Method for displacing a movable part and sliding roof system for carrying out such a method

Information

  • Patent Application
  • 20080065296
  • Publication Number
    20080065296
  • Date Filed
    September 11, 2006
    18 years ago
  • Date Published
    March 13, 2008
    16 years ago
Abstract
A device and a sliding roof system for displacing a movable part (16), in which the part (16) is displaceable in a setpoint displacement range (60) between two end positions (62, 64) with a motor-driven drive unit (24), and the displacement position of the part (16) can be sensed using an electronic unit (50) of the drive unit (24), and, in an emergency displacement mode, the part (16) is manually displaceable; an action range (68, 70) is located at least one end position (62, 64) outside of the setpoint displacement range (60), and the electronic unit (50) is used to monitor whether the part (16) enters the action range (68, 70) in order to subsequently initiate a calibration or recalibration of the drive unit (24) and/or to prevent further displacement in the action range (68, 70).
Description

BRIEF DESCRIPTION OF THE DRAWING

Exemplary embodiments of the present invention are presented in the drawing and are described in greater detail in the description below.



FIG. 1 shows an inventive sliding roof system for carrying out the inventive displacement method, and



FIG. 2 is a schematic illustration of a depiction of the different ranges of the displacement method.






FIG. 1 shows a sliding roof system 10, with which an opening 14 is formed in a motor vehicle roof 12; opening 14 can be closed using a movable part. In this depiction, movable part 16 is designed as a sliding roof 18, which is guided in a frame 22 of opening 14. As further movable parts 16, a sun shield 19 or a component of a sun shade 20 can be displaced between end positions 62, 64. Movable part 16 is moved by a motor-driven drive unit 24, which is designed as an electric motor 25. If drive unit 24 is supplied with current via a commutator 26, for example, an armature 28 located on an armature shaft 30 is started rotating. Armature shaft 30 is coupled mechanically with movable part 16 via a gearbox unit 32, which is designed, e.g., as a worm gear pair 33. To this end, movable part 16 is connected, e.g., with lifting coils 34 which are displaced using gearbox unit 32 in order to displace part 16 as indicated by arrow 36 in FIG. 1.


Drive unit 24 includes a position sensor system 40 for detecting the position of movable part 16. In the exemplary embodiment, a magnetic signal transducer 42—designed, e.g., as a ring magnet 44—is located on armature shaft 30. A signal receiver 46 is located diametrically opposed to signal transducer 42, which is formed by two separated Hall sensors 48 in the exemplary embodiment. Signal receiver 46 is connected with an electronic unit 50 of drive unit 24. When part 16 is displaced, position sensor system 40 generates an incremental signal, which is evaluated accordingly in electronic unit 50. Position sensor system 40 does not include home position detection. To calibrate drive unit 24, therefore, part 16 is moved, e.g., up against a stationary mechanical stop 52—which is formed by frame 22 in the exemplary embodiment—when opening 14 is closed completely.


If motor-driven drive unit 24 is defective, part 16 can be closed in a manual emergency displacement mode, e.g., to prevent rain from entering. To do this, e.g., an emergency crank 54 is inserted in gearbox unit 32 in order to actuate it manually. As an alternative, movable part 16 can be displaced directly by hand. The emergency displacement mode is designed such that motor-driven drive unit 24 also remains coupled with movable part 16 in a mechanically unequivocal manner while it is being displaced manually. In the exemplary embodiment, it is also ensured that, if motor-driven drive unit 24 is defective, electronic unit 50—at the least—is supplied via an emergency power supply. Position sensor system 40 can therefore also sense the position of part 16 in the manual emergency displacement mode.


A setpoint displacement range 60 of this type is depicted schematically in FIG. 2, and it is limited by a first end position 62 and a second end position 64. End position 62 corresponds to the closed state, and end position 64 corresponds to the opened state of opening 14. Outside of setpoint displacement range 60, tolerance ranges 66 are located on both sides of end positions 62, 64; if part 16 moves slightly past end positions 62, 64, this is tolerated without affecting the calibration of drive unit 24. In addition, action ranges 68 and 70 are located on both sides, outside of setpoint displacement range 60, which part 16 does not enter when it is displaced via motor-driven drive unit 24. First action range 68, which, in first end position 62—“closed”—is located outside of setpoint displacement range 60, is limited, e.g., by stationary stop 52, which can also be contacted in order to recalibrate motor-driven drive unit 24. Second action range 70, in end position 64—“open”—is not limited, for example, on the side facing away from end position 64. If part 16 is now moved by hand, in the manual emergency displacement mode, past end positions 62 or 64 and past tolerance ranges 66 and 68, part 16 enters first action range 68 and/or second action range 70. Electronic unit 50 detects the fact that part 16 has entered action ranges 68, 70. As a result, electronic unit 50 initiates an action program which ensures that motor-driven drive unit 24 is recalibrated correctly for the next motor-driven displacement procedure within setpoint displacement range 60. This can take place, e.g., by automatically moving part 16 against stationary stop 52 for recalibration as soon as motor-driven drive unit 24 becomes operable again, or as soon as another displacement command is issued to displace the part in setpoint displacement range 60. This means electronic unit 50 “automatically” senses that part 16 was moved in the emergency displacement mode as soon as part 16 is located in one of the action ranges 68 or 70. Drive unit 24 is decalibrated and transferred to an initializing state. In the recalibration, setpoint displacement range 60, tolerance ranges 66 and action ranges 68, 70 may need to be relearned and stored in electronic unit 50.


It should be noted that, with regard for the exemplary embodiments presented in the figures and the description, many different combinations of the individual features are possible. For example, tolerance ranges 66 can be eliminated, or an action range can be defined on only one side of setpoint displacement range 60. User-specific program sequences can be stored in electronic unit 50, which are activated as soon as part 16 enters one of the action ranges 68 or 70. Motor-driven drive unit 24 is not limited to an electric motor 25, and position sensor system 40 can be designed, e.g., as an optical system, or it can be sensed via the waviness of the motor current. The inventive displacement method is preferably used for motor vehicle sliding sunroofs 10, particularly for “panorama roofs”. Several sliding sunroofs 18 can also be displaced simultaneously, which are moved into a lifted position, e.g., when displaced within setpoint displacement range 60 to a lifting point 56. As a further variation, a sliding sunroof includes a lifting point 56 which coincides with the “open” end position 64.

Claims
  • 1. A method for displacing a movable part (16) in a setpoint displacement range (60) between two end positions (62, 64) using a motor-driven drive unit (24); the displacement position of the part (16) can be sensed using an electronic unit (50) of the drive unit (24), and, in an emergency displacement mode, the part (16) can be displaced manually,
  • 2. The method as recited in claim 1,
  • 3. The method as recited in one of the claims 1,
  • 4. The method as recited in claim 1, wherein
  • 5. The method as recited in claim 1, wherein the part (16) enters the action range (68, 70) only when the manual emergency displacement mode is actuated.
  • 6. The method as recited in claim 1, wherein the motor of the drive unit (24) is not activated during the manual emergency displacement mode, and the part (16) is coupled mechanically—in particular via a gearbox unit (32, 33) of the drive unit (24)—with the motor of the drive unit (24) during the manual displacement.
  • 7. The method as recited in claim 1, wherein the position of the part (16) is sensed using an incremental position sensor system (40) without home position detection.
  • 8. The method as recited in claim 1, wherein the drive unit (24) is designed as an electric motor (25) with an armature shaft (30), and a signal transducer (42)—a ring magnet (44) in particular—is located on the armature shaft (30), and a signal receiver (46)—a Hall sensor system (48) in particular—is located diametrically opposite thereto.
  • 9. The method as recited in claim 1, wherein the part (16) is only monitored in the setpoint displacement range (60) for occurrences of pinching, while a finger protection function is not provided in the action ranges (68, 70) and/or tolerance ranges (66).
  • 10. The method as recited in claim 1, wherein, when the part (16) enters one of the action ranges (68, 70), a certain program sequence is activated in the electronic unit (50), which calibrates or recalibrates the drive unit (24) for a new displacement procedure in the setpoint displacement range (60), and/or it prevents a further displacement in the action range (68, 70).
  • 11. The method as recited in claim 1, wherein, in the emergency displacement mode, the position sensor system (40) remains electrically functional via the electronic unit (50).
  • 12. A sliding roof system (10) for a motor vehicle for carrying out a method as recited in claim 1, in which the movable part (16) is designed as a sliding roof (18), a sun shield (19), or a component of a sun shade (20).