This application claims the benefit, under 35 U.S.C. §365 of International Application PCT/EP2005/052342, filed May 23, 2005, which was published in accordance with PCT Article 21(2) on Dec. 22, 2005 in English and which claims the benefit of German application No. 102004028233.1, filed Jun. 11, 2004.
The invention relates to a method for driving elements of an illuminated display, and to a circuit for elements of an illuminated display. The invention also relates to an illuminated display having two or more elements according to the invention.
Illuminated displays which produce light by means of light emitting means through which current flows have a large number of light emitting means arranged in a suitable form. The light emitting means in this case emit a light flux which is dependent on the electric current flowing through them. The expression light flux describes the total radiated power of the light source. In the following text, the expression current is used to represent the electric current. The light emitting means are combined with further circuit elements to form elements. The further circuit elements include, inter alia, switching means and current control means. Desired currents through the light emitting means are set by the switching means and the current control means. In the case of an illuminated display having two or more elements in a matrix arrangement, monochrome or polychrome images are displayed, by means of a number of pixels. In the case of monochrome images, the images are rastered into individual grey levels for the pixels. The grey levels are in this case different light flux values. One element in each case typically corresponds to one pixel, although it is also feasible for two or more elements to be combined to form one pixel. The various light flux values are produced by different currents through the light emitting means. In the case of a polychrome illuminated display, two or more monochrome elements of different colours normally interact, and form one pixel. Colours different from the original colours of the light emitting means in the elements can be displayed by additive colour mixing for each pixel. The light emitting means include, inter alia, light-emitting diodes. Light-emitting diodes can be produced on the basis of semiconductor materials (for example silicon, germanium), although light-emitting diodes are also available based on organic materials (OLED: “Organic Light Emitting Diode”). All of these light-emitting diodes have the common feature that the emitted light flux depends on the electric current through the light emitting means.
In the known light emitting means, a direct current is passed through the light emitting means in order to produce light. The light emitting means is in this case connected in the forward direction. The current control means is normally connected in series with the light emitting means. In a first way of driving the elements, the current control means is driven by a control potential which is referred to a reference ground potential. The control potential which is applied to the control electrode of the current control means causes current to flow through the current control means and through the light emitting means. The characteristics of the light emitting means and of the current control means are in this case unambiguous, so that a specific potential results in a specific electric current, and a specific electric current results in a specific light flux. The expressions potential and voltage are used synonymously in the following text, unless a different meaning is expressly stated.
Field-effect transistors (FETs) are preferably used as the current control means. These transistors are distinguished by voltage control. Apart from changing the charge on parasitic capacitances in the event of a change in the control voltage and resistive losses, the drive consumes virtually no power. The control potential is in this case applied between the gate electrode and the source electrode of the FET. The magnitude of the control voltage determines the current flow through the transistor, which can also be regarded as a controllable resistance. Bipolar transistors are also used as the current control means in other embodiments of control circuits.
An element 3 for a voltage drive is shown in
Illuminated displays are also feasible in which each current control means 4 is permanently driven by a control signal Uset. There is then no need for the switch 10. The large number of control lines required reduces the available area of the illuminated display for the light to emerge from, however.
In the case of the element illustrated in
In illuminated displays that comprise elements, which are arranged in a matrix arrangement and have individual current control means, the individual elements are arranged in rows and columns. Two or more elements are connected to a common supply line. Depending on the nature of the elements, the common supply line is connected to a supply voltage or to a reference potential, for example ground.
Supply lines and control lines as well as the light emitting means share the available image area in illuminated displays having two or more elements. In order to make it possible to emit as much light as possible, the control and supply lines are designed to be thin. In this case, thin means that the cross section of the line is as small as possible. Furthermore, the lines may be composed of a transparent conductive material. These materials are often less conductive than a conventional conductor material. Irrespective of the particular embodiment, the control and supply lines have finite impedances. In particular, the ohmic line resistance means that the potential on the supply line may be different for different elements, depending on the set current which is passed through the elements that are connected to the supply line.
A specific control potential applied to the control electrodes of the current control means for the elements results, as stated further above, in a specific electric current, and thus in a specific light flux. The current control means refer the control potential applied to their control electrodes to the potential at one of their current-carrying connections. This reference potential is in this case, for example, the potential on the supply line at the location of a respective element. The control potential which is referred to the potential at one of the current-carrying connections is the relative control potential. The rated control potential which is applied by a drive circuit to the control electrodes of the current control means is, however, referred to a reference potential. The relative control potential varies with respect to the rated control potential, as a result of the different potential for different elements on the supply line. The varying relative control potential results in an electric current and thus a light flux which differs from the desired electric current or light flux.
The potential differences on the supply line also vary depending on the image content being displayed, because the respective currents through the elements vary depending on the image content. The differences between the rated control potential applied by the drive circuit and the relative control potential thus also vary.
As explained further above, the voltage drop on the supply line directly influences the control voltage for the current control means. The gate and source connections are two connections of field-effect transistors (FETs) which are used as the current control means. A control potential, the gate-source voltage, is applied between the gate and source connections. The source connection is in this case connected to the supply line, and the control potential is supplied to the gate connection.
The resistance of a supply line for one column or one row of elements is defined as follows:
where ρ is the resistivity of the material of the supply line, for example 3 μΩcm for aluminium. L is the length of the line section, and A is the cross-sectional area of the line. The voltage drop on a section of the supply line can be calculated as follows:
ΔV=R*Imax (2)
where Imax is the maximum current through the section, for example the sum of the currents through the elements which are supplied by that section of the supply line. If a supply line in an illuminated display has a length of 200 mm, and the cross section of the line is 20 μm×200 nm, this results in a resistance of 1.5 kΩ. Assuming that there are 120 elements being supplied by the supply line, and the sum of the currents in one section is 120 μA, this results in a maximum voltage drop of 180 mV for this section. The voltage drop is thus in a range within which the threshold voltage of the FET that is used as the current control means also varies from one element to another. These fluctuations are dependent on the production methods and other factors. Even the variation of the threshold voltage results in a non-uniform brightness distribution in the illuminated display. The control voltage variation which results from voltage drops on the supply line further increases the non-uniform brightness distribution.
The illuminated display described in the above example is still relatively small, with 120 elements per supply line. In the case of larger illuminated displays, the effect is considerably exacerbated.
It is now desirable to improve the drive for illuminated displays having elements of the type described above. For this purpose, it is desirable to provide an improved element for illuminated displays. Finally, it is desirable to provide an illuminated display with elements according to the invention, and to provide a suitable drive method.
The method according to the invention provides for the voltage drop or offset to be expected on a supply line to be calculated from the known resistances between the individual elements and the nominal value of the current in the individual elements. The offset which results from the calculation is combined with the respective rated control potential of the individual elements, for example by being added, thus compensating for the difference to be expected between the rated control voltage and the actual control voltage at the control electrode of the current control means. The currents in the individual elements are known, since the image content to be displayed as well as the relationship between the brightness and current of the light emitting means are known, and are unambiguous. The calculation is carried out continuously, that is to say the offset is also recalculated whenever the image content changes. The method according to the invention typically results in individual elements or groups of elements being driven cyclically.
The relationship between the brightness, the current and the voltage of the light emitting means is also referred to in the following text as the electrooptical characteristics of the light emitting means. The relationship between the voltage and the current in the current control means is referred to in the following text as the electrical characteristics of the current control means.
In one embodiment of the method according to the invention, the addition of an offset is not carried out in an external computation circuit, but is effected by storing of the uncorrected rated control potential in a signal retaining means when the current flow through the light emitting means is interrupted. In this case, a switching means is controlled during a programming phase for all of the elements connected to a common supply line, such that no current can flow through the elements. Since no current is flowing, the potential is the same along the entire supply line. The rated control signals or rated control voltages are now applied to the current control means for the individual elements, and are stored in a signal retaining means. In this case, the rated control voltages are referred to a reference potential. The signal retaining means are connected such that they hold the signal relative to the potential at the location of the supply line at which the element is connected. The switching means are now controlled for all of the elements which are supplied by the common supply line such that a current can flow through the light emitting means. This is referred to as the start of an operating phase. The potentials on the supply line for the individual elements vary as a function of the currents and as a function of the image content, respectively. The signal retaining means hold the relative control potentials with respect to the potential at the location of the supply line at which the respective elements are connected. The relative control voltage setting for each current control means, and thus the current setting through the respective light emitting means therefore remain constant. The combination of the rated control voltage and offset related to the reference potential, according to the invention, is achieved by holding the rated control voltage with respect to the location on the supply line at which the respective element is connected. The brightness fluctuations resulting from the potential differences on the supply line are thus avoided.
A further development of the above method according to the invention provides for the supply voltage to be increased from a start value continuously or in steps once the current flow through the elements has been re-established. At the same time, the current through the supply line is measured. Any increase in the supply voltage leads to a rise in the current through the individual elements until the respective set current is reached. When the current through the supply line does not change in the steady state when the voltage is increased further, the minimum required supply voltage has been reached which allows the desired current to flow through each of the elements which are connected to the same supply line. As an alternative to this, it is possible to end the increasing of the supply voltage when the change rate in the measured current is below a predetermined value. The voltage setting is now maintained until the image information for at least one of the elements which are connected to this supply line changes.
An element of an illuminated display according to the invention which can be driven using the method described above has a light emitting means and a current control means. Furthermore, a signal retaining means and a first switching means are provided, via which switching means a control signal can be supplied to the signal retaining means. According to the invention, a second switching means is provided, which optionally passes or interrupts the current flow through the light emitting means.
A first embodiment of the illuminated display according to the invention has elements according to the invention arranged in a matrix.
In a further embodiment of the illuminated display according to the invention, the electrical and electrooptical characteristics of the current control means and of the light emitting means, respectively, of elements are known and, for example, are stored in a memory. Furthermore, the supply lines are connected individually or in groups to variable voltage supplies. If the image content is known, it is therefore possible to adjust the supply voltages such that the minimum required voltage is applied to an element on the individual line or the group of lines. In the case of image contents which vary only slightly over time but vary substantially in places, or if the image brightness varies slowly with time, it is thus possible to reduce the power requirement. One example of image contents which vary slightly over time but vary particularly substantially in places is image contents of information billboard at railway stations or airports.
In another embodiment of an illuminated display according to the invention having two or more elements, a first connection of a light emitting means in the element is connected in a known manner to a respective current control means. A second connection of all the light emitting means, which are connected to one supply line, is connected to a connecting network whose potential can be varied selectively. In this embodiment, the second switching means for interrupting the current flow during a programming phase can be omitted. During the programming phase, the potential on the connecting network is varied such that it is not possible for any current to flow through the light emitting means. In one preferred embodiment, the light emitting means are then switched to the reverse direction, for example, or the voltage across the light emitting means is set too low for any current to flow, or the connecting network is switched off. The rated control signal is held in signal retaining means, in the manner described above. Once the programming of all of the elements which are connected to the same supply line has been completed, the current is allowed to flow through the connecting network again.
In a further embodiment of an illuminated display according to the invention, the potential on the supply line is variable. During the programming phase, the potential on the supply line is, for example, connected to the reference potential, that is to say to ground. Due to the lack of voltage across the current control means and the light emitting means of the elements, which are connected to the supply line, no current can flow. The control signal is now stored in the signal retaining means. In the operating phase, the supply line is connected to a potential, which suffices for allowing the desired currents to flow in the elements. Since the signal retaining means hold the potential applied to them relative to the point to which they are connected, the selected current flows irrespective of the possible potential differences on the supply line.
The invention will be described in more detail in the following text with reference to the drawing, in which:
Identical or similar components are provided with the same reference symbols in the figures.
The index n in the equations denotes the total number of elements connected to the supply line 20. The first sum in the equations represents the total current which flows into the supply line 20. Depending on the position m of the element 3 whose voltage drop is being calculated, the sum of the currents of the upstream elements 3 is subtracted from the total current. The values of the resistors 21 are assumed to be the same, for simplicity. If the resistances are different, these must be taken into account with their actual values.
The voltage on the supply line 20 at the current control means 4 for an element 3 at the location m is then calculated as follows:
The control voltage for an element 3 at the location m must be corrected by the difference between the rated supply voltage VDD and the voltage Vm on the supply line 20 at the location m, in order to set the desired current through the respective light emitting means 8.
In the examples, the line resistances are related to one line. The relationships also apply analogously for two supply lines, one of which carries the supply voltage and the other carries a reference potential, such as ground.
Depending on the current control means 4 that is used and on the type of transistors used, a positive or a negative control voltage is applied to the control electrode of the current control means. This also governs whether the potential difference is compensated for by addition or subtraction of the correction voltage. However, the invention can be used analogously for both situations.
The invention is not restricted to illuminated displays which have elements that are connected jointly to one supply line row-by-row. The method can also be used for displays in which elements are connected to a common supply line column-by-column. If the elements, which are connected to a common supply line, are driven in parallel, the display of the image data must be delayed until the potentials on the supply line for each element can be determined from the data for all of the elements which are connected to this supply line. The delay is then, for example, one field or frame period, depending on the chosen type of display. In the case of a field drive, the data for the respective previous field has already been calculated and can be included in the calculation.
In another embodiment of an illuminated display according to the invention, the elements in one row are connected to a common supply line. A sequential drive, element-by-element, for the illuminated display uses the known image data for the elements which have already been driven to calculate the potential profile on the supply line.
In one embodiment, those elements which have not yet been driven are switched off, that is to say no current flows through them. Those elements which have not yet been driven can be switched off, for example, via switching means in order to interrupt the current flow. The potential on the supply line for each element to be driven at that time can thus be determined by storing the values of the currents of elements which have already been driven, and by using these values to calculate the potential profile on the supply line. The control signal for the respective next element to be driven is then corrected accordingly. This method allows the memory size to be kept to a minimum. If, for example, the drive process is carried out row-by-row, the memory need only be sufficiently large to be able to store the values for the elements in a single row. Furthermore, the delay in the reproduction of image information transmitted in serial form is short, because the storage time is only short.
An even smaller memory is sufficient if the respective instantaneous value of the sum of the currents of all the already driven elements on one supply line is stored. If the resistances between individual elements are the same and the drive starts at the remote end and the supply potential is fed at the near end of a row, only the sum of the previous currents need be stored in order to make it possible to calculate the potential on the supply line at the location of the next element to be driven. This drive process is dependent on signal retaining means being provided to keep the respective control signals for the elements with respect to the supply line. If one horizontal row is driven sequentially, element-by-element, from left to right, the remote end is on the left, and the near end is on the right.
One embodiment of the method for sequentially driving an illuminated display element-by-element provides for the values, which are held in the retaining means for each element in a row or column to be driven, to be erased before each drive process. In one embodiment, the erasure process is carried out by erasing the potentials which are stored in the signal retaining means or, in general, by storage of a suitable start value. If the start value is chosen appropriately, the current control means are not switched on, and no additional switching means are required to interrupt the current flow. The erasure process is in each case expediently carried out for an entire row or column, or for those elements in a row or column which are connected to a common supply line. The advantage mentioned above of a relatively small memory and of a short delay in the reproduction of the image contents which are transmitted in serial form pixel-by-pixel is also retained in this embodiment.
In one alternative embodiment of the sequential driving of an illuminated display element-by-element according to the invention, the stored image information of the respective preceding image is used in order to calculate the potential profile on a supply line. The old and the new image content, and thus the current, are known for each element which is connected to a supply line. The potential profile on the supply line is thus also known, or can be calculated. The control signal for each element to be driven is corrected on the basis of the known or calculated potential profile. The signal retaining means for the elements in this alternative do not need to be erased before being driven again. This embodiment is particularly suitable when image contents are transmitted sequentially, row-by-row. In this case, the respective valid image content is written sequentially to the illuminated display, row-by-row, in a similar way to that in the case of a cathode ray tube.
One embodiment of the illuminated display according to the invention has an associated memory, in which the image contents of rows, columns, fields or frames, or parts of them, are stored. This makes it possible to first of all calculate the potential profiles on a supply line and then to apply the corrected control signals to the elements. The reproduction of the stored image contents is delayed in a corresponding manner. The storage of the image contents means that they are also available for further calculations.
The invention can also be used when the supply lines are connected to one another in the form of a network, as shown in
In one embodiment of the invention, the correction values or offset voltages are not explicitly numerically calculated. In this embodiment, the offset voltages are set automatically. One element 3 in an illuminated display according to this embodiment of the invention is illustrated in
One method according to the invention for driving an element as described with reference to
In another embodiment of the illuminated display according to the invention, no second switching means 12 is provided with the elements 3 in order to interrupt the current flow. By way of example, the elements 3 correspond to those in
One advantageous embodiment of the drive method according to the invention provides for driving row-by-row. In this case, only the image content of one row is ever changed at a time, while the image content of the other rows remains unchanged.
In one preferred embodiment of driving row-by-row, the image content of every alternate row is changed successively. The rows are subdivided into even-numbered rows and odd-numbered rows, depending on their position on the screen. Alternately, the image content of the even-numbered rows is changed first of all, followed by that of the odd-numbered rows. This simulates the known interlacing method.
In another embodiment of the drive method, the drive process is carried out frame by frame. In this case, the entire image content is programmed into the signal retaining means during the programming phase, after which the process switches to the operating phase.
The method according to the invention can be used, appropriately modified, for any desired illuminated displays. The nature of the arrangement of the elements in rows, columns or other groupings is intrinsically irrelevant for the method.
The image contents are expediently programmed in a time which is short in comparison to the active time during which the image contents are displayed.
Two or more elements 3 according to the invention in an illuminated display are arranged in the form of a matrix in a known manner, in one embodiment of the invention. They are driven row-by-row or column-by-column, and field-by-field or frame-by-frame. However, the drive process according to the invention can also be used for parts or groups of rows or columns, and for parts of fields or frames. In situations such as these, the elements in the illuminated display are connected appropriately and jointly to a supply line or to a connecting network.
The method according to the invention as well as the illuminated display according to the invention can be used particularly advantageously in televisions and monitors.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 028 233 | Jun 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/052342 | 5/23/2005 | WO | 00 | 12/8/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/122120 | 12/22/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5734361 | Suzuki et al. | Mar 1998 | A |
6121942 | Sanou et al. | Sep 2000 | A |
6229506 | Dawson et al. | May 2001 | B1 |
6400348 | Young | Jun 2002 | B1 |
6870522 | Sagano et al. | Mar 2005 | B2 |
7071635 | Inoue et al. | Jul 2006 | B2 |
7145533 | Imamura | Dec 2006 | B2 |
7336272 | Okamoto | Feb 2008 | B2 |
7724245 | Miyazawa | May 2010 | B2 |
20010024186 | Kane et al. | Sep 2001 | A1 |
20020089473 | Yamazaki et al. | Jul 2002 | A1 |
20020089479 | Sato et al. | Jul 2002 | A1 |
20030062524 | Kimura | Apr 2003 | A1 |
20030063110 | Sagano et al. | Apr 2003 | A1 |
20030107542 | Abe et al. | Jun 2003 | A1 |
20030201955 | Song et al. | Oct 2003 | A1 |
20040001039 | Shino et al. | Jan 2004 | A1 |
20040145547 | Oh | Jul 2004 | A1 |
20040174354 | Ono et al. | Sep 2004 | A1 |
20040252089 | Ono et al. | Dec 2004 | A1 |
20050088103 | Kageyama et al. | Apr 2005 | A1 |
20050219236 | Sano et al. | Oct 2005 | A1 |
20060145969 | Fish et al. | Jul 2006 | A1 |
20060231740 | Kasai | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
1227466 | Jul 2002 | EP |
1288902 | Mar 2003 | EP |
WO9848403 | Oct 1998 | WO |
WO 2004023446 | Mar 2004 | WO |
WO2004034461 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080284688 A1 | Nov 2008 | US |