The present invention relates to a method for displaying an image on an active matrix organic light emitting display. Furthermore, the present invention relates to an apparatus for displaying an image comprising an active matrix comprising a plurality of organic light emitting cells, a row driver for selecting line by line the cells of said active matrix, a column driver for receiving data signals to be applied to the cells for displaying grayscale levels of pixels of the image during a video frame and a digital processing unit for generating said data signals and control signals to control the row driver.
The structure of an active matrix OLED or AMOLED is well known. According to
Actually, there are two ways for driving the OLED cells 2. In a first way, each digital video information sent by the digital processing unit 5 is converted by the column drivers 4 into a current whose amplitude is proportional to the video information. This current is provided to the appropriate cell 2 of the matrix 1. In a second way, the digital video information sent by the digital processing unit 5 is converted by the column drivers 4 into a voltage whose amplitude is proportional to the video information. This current or voltage is provided to the appropriate cell 2 of the matrix 1.
However, in principal, an OLED is current driven so that each voltage based driven system is based on a voltage to current converter to achieve appropriate cell lighting.
From the above, it can be deduced that the row driver 3 has a quite simple function since it only has to apply a selection line by line. It is more or less a shift register. The column driver 4 represents the real active part and can be considered as a high level digital to analog converter.
The displaying of a video information with such a structure of AM-OLED is symbolized in
A grayscale rendition without frequency doubling (e.g. case of 60 Hz or beyond) has been presented in the previous international patent application WO 05/104074 of the present applicant and will be used here as background reference. The idea was to split an analog frame as it is used today in a multiple of analog sub-frames similar to that being used in a PDP. However, in PDP each sub-frame can be only controlled in a digital way (fully ON or OFF) whereas in the concept presented there each sub-frame will be an analog one having variable amplitude, (compare
The six sub-frames SF0 to SF5 have respective durations D0 to D5. During each of the sub-frames SF0 to SF5 a respective elementary data signal corresponding to the signal amplitude is used for displaying a grayscale level. In
A threshold Cmax represents the maximum data value of the sub-frames. The amplitude of each elementary data signal, i.e. the amplitude depicted in
The sub-frame structure of
Both solutions are equivalent for the low level rendition. In the same way the solutions are similar for the rendition of low levels up to mid gray concerning the motion rendition. However, the concept described in
Another main advantage of the solution of
Beside this grayscale rendition without frequency doubling the concept of grayscale rendition with frequency doubling (e.g. case of 50 Hz or large screen) is also known.
Derived from evolution, humans were hunters who needed a very strong acuity in the middle of their visual field to lock their prey. At the same time, they needed the possibility to detect a danger (slight movement of wild animals, enemy . . . ) on the periphery of their visual field as illustrated in
In the case of new flat display technology, the brightness of the screen is limited by the panel efficacy, which is constantly improved. This brightness improvement combined with increasing screen sizes will increase the perception of the large area flickering for the customer's eye up to a real disturbing effect.
In the case of standard AMOLED driving, there is no real notion of temporal frequency since the signal is constant among the whole frame and is not a pulse as it is the case in a CRT. Therefore, there is also no real problem of large-area flickering. However, when performing a pulsing grayscale rendition as shown in
It is the object of the present invention to reduce the notion of flicker when performing pulsing grayscale rendition while keeping the advantage of the motion rendition.
According to the present invention this object is solved by a method for displaying an image in an active matrix organic light emitting display (AMOLED) comprising a plurality of cells, wherein a data signal is applied to each cell for displaying a first grayscale level of a pixel of the image during a first group of sub-frames and for displaying at least a second grayscale level of a pixel of the image during at least a second group of sub-frames, the first group of sub-frames and the at least second group of sub-frames are constituting a video frame, each group of sub-frames is divided into a plurality of sub-frames, each the first group of sub-frames and the second group of sub-frames are belonging to a separate complete image on the display (AMOLED), and the data signal of a cell comprises plural independent elementary data signals, each of said elementary data signals being applied to the cell during a sub-frame and the grayscale level displayed by the cell during the respective group of sub-frames depending on the amplitude of the elementary data signals and the duration of the sub-frames.
Furthermore, there is provided an apparatus for displaying an image comprising an active matrix comprising a plurality of organic light emitting cells, a row driver for selecting line by line the cells of said active matrix; a column driver for receiving data signals to be applied to the cells for displaying grayscale levels of pixels of the image during a video frame, and a digital processing unit for generating said data signals and control signals to control the row driver, wherein the video frame is divided into a first group of sub-frames and at least a second group of sub-frames, each group of sub-frames is divided into a plurality of sub-frames, and each the first group of sub-frames and the second group of sub-frames are belonging to a separate complete image to be displayed on the active matrix, and the data signals each comprising plural independent elementary data signals can be generated by said digital processing unit, each of said elementary data signals being applicable via the column driver to a cell during a sub-frame, the grayscale level displayed by the cell during the respective group of sub-frames depending on the amplitude of the elementary data signals and the duration of the sub-frames.
In other words, each cell of the active matrix organic light emitting display is driven at least two times independently during one video frame period. Thus, each cell produces at least two gray levels during a single video frame. Of course, each video frame may also be divided in three, four or more groups of sub-frames.
Preferably, the numbers of sub-frames in two of the groups of sub-frames of one video frame are equal. However, the numbers of sub-frames in two of the groups of sub-frames of one video frame also may be different. This allows more flexibility for a picture coding.
Corresponding sub-frames of two groups of sub-frames of one video frame may have similar but not exactly the same duration. This also enhances the flexibility for a picture coding.
According to a further preferred embodiment the first and the second group of sub-frames of one video frame are identical. Thus, the same picture is represented twice during a video frame period. Consequently, large area flicker is less visible.
Moreover, each group of sub-frames may belong to an independent image of a 100 Hz progressive source. This enables displaying of complete pictures at least two times during a video frame period.
The inventive apparatus may additionally be provided with a controller for switching the active matrix to a first video mode, wherein one video frame is used for a group of sub-frames, and a second video mode, wherein one video frame is divided into at least two groups of sub-frames. Thus, the controller can choose the right display driving depending on the input format or user selection.
Additionally, the controller may allow switching into a PC-mode, wherein one video frame is represented by a single sub-frame. This is useful when driving simple PC monitors.
Exemplary embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description. The drawings showing in
The essential idea of the present invention resides in a new analog sub-frame distribution. This analog sub-frame distribution is based on two groups of sub-frames having similar temporal duration and being located in two half-frame periods as shown in
It is mandatory that sub-frames SFn and SF′n have similar duration but not automatically exactly the same. The number of sub-frames in both half-frames may also be different as far as the total duration of both half-frames is nearly the same. Moreover, also the amplitudes of the corresponding sub-frames in both half-frames, for example SF0 and SF′0 may be slightly different. This allows even more flexibility by picture coding. However, if the durations are exactly the same the quality in terms of flickering is better. A suitable compromise for the targeted application has to be found.
In any case, the application is not only limited to low frequencies like 50 Hz. It is also suitable for close-to-eye applications (portable device) or for larger screens that use higher frequencies but that more affect the eye periphery and thus are more critical.
The inventive encoding enables to reduce the large area flickering by an artificial frequency doubling when controlling an AMOLED with analog sub-frame encoding. In the following, there are given two possibilities for a 100 Hz AMOLED by using the inventive encoding:
All outputs from the encoding block 14 are stored at different positions of the sub-field memory 15 that finally contains n+n′ frames, each one with the resolution required by the column driver 17. Afterwards, an OLED driving unit 16 is reading all pixel values of a given sub-frame k before reading the same information of the sub-frame k+1 from memory 15. The OLED driving unit 16 is in charge of updating all pixels of the display 18 with this information and also it is in charge of the duration time between two display operations (duration Dn of a given sub-frame, compare
The OLED driving unit transmits column driving data to the column driver 17 and row driving data to a row driver 19. Both, the column driver 17 and the row driver 19, drive the AMOLED display 18.
A controller 20 is responsible for choosing the right display format:
The controller 20 is connected to the OLED processing block 13, the sub-frame encoding block 14 and the OLED driving unit 16. Furthermore, the controller 20 is connected to a reference signalling block 21 for delivering a set of reference voltages or currents, respectively, to the column driver 17. The highest reference is used for the white and the lowest or the smallest gray level.
Number | Date | Country | Kind |
---|---|---|---|
05292759.7 | Dec 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/069624 | 12/13/2006 | WO | 00 | 6/17/2008 |