The subject matter disclosed herein relates to gas turbine systems, and more particularly to a method for dimensionally inspecting a component of such gas turbine systems.
Gas turbine system components undergo a dimensional analysis prior to assembly with other gas turbine system components to ensure that the dimensions of the component are within an acceptable tolerance range. Dimensions falling within the acceptable tolerance range allow the component to assemble within the overall gas turbine system properly and operate as intended. Conversely, deviation from the acceptable tolerance range prevents or inhibits assembly and/or intended operation. The dimensional analysis of the component, such as a transition piece, for example, may include various techniques, including employing a hard-gage tool and often require the dimensional analysis to be conducted in a specific location.
According to one aspect of the invention, a method for dimensionally inspecting a component of a gas turbine system is provided. The method includes disposing the component on a fixture for stabilizing the component. Also included is probing a first datum location of the component with a coordinate measurement machine for establishing a first datum point. Further included is probing at least one location of the component with the coordinate measurement machine to determine at least one measurement relative to the first datum point. Yet further included is displaying the at least one measurement in an output report.
According to another aspect of the invention, a method of dimensionally inspecting a component of a gas turbine system is provided. The method includes disposing the component on a fixture for stabilizing the component. Also included is probing a plurality of locations of a surface of the component with a portable coordinate measurement machine in response to a series of prompts provided by a graphical user interface to a user, wherein probing the plurality of locations records at least one measurement. Further included is comparing the at least one measurement to a predetermined dimensional tolerance range.
According to yet another aspect of the invention, a method of recording dimensional data for a transition piece of a gas turbine system is provided. The method includes probing at least one datum location on a surface of the transition piece with a portable coordinate measurement machine. Also included is probing at least one location on the surface of the transition piece with the portable coordinate measurement machine for recording at least one measurement relative to the at least one datum location. Further included is comparing the at least one measurement to a predetermined dimensional tolerance range. Yet further included is displaying the at least one measurement in an output report.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Referring to
The transition piece 10 includes an inlet end 12 that is configured to be in operable communication with at least one, but typically a plurality of combustor cans (not illustrated) arranged in an annular array for supplying hot combustion gas to the transition piece. The transition piece 10 also includes an outlet end 14 that is configured for communication with an inlet of a turbine section (not illustrated) for transferring the hot combustion gas to the turbine section, where the hot combustion gas passes over a plurality of rotor blades, thereby driving a rotor shaft. The transition piece 10 may be of various geometric configurations and sizes, depending on the specific type of gas turbine system that the transition piece 10 is to be employed within. As noted above, the transition piece 10 is configured to be assembled in a manner that disposes the transition piece 10 to be in operable communication with the combustor cans and the turbine section, among other components within the gas turbine system. To facilitate proper assembly, the transition piece 10 includes a plurality of critical to quality (CTQ) dimensions that allow the transition piece 10 to be assembled in conjunction with various other components of the gas turbine system. The CTQ dimensions comprise various measurements between a plurality of locations on a surface 16 of the transition piece 10 and includes height, width, length and combinations thereof. The CTQ dimensions include predetermined dimensional tolerance ranges that account for manufacturing variations, while still allowing the transition piece 10 to assemble and operate properly.
In order to determine whether the CTQ dimensions of the transition piece 10 are within the predetermined dimensional tolerance ranges, a dimensional analysis of the transition piece 10 is conducted. During the dimensional analysis, the transition piece 10 is disposed on a fixture 18 configured to securely support and stabilize the transition piece 10. The fixture 18 is adjustable to adaptably support various transition pieces having distinct sizes and/or geometry. Specifically, the fixture 18 includes an upstream support 20 for supporting a region of the transition piece 10 proximate the inlet end 12. The upstream support 20 may displace, such as in a first direction 22, for example, along a first at least one guide 24 and is locked in place with a fastener 26. Additionally, the fixture 18 includes a downstream support 28 for supporting a region of the transition piece 10 proximate the outlet end 14. The downstream support 28 may also displace, such as in a second direction 30, for example, along a second at least one guide 32. The fixture 18 may also include a fastener belt (not illustrated) to further ensure stabilization of the transition piece 10.
Referring now to
Referring now to
Accordingly, a user may portably measure the transition piece 10 and is prompted by the CMM 34 to precisely measure CTQ dimensions along various portions of the surface 16 of the transition piece 10. In addition to providing a user-friendly measurement taking process, the CMM 34 records and displays the actual measurements and compares the measurements to acceptable dimensional ranges.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4222172 | Mason | Sep 1980 | A |
5107599 | Marincic et al. | Apr 1992 | A |
5408754 | Raab | Apr 1995 | A |
5412877 | McKendrick | May 1995 | A |
5625959 | Ercole et al. | May 1997 | A |
5829151 | Collier et al. | Nov 1998 | A |
6145212 | Geise et al. | Nov 2000 | A |
6298572 | McAuley | Oct 2001 | B1 |
6525500 | Hatley et al. | Feb 2003 | B2 |
6532840 | Hatley et al. | Mar 2003 | B2 |
6598306 | Eaton | Jul 2003 | B2 |
6817108 | Eaton | Nov 2004 | B2 |
6842995 | Jones et al. | Jan 2005 | B2 |
6957496 | Raab et al. | Oct 2005 | B2 |
7017431 | King et al. | Mar 2006 | B2 |
7178255 | Roesel et al. | Feb 2007 | B1 |
7310889 | Stamenkovic | Dec 2007 | B2 |
7662091 | Bagley et al. | Feb 2010 | B2 |
7840367 | Little et al. | Nov 2010 | B2 |
7918433 | Melton et al. | Apr 2011 | B2 |
7921575 | Little et al. | Apr 2011 | B2 |
8229208 | Pulla et al. | Jul 2012 | B2 |
8453337 | Lacy | Jun 2013 | B2 |
20100030514 | Lange et al. | Feb 2010 | A1 |
20100046008 | Ghulam | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
WO2008124915 | Oct 2008 | WO |