The present disclosure claims priority to Chinese Patent Application No. 202310099081.4, filed on Jan. 31, 2023, the content of which is incorporated herein by reference in its entirety.
The present disclosure relates to the field of display technology, in particular, to a method for driving a display panel and a device for driving a display panel, and a display device.
In related art, when driving a display panel with an organic light emitting diode (OLED), mini light emitting diode (Mini-LED), or micro light emitting diode (Micro-LED) etc., there is a problem of frequent gamma switching, which is not conducive to achieving high-frequency display of the display panel.
In an aspect, an embodiment of the present disclosure provides a method for driving a display panel. The method for driving the display panel includes: dividing a frame into N sub-frames, the N sub-frames corresponding to N sets of first gamma curves respectively, the N sub-frames including at least two consecutive first sub-frames, and at least two of the at least two consecutive first sub-frames corresponding to different sets of first gamma curves of the N sets of first gamma curves, where N≥2; obtaining a display grayscale of a sub-pixel in each first sub-frame of the at least two consecutive first sub-frames based on an original grayscale of the sub-pixel in a frame image to be displayed, a set of second gamma curves, and one set of first gamma curves of the N first gamma curves corresponding to the first sub-frame; and driving the display panel to display sub-frame images sequentially during the N sub-frames, respectively, where a display voltage of the sub-pixel when the display panel displays one of the sub-frame images during one of the at least two consecutive first sub-frames is obtained based on the set of second gamma curves and the display grayscale of the sub-pixel in the first sub-frame.
In another aspect, an embodiment of the present disclosure provides a device for driving a display panel. The device for driving the display panel includes: a division circuit configured to divide a frame into N sub-frames, the N sub-frames corresponding to N sets of first gamma curves respectively, the N sub-frames including at least two consecutive first sub-frames, and at least two of the at least two consecutive first sub-frames corresponding to different sets of first gamma curves of the N sets of first gamma curves, where N≥2; an original grayscale obtaining circuit configured to obtain an original grayscale of a sub-pixel based on a frame image to be displayed; a data processing circuit electrically connected to the division circuit and the original grayscale obtaining circuit, and configured to obtain a display grayscale of the sub-pixel in each first sub-frame of the at least two consecutive first sub-frames based on the original grayscale of the sub-pixel in the frame image to be displayed, a set of second gamma curves, and one set of first gamma curves of the N sets of first gamma curves corresponding to the first sub-frame; and a driving circuit electrically connected to the division circuit and the data processing circuit, and configured to drive the display panel to display sub-frame images sequentially during the N sub-frames, and obtain a display voltage of the sub-pixel when the display panel displays one of the sub-frame images during one of the at least two consecutive first sub-frames based on the set of second gamma curves and the display grayscale of the sub-pixel in the first sub-frame.
In still another aspect, an embodiment of the present disclosure provides a display device including a display panel and a device for driving a display panel. The device for driving the display panel includes: a division circuit configured to divide a frame into N sub-frames, the N sub-frames corresponding to N sets of first gamma curves respectively, the N sub-frames including at least two consecutive first sub-frames, and at least two of the at least two consecutive first sub-frames corresponding to different first sets of gamma curves of the N sets of first gamma curves, where N≥2; an original grayscale obtaining circuit configured to obtain an original grayscale of a sub-pixel based on a frame image to be displayed; a data processing circuit electrically connected to the division circuit and the original grayscale obtaining circuit, and configured to obtain a display grayscale of the sub-pixel in each first sub-frame of the at least two consecutive first sub-frames based on the original grayscale of the sub-pixel in the frame image to be displayed, a set of second gamma curves, and one set of first gamma curves of the N sets of first gamma curves corresponding to the first sub-frame; and a driving circuit electrically connected to the division circuit and the data processing circuit, and configured to drive the display panel to display sub-frame images sequentially during the N sub-frames, and obtain a display voltage of the sub-pixel when the display panel displays one of the sub-frame images during one of the at least two consecutive first sub-frames based on the set of second gamma curves and the display grayscale of the sub-pixel in the first sub-frame.
In order to better illustrate technical solutions in embodiments of the present disclosure or in the related art, the accompanying drawings used in the embodiments and in the related art are briefly introduced as follows. The drawings described as follows are merely part of the embodiments of the present disclosure, and other drawings can also be acquired by those skilled in the art.
For better illustrating technical solutions of the present disclosure, embodiments of the present disclosure will be described in detail as follows with reference to the accompanying drawings.
The described embodiments are merely some, rather than all, of the embodiments of the present disclosure. Those skilled in the art should understand that various modifications and variations can be made based on the embodiments of the present disclosure without departing from the principle of the present disclosures, and all of these modifications and variations shall fall within a scope of the present disclosure. The embodiments of the present disclosure can be combined with each other if there is no conflict.
The terms used in the embodiments of the present disclosure are merely for the purpose of describing particular embodiments but not intended to limit the present disclosure. Unless otherwise noted in the context, the singular form expressions “a”, “an”, “the” and “said” used in the embodiments and appended claims of the present disclosure are also intended to represent plural form expressions thereof.
The term “and/or” used herein is merely an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate that three cases, i.e., A alone, A and B, B alone. The character “/” herein generally indicates that the related objects before and after the character form an “or” relationship.
In the related art, an OLED display panel, a Mini-LED display panel and a Micro-LED display panel can be driven by means of pulse amplitude modulation (PAM).
In a method for driving a display panel, one frame can be divided into N sub-frames, and a set of gamma curves can be configured for each sub-frame of the N sub-frames. Then, the display panel can be controlled to display images sequentially during the N sub-frames based on an original grayscale of the sub-pixel in a frame image to be displayed and the set of gamma curves corresponding to each sub-frame.
For clarity, as shown in
However, in combination with
In this regard, an embodiment of the present disclosure provides a method for driving a display panel, which can effectively overcome the above problem of frequent switching of the gamma curves.
At S1, a frame is divided into N sub-frames SF which respectively correspond to N sets of first gamma curves Gamma1. The N sub-frames SF include at least two consecutive first sub-frames SF1, and at least two of the first sub-frames SF1 correspond to different sets of first gamma curves Gamma1, where N≥2.
At S2, a display grayscale G1 of a sub-pixel in each first sub-frame SF1 is obtained based on an original grayscale G0 of the sub-pixel in the frame image to be displayed, a set of second gamma curves Gamma2, and one set of first gamma curves Gamma1 of N sets of first gamma curves corresponding to each first sub-frame SF1.
At S3, the display panel is driven to display sub-frame images sequentially during N sub-frames SF. A display voltage V1 of the sub-pixel when the display panel displays a sub-frame image during the first sub-frame SF1 is obtained based on the set of second gamma curves Gamma2 and the display grayscale G1 of the sub-pixel in the first sub-frame SF1.
The display voltage V1 of the sub-pixel obtained at step S3 can be converted by a digital-to-analog converter (DAC) into a data voltage that can be received by the display panel. Then, the data voltage is written into the sub-pixel to control the sub-pixel in the display panel to emit light, so that the display panel displays a sub-frame image.
For clarity, in the drawings corresponding to the embodiments of the present disclosure, an i-th sub-frame is represented by a reference sign SF_i, the set of gamma curves Gamma1 corresponding to the i-th sub-frame SF are represented by a reference sign Gamma1_i, and the display voltage V1 corresponding to the i-th sub-frame SF is represented by a reference sign V1_i, where i is a positive integer within a range from 1 to N.
For at least two consecutive first sub-frames SF1, if adopting the method for driving the display panel, when the display panel displays images sequentially during all first sub-frames SF1, the gamma configuration is modulated to switch the set of gamma curves to the set of first gamma curves Gamma1 corresponding to the first sub-frame SF1 to be displayed, and then an original grayscale G0 is converted into a display voltage V1 by using the set of first gamma curve Gamma1 corresponding to the first sub-frame SF1.
In the embodiments of the present disclosure, a unified set of second gamma curves Gamma2 are provided. Before controlling the display panel to display an image, the original grayscale G0 is converted by using the set of second gamma curves Gamma2. First, the original grayscale G0 of the sub-pixel in the frame image to be displayed is converted into a display voltage V1 by using the set of first gamma curves Gamma1 corresponding to each first sub-frame SF1, to obtain the display voltage V1 corresponding to the sub-pixel in each first sub-frame SF1. Then, the display voltage V1 corresponding to the sub-pixel in each first sub-frame SF1 is converted into a display grayscale G1 by using a unified set of second gamma curves Gamma2.
Subsequently, when the display panel is driven to display images sequentially during at least two first sub-frames SF1, in each first sub-frame SF1, the display grayscale G1 corresponding to the first sub-frame SF1 is converted into a display voltage V1 by using the unified second gamma curve Gamma2 to obtain the display voltage V1 corresponding to the sub-pixel in the first sub-frame SF1.
In the method for driving the display panel provided by the embodiments of the present disclosure, before controlling the display panel to display an image, the original grayscale G0 is converted by using the set of the second gamma curves Gamma2 to obtain the display grayscale G1 corresponding to each first sub-frame SF1. In this way, when the display panel is driven to display sub-frame images sequentially during the first sub-frames SF1, it only needs to set the set of gamma curves to be the set of second gamma curves Gamma2 at the beginning of the first one of the first sub-frames SF1, and the display voltage V1 corresponding to the sub-pixel in each first sub-frame SF1 can be obtained by only using one unified set of second gamma curves Gamma2 to convert multiple first sub-frames SF1 without gamma switching at the beginning of each first sub-frame SF1. Therefore, the times for switching the set of gamma curves can be greatly reduced, thereby reducing the requirements for the performance of the driver chip, and optimizing the high-frequency display of the display panel.
When the display panel is driven to display an image during the first sub-frame SF1, the display voltage V1 obtained by using the unified set of second gamma curves Gamma2 and the display grayscale G1 corresponding to the first sub-frame SF1 according to the embodiments of the present disclosure is the same as the display voltage V1 obtained directly by using the original grayscale G0 and the set of first gamma curves Gamma1 corresponding to each first sub-frame SF1 according to the above method for driving the display panel in the related art. Therefore, the embodiments of the present disclosure can achieve the same display effect as the related art.
In an example, each of the N sub-frames SF is the first sub-frame SF1. According to the above method for driving the display panel in the related art, with reference to
The method for driving the display panel in the related art may use a same display image with different gamma configurations to display one frame of an image, while the embodiments of the present disclosure may use a same gamma configuration with different display images to display one frame of an image.
In the embodiments of the present disclosure, if the display panel displays a static picture, that is, multiple consecutive frame images to be displayed are the same, then during the i-th sub-frames of different frames, the sub-frame images displayed by the display panel may be the same. In this case, sub-frame images during different frames may have periodicity. If the display panel displays a dynamic picture, that is, multiple consecutive frame images to be displayed are different, then during the i-th sub-frames of different frames, the sub-frame images displayed by the display panel may be different.
In an embodiment of the present disclosure, a set of first gamma curves Gamma1 may include a gamma curve corresponding to a red sub-pixel, a gamma curve corresponding to a green sub-pixel, and a gamma curve corresponding to a blue sub-pixel. Correspondingly, the set of second gamma curves Gamma2 may include a gamma curve corresponding to a red sub-pixel, a gamma curve corresponding to a green sub-pixel, and a gamma curve corresponding to a blue sub-pixel.
The step S3 further includes: when the display panel displays a sub-frame image during the sub-frame SF, inputting a light-emission control signal corresponding to the light-emission duration corresponding to a current sub-frame SF to the display panel.
Emit_1 to Emit_x shown in
Such method for driving the display panel uses the pulse width modulation (PWM) driving and PAM driving to hybrid-drive the display panel. During each sub-frame SF, the display brightness of each sub-pixel in the sub-frame image is jointly determined by the display voltage V1 (or data voltage) of each sub-pixel and the light-emission duration corresponding to the sub-frame SF. That is, the display brightness of the sub-pixel is not only modulated by the magnitude of the data voltage corresponding to the sub-pixel, but also modulated by the time duration of the light-emission duration corresponding to the sub-frame SF. This method for driving the display panel can solve the problem that the gamma grayscale cannot be displayed accurately caused by using only the PWM driving method, and it can also solve the problem of excessive large color gamut deviation of different grayscales and the problem of large power consumption at low grayscales, which are caused by only using the PAM method for driving a display panel alone. Therefore, the display effect can be optimized, for example, the display effect at low grayscales can be significantly optimized.
In the embodiments of the present disclosure, one set of first gamma curves Gamma1 and the light-emission duration for each sub-frame SF are set, so that a picture visible to human eyes after N sub-frame images are superimposed is a frame picture to be displayed that is initially expected to be presented. For example, N=4.
When respectively setting the light-emission durations for the N sub-frames SF, with reference to
When respectively setting the light-emission durations for the N sub-frames SF, with reference to
At S21, the display voltage V1 of the sub-pixel in the first sub-frame SF1 is obtained based on the first gamma curve Gamma1 corresponding to the first sub-frame SF1 and the original grayscale G0 of the sub-pixel. That is, the conversion process where the original grayscale G0 is converted into the display voltage V1 is achieved.
At S22, the display grayscale G1 of the sub-pixel in the first sub-frame SF1 is obtained based on a second gamma curve Gamma2 and the display voltage V1 of the sub-pixel in the first sub-frame SF1. That is, the conversion process where the display voltage V1 is converted into the display grayscale G1 is achieved.
In this case, when the display panel displays the sub-frame images sequentially during consecutive first sub-frames SF1, the display grayscale G1 corresponding to the first sub-frame SF1 is converted by using the second gamma curve Gamma2 during each first sub-frame SF1, and the display voltage V1 obtained after the conversion is the display voltage V1 matching the first gamma curve Gamma1 corresponding to the first sub-frame SF1.
In an embodiment of the present disclosure, in order to improve the accuracy of restoring a frame image to be displayed and reduce a risk of distortion, the second gamma curve Gamma2 may be the same as at least one set of first gamma curves Gamma1.
The set of first gamma curves Gamma1 corresponding to the second sub-frame SF2 is the same as the set of second gamma curves Gamma2, therefore, even if a conversion process where the original grayscale G0 is converted into the display voltage V1 and a conversion process where the display voltage V1 is converted into the display grayscale G1 are performed on the second sub-frame SF2, the finally obtained display grayscale G1 is the same as the original grayscale G0. Therefore, the conversion process can be saved. The original grayscale G0 of the sub-pixel in the frame image to be displayed is directly input when the display panel displays the sub-frame image during the second sub-frame SF2, and then the display voltage V1 corresponding to the sub-pixel in the second sub-frame SF2 can be obtained by using the second gamma curve Gamma2. In this way, there is no need to perform the conversion process where the original grayscale G0 is converted into the display voltage V1 and the conversion process where the display voltage V1 is converted into the display grayscale G1 on second sub-frame SF2 before displaying an image, thereby reducing the amount of data to be processed.
In some embodiments, with reference to
In this way, the second sub-frame SF2 will not be sandwiched between the first sub-frames SF1, and the former N sub-frames SF are consecutive first sub-frames SF1. The operation of the driver chip when processing the data corresponding to the first sub-frame SF1 and inputting the display grayscale G1 to the first sub-frame SF1 is continuous, without performing operations on the second sub-frame SF2.
In an embodiment of the present disclosure, with reference to
In an embodiment of the present disclosure, 2≤N≤8. For example, N=4. In this case, by setting N to be within a range from 2 to 8, N is not too large, thereby avoiding too many times of writing a data voltage to the sub-pixel during one frame, and thus saving power consumption.
The division circuit 1 is configured to divide a frame into N sub-frames SF, and the N sub-frames SF respectively correspond to N sets of first gamma curves Gamma1. The sub-frames SF include at least two consecutive first sub-frames SF1, and at least two of the first sub-frames SF1 correspond to different sets of first gamma curves Gamma1, where N≥2.
The original grayscale obtaining circuit 2 is configured to obtain an original grayscale G0 of the sub-pixel according to a frame image to be displayed.
The data processing circuit 3 is electrically connected to the division circuit 1 and the original grayscale obtaining circuit 2, and is configured to obtain the display grayscale G1 of the sub-pixel in each first sub-frame SF1 based on the original grayscale G0 of the sub-pixel, the second gamma curve Gamma2, and the first gamma curve Gamma1 corresponding to each first sub-frame SF1.
The driving circuit 4 is electrically connected to the division circuit 1 and the data processing circuit 3, and is configured to drive the display panel to display sub-frame images sequentially during N sub-frames SF, and to obtain the display voltage V1 of the sub-pixel in a current first sub-frame SF1 based on the second gamma curve Gamma2 and the display grayscale G1 of the sub-pixel in the first sub-frame SF1 when the display panel is driven to display the sub-frame image during the first sub-frame SF1.
In combination with the above analysis, in the device for driving the display panel provided by the embodiments of the present disclosure, the data processing circuit 3 is provided on a path on which the display voltage is generated, and the data processing circuit 3 performs a conversion on the original grayscale G0, so that when the display panel is driven to display images sequentially during at least two first sub-frames SF1, the display voltage V1 corresponding to the sub-pixel in each first sub-frame SF1 can be obtained by only using one unified second gamma curve Gamma2 to convert the display grayscale G1 corresponding to each first sub-frame SF1 into the display voltage V1 (i.e., display grayscale G1−display voltage V1), without performing gamma switching at the beginning of each first sub-frame SF1. Therefore, the times for switching the gamma curves can be reduced, thereby reducing the requirements for the performance of the driver chip, and optimizing the high-frequency display of the display panel.
Such method for driving the display panel uses the pulse width modulation (PWM) driving and pulse amplitude modulation (PAM) driving to hybrid-drive the display panel. During each sub-frame SF, the display brightness of each sub-pixel in the sub-frame image is jointly determined by the display voltage V1 (or data voltage) of each sub-pixel and the light-emission duration corresponding to the sub-frame SF. This method for driving the display panel can solve the problem that the gamma grayscale cannot be displayed accurately caused by using only the PWM driving method, and it can also solve the problem of excessive large color gamut deviation of different grayscales and the problem of large power consumption at low grayscales, which are caused by only using the PAM method for driving a display panel alone. Therefore, the display effect can be optimized, for example, the display effect at low grayscales can be significantly optimized.
The display voltage obtaining sub-circuit 31 is electrically connected to the division circuit 1 and the original grayscale obtaining circuit 2, and is configured to obtain the display voltage V1 of the sub-pixel in the first sub-frame SF1 based on the first gamma curve Gamma1 corresponding to the first sub-frame SF1 and the original grayscale G0 of the sub-pixel. The display grayscale obtaining sub-circuit 32 is electrically connected to the display voltage obtaining sub-circuit 31 and the driving circuit 4, and is configured to obtain the display grayscale G1 of the sub-pixel in the first sub-frame SF1 based on the second gamma curve Gamma2 and the display voltage V1 of the sub-pixel in the first sub-frame SF1.
In the above configuration, the display voltage obtaining sub-circuit 31 realizes the conversion process where the original grayscale G0 is converted into the display voltage V1, and the display grayscale obtaining sub-circuit 32 realizes the conversion process where the display voltage V1 is converted into the display grayscale G1. When the display panel displays sub-frame images sequentially during consecutive first sub-frames SF1, the display grayscale G1 corresponding to the first sub-frame SF1 is converted by using the second gamma curve Gamma2 for each first sub-frame SF1. The display voltage V1 obtained after the conversion is the display voltage V1 matching the first gamma curve Gamma1 corresponding to the first sub-frame SF1.
The set of first gamma curves Gamma1 corresponding to the second sub-frame SF2 is the same as the set of second gamma curve Gamma2, therefore, even if a conversion process where the original grayscale G0 is converted into the display voltage V1 and a conversion process where the display voltage V1 is converted into the display grayscale G1 are performed on the second sub-frame SF2, the finally obtained display grayscale G1 is the same as the original grayscale G0. Therefore, the conversion process can be saved. The original grayscale G0 of the sub-pixel in the frame image to be displayed is directly input when the display panel displays the sub-frame image during the second sub-frame SF2, and then the display voltage V1 corresponding to the sub-pixel in the second sub-frame SF2 can be obtained by using the second gamma curve Gamma2. In this way, there is no need to perform the conversion process where the original grayscale G0 is converted into the display voltage V1 and the conversion process where the display voltage V1 is converted into the display grayscale G1 on second sub-frame SF2 before displaying an image, thereby reducing the amount of data to be processed.
In an embodiment of the present disclosure, with reference to
In an embodiment of the present disclosure, with reference to
Based on another aspect of the present disclosure, a non-volatile computer-readable storage medium is provided, the non-volatile computer-readable storage medium stores computer program instructions, and the computer program instructions, when executed by a processor, cause the processor to perform the foregoing method for driving the display panel.
In an embodiment, the device for driving the display panel includes a processor; and a memory configured to store instructions executable by the processor. The processor is configured to perform the steps executed by the device for driving the display panel in the foregoing method embodiments.
An embodiment of the present disclosure provides a display device.
The above embodiments are merely exemplary embodiments of the present disclosure and are not intended to limit the present disclosure. Any modifications, equivalent substitutions, and improvements made within the principle of the present disclosure shall fall into the protection scope of the present disclosure.
Finally, the above-described embodiments are merely for illustrating the present disclosure but not intended to provide any limitation. Although the present disclosure has been described in detail with reference to the above-described embodiments, it should be understood by those skilled in the art that, it is still possible to modify the technical solutions described in the above embodiments or to equivalently replace some or all of the technical features therein, but these modifications or replacements do not cause the essence of corresponding technical solutions to depart from the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202310099081.4 | Jan 2023 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20110148947 | Chen | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
110379368 | Oct 2019 | CN |
Entry |
---|
Chinese Office Action mailed Mar. 13, 2024, issued in related Chinese Application No. 202310099081.4, filed Jan. 31, 2023, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20230395012 A1 | Dec 2023 | US |