Through much clinical work, such as described herein and in the copending and incorporated by reference patent applications identified above, it has been determined that the involuntary reflex cough test (iRCT) activates the nucleus ambiguus, as compared to the voluntary reflex cough test.
This application is related to copending patent application entitled, “SYSTEM TO TREAT AT LEAST ONE OF THE URETHRAL AND ANAL SPHINCTERS,” which is filed on the same date and by the same assignee and inventors, the disclosure which is hereby incorporated by reference.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.
This application is a continuation-in-part application of commonly assigned U.S. patent application Ser. No. 13/456,841 filed on Apr. 26, 2012; and this application claims priority to U.S. provisional patent application Ser. No. 61/738,027, filed Dec. 17, 2012, and U.S. provisional patent application Ser. No. 61/756,246, filed Jan. 24, 2013, the disclosures which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61756246 | Jan 2013 | US | |
61738027 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13456841 | Apr 2012 | US |
Child | 13838790 | US |