A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention is generally related to passive matrix LED displays. More particularly, the present invention is related to display driving schemes based on subframe pulse width modulation (PWM) and further with channel-to-channel compensation.
There are always desires for small, low-energy devices with LED displays offering high dynamic range and high response speed. For example, a user may want to play video games on a smartphone with high contrast and no motion blur under both dark and bright ambient lighting conditions, which requires a mini-display with high response speed and high dynamic range at both dark and bright background illuminance levels. However, response speed and dynamic range are two conflicting performance parameters of driving LED displays. In designing a driving scheme for a particular display panel, an increase of dynamic range is always associated with a reduced speed of response, and vice versa.
Typically, a pixel of a display panel turns on when the voltage across its corresponding electroluminescent element is greater than a threshold voltage, and then its brightness is related to the amount of current passing through the corresponding electroluminescent element.
At the beginning of the current drive stage, there is an uncontrollable duration in which the voltage applied to the electroluminescent element has not reached its threshold voltage Vt and the electroluminescent element has not been turned on. The length of uncontrollable duration for an electroluminescent element is related to the combined capacitance between the driving circuit to the electroluminescent element, which is the combination of capacitances of all electroluminescent elements along the source line connected to the electroluminescent element, plus the parasitic capacitance of the source electrode connected to the source line. Since different electroluminescent elements may have different capacitances, the combined capacitance of each source line may be different from each other.
Therefore, electroluminescent elements at different data signal lines (or channels) will have different lengths of uncontrollable durations. For example, as shown in
One objective of the present invention is to provide a driving method that allows high refresh rate for reducing flickering and motion blur and high dynamic range to increase the contrast between the darkest and brightest regions in passive matrix display without the needs of a high-speed system clock. Another objective of the present invention is to provide a compensation scheme for solving the aforesaid display uniformity problem.
According to one aspect of the present invention, a method based on subframe pulse width modulation (PWM) for driving a passive matrix display is provided. The method comprises: dividing each frame of the display video into T number of subframes, wherein the PMW driving waveform at each subframe comprises a primary waveform, a middle waveform and an auxiliary waveform; converting an original driving signal for a pixel to a N-bit digital driving data; and mapping the N-bit digital driving data into the T number of subframes. The mapping of the N-bit digital driving data into the T number of subframes comprises: extracting R number of the rightmost digits of the digital driving data to form a R-bit auxiliary driving data and applying the auxiliary driving data into an auxiliary waveform of only one of the T number of subframes; extracting M number of middle digits of the digital driving data, wherein M is given by M=log2T and the M number of middle digits are adjacent to the R number of rightmost digits, and transforming the M number of the middle digits into a T-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframes respectively; extracting L number of the leftmost digits of the digital driving data to form a L-bit primary driving data, where L=N−M−R, and applying the primary driving data to primary waveforms of all of the T number of subframes.
According to another aspect of the present invention, a method based on subframe pulse width modulation (PWM) with channel-to-channel compensation for driving a passive matrix display is provided. The method comprises: dividing each frame of the display video into T number of subframes, wherein the PMW driving waveform at each subframe comprises a primary waveform, a middle waveform and an auxiliary waveform; converting and compensating an original driving signal for a pixel according to a compensation value to form a N-bit compensated driving data; and mapping the N-bit compensated driving data into the T number of subframes. The conversion and compensation of the original driving signal for a pixel comprises: converting the original driving signal to a N-bit digital original data; converting the compensation value to a N-bit digital compensation data; multiplying the digital compensation data by T; and combining the digital original data and the multiplied digital compensation data to form the N-bit compensated driving data. The mapping of the compensated driving signal into the T number of subframes is similar to previous embodiment.
Embodiments of the invention are described in more details hereinafter with reference to the drawings, in which:
In the following description, methods for driving a passive matrix display and the like are set forth as preferred examples. It will be apparent to those skilled in the art that modifications, including additions and/or substitutions may be made without departing from the scope and spirit of the invention. Specific details may be omitted so as not to obscure the invention; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
In accordance with one embodiment of the present invention, a method based on pulse width modulation (PWM) for driving a passive matrix display is provided. The method may comprise a subframe modulation process in which each frame of the display video is divided into T number of subframes. The PMW driving waveform at each subframe comprises a primary waveform, a middle waveform and an auxiliary waveform. Each pixel is then driven by T number of subframe driving waveforms within each frame at a subframe rate which is T times of the original frame rate. For a display based on an original PWM operated at a N-bit resolution, the subframe PWM in each subframe will then be generally operated at a N′-bit resolution, where N′=(N−log2T).
If the original PWM driving signal waveform has an 8-bit resolution (or counts between 0 to 255), then the subframe PWM driving signal waveform in each subframe will have a 6-bit+1 resolution (or counts between 0 to 64). If the resolution of the original PWM driving signal waveform on a particular row is 210 counts then the resolutions of the subframe PWM driving signal waveforms in the four sub-frames should have 52, 53, 52 and 53 counts respectively.
Alternatively, each frame may be divided into 16 subframes such that the PWM driving signal for each pixel will be divided into 16 subframe PWM driving signals which are activated in the 16 subframes respectively. If the original PWM driving signal waveform has a 12-bit resolution (or counts between 0 to 4095), then the subframe PWM driving signal waveform in each subframe will have a 8-bit+1 resolution (or counts between 0 to 255). If the resolution of the original PWM driving signal waveform on a particular row is 1,354 counts, the resolutions of the subframe PWM signal waveform in the 16 sub-frames should have 85, 84, 85, 85, 85, 84, 85, 84, 85, 84, 85, 85, 85, 84, 85, and 84 counts respectively.
The method may further comprise converting a driving signal to a N-bit digital driving data and mapping the N-bit digital driving data into the T number of subframes to drive the pixel. The mapping of the N-bit digital driving data into the T number of subframes comprises: extracting R number of the rightmost digits of the digital driving data to form a R-bit auxiliary driving data and applying the auxiliary driving data to an auxiliary waveform of only one of the T number of subframes; extracting M number of middle digits of the digital driving data, wherein M is given by M=log2T and the M number of middle digits are adjacent to the R number of rightmost digits, and transforming the M number of the middle digits into a T-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframes respectively; extracting L number of the leftmost digits of the digital driving data to form a L-bit primary driving data, where L=N−M−R, and applying the primary driving data to primary waveforms of all of the T number of subframes.
Preferably, the T-bit middle driving data may be obtained by a matrix operation: x′=xA, where x is a 1-by-M matrix with its entries x1i being equal to the ith digit (i=1, 2, . . . M) of the M number of middle digits, of the digital driving data, A is a M-by-T transform matrix with its entries being binary digits, and x′ is a 1-by-T matrix with its entries x′1j forming the jth digit of the T-bit middle driving data (j=1, 2, . . . , T).
The transform matrix A may comprise T−1 number of “1” digits. Each column of the transform matrix A may have at most one “1” digit and each row of the transform matrix A may have at least one “1” digits.
Optionally, the kth row of the transform matrix A may have N/(2k) number of “1” digits, wherein k=1, 2, . . . M.
For a subframe PWM driving arrangement where N=16, T=16 and R=4, the number M is given by M=log2T=log2(16)=4 and the number L is given by L=N−R−M=16−4−4=8. The digital driving data is mapped to the 16 subframes by: extracting the eight leftmost digits of the digital driving data to form a 8-bit primary driving data and applying the primary driving data to primary waveforms of all of the 16 subframes, extracting the four rightmost digits of the digital driving data to form a 4-bit auxiliary driving data and applying the auxiliary driving data to an auxiliary waveform of only one of the 16 subframes, and transforming the four middle digits of the digital driving data into a 16-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframes respectively. The transformation is by performing a matrix operation with a 4-by-16 transform matrix A given by:
which has eight “1” in the first row, four “1” in the second row, two “1” in the third row and one “1” in the fourth row.
For a subframe PWM driving arrangement where N=16, T=8 and R=4, the number M is given by M=log2T=log2(8)=3 and the number L is given by L=N−R−M=16−4−3=9. The digital driving data is mapped to the 8 subframes by: extracting the nine leftmost digits of the digital driving data to form a 9-bit primary driving data and applying the primary driving data to primary waveforms all of the 8 subframes, extracting the four rightmost digits of the digital driving data to form a 4-bit auxiliary driving data and applying the auxiliary driving data to an auxiliary waveform of only one of the 8 subframes, and transforming the three middle digits of the digital driving data into a 8-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframes respectively. The transformation is by performing a matrix operation with a 3-by-8 transform matrix A given by:
which has four “1” in the first row, two “1” in the second row and one “1” in the third row.
with an exemplary 4-by-16 transform matrix A given by:
and applying each digit of the middle driving data to corresponding subframes (i.e. at cycle=0, 1, . . . 15) respectively.
In accordance with another embodiment of the present invention, a method based on pulse width modulation (PWM) with channel-to-channel compensation for driving a passive matrix display is provided. The method may comprise a subframe modulation process in which each frame of the display video is divided into T number of subframes. The PMW driving waveform at each subframe comprises a primary waveform, a middle waveform and an auxiliary waveform. Each pixel is then driven by T number of subframe driving waveforms within each frame at a subframe rate which is T times of the original frame rate. For a display based on an original PWM operated at a N-bit resolution, the subframe PWM in each subframe will then be generally operated at a N′-bit resolution, where N′=(N log2T).
The method may further comprise a compensation process in which an original driving signal for a pixel is compensated according to a compensation value to form a compensated driving data. The compensation process may comprise: converting the original driving signal for a pixel to a N-bit digital original data; converting the compensation value to a N-bit digital compensation data; multiplying the digital compensation data by T; combining the digital original data and the multiplied digital compensation data to form a N-bit compensated driving data. The compensation value for pixels at each scan data line may be determined in factory by testing the illuminance characteristics of the pixels at each scan data line. The determined compensation data may be stored in one-time programmable memory.
The method may further comprise a mapping process in which the N-bit compensated driving data are mapped into the T number of subframes to drive the pixel. The mapping of the N-bit compensated driving data into the T number of subframes comprises: extracting R number of the rightmost digits of the compensated driving data to form a R-bit auxiliary driving data and applying the auxiliary driving data into an auxiliary waveform of only one of the T number of subframes; extracting M number of middle digits of the compensated driving data, wherein M is given by M=log2T and the M number of middle digits are adjacent to the R number of rightmost digits, and transforming the M number of the middle digits into a T-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframe respectively; extracting L number of the leftmost digits of the compensated driving data to form a L-bit primary driving data, where L=N−M−R, and applying the primary driving data to primary waveforms of all of the T number of subframes.
Preferably, the T-bit middle driving data may be obtained by a matrix operation: x′=xA, where x is a 1-by-M matrix with its entries x1i being equal to the ith digit (i=1, 2, . . . M) of the M number of middle digits of the compensated driving data, A is a M-by-T transform matrix with its entries being binary digits, and x′ is a 1-by-T matrix with its entries x′1j forming the jth digit of the T-bit middle driving data (j=1, 2, . . . , T).
The transform matrix A may comprise T−1 number of “1” digits. Each column of the transform matrix A may have at most one “1” digit and each row of the transform matrix A may have at least one “1” digits.
Optionally, the kth row of the transform matrix A may have N/(2k) number of “1” digits, wherein k=1, 2, . . . M.
For a subframe PWM driving arrangement where N=16, T=16 and R=4, the number M is given by M=log2T=log2(16)=4 and the number L is given by L=N−R−M=16−4−4=8. The compensated driving data is mapped to the 16 subframes by: extracting the eight leftmost digits of the compensated driving data to form a 8-bit primary driving data and applying the primary driving data to primary waveforms of all of the 16 subframes, extracting the four rightmost digits of the compensated driving data to form a 4-bit auxiliary driving data and applying the auxiliary driving data to an auxiliary waveform of only one of the 16 subframes, and transforming the four middle digits of the compensated driving data into a 16-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframes respectively. The transformation is by performing a matrix operation with a 4-by-16 transform matrix A given by:
which has eight “1” in the first row, four “1” in the second row, two “1” in the third row and one “1” in the fourth row.
For a subframe PWM driving arrangement where N=16, T=8 and R=4, the number M is given by M=log2T=log2(8)=3 and the number L is given by L=N−R−M=16−4−3=9. The compensated driving data is mapped to the 8 subframes by: extracting the nine leftmost digits of the compensated driving data to form a 9-bit primary driving data and applying the primary driving data to primary waveforms all of the 8 subframes, extracting the four rightmost digits of the compensated driving data to form a 4-bit auxiliary driving data and applying the auxiliary driving data to an auxiliary waveform of only one of the 8 subframes, and transforming the three middle digits of the compensated driving data into a 8-bit middle driving data and applying each digit of the middle driving data to middle waveforms of corresponding subframes respectively. The transformation is by performing a matrix operation with a 3-by-8 transform matrix A given by:
which has four “1” in the first row, two “1” in the second row and one “1” in the third row.
with an exemplary 4-by-16 transform matrix A given by:
and applying each digit of the middle driving data to corresponding subframes (i.e. at cycle=0, 1, . . . 15) respectively.
The passive matrix display panel may further comprise a scan control circuit for sequentially selecting a line of pixels to be updated or refreshed and an array of programmable switches being controlled by the scan control circuit. Each switch is connected to a scan signal line such that electroluminescent elements connected to the scan signal line is shorted a ground voltage GND when the switch is closed.
The passive matrix display panel may further comprise an array of data drivers, each connected to a data signal line to update or refresh a selected line of pixels by driving their corresponding electroluminescent elements.
It should be apparent to practitioner skilled in the art that the foregoing examples of subframe modulation, compensation process, mapping process, and transform matrix are only for the purposes of illustration of working principle of the present invention. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed.
The embodiments disclosed herein may be implemented using general purpose or specialized computing devices, computer processors, or electronic circuitries including but not limited to digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA), and other programmable logic devices configured or programmed according to the teachings of the present disclosure. Computer instructions or software codes running in the general purpose or specialized computing devices, computer processors, or programmable logic devices can readily be prepared by practitioners skilled in the software or electronic art based on the teachings of the present disclosure.
In some embodiments, the present invention includes computer storage media having computer instructions or software codes stored therein which can be used to program computers or microprocessors to perform any of the processes of the present invention. The storage media can include, but are not limited to ROMs, RAMs, flash memory devices, or any type of media or devices suitable for storing instructions, codes, and/or data.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
Number | Name | Date | Kind |
---|---|---|---|
6175355 | Reddy | Jan 2001 | B1 |
6184874 | Smith | Feb 2001 | B1 |
20100026722 | Kondo | Feb 2010 | A1 |
20120287178 | Ding | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
WO-0245016 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20220007478 A1 | Jan 2022 | US |