An embodiment of the present invention will be described below by referring to the accompanying diagrams.
An ink-jet printer 1 according to the present invention, as shown in
The recording paper P is transported in the paper feeding direction from a paper feeding section which is not shown in the diagram. In other words, the recording paper P is inserted between a platen roller (not shown in the diagram) and the head for the printer 3. A predetermined recording is carried out on the recording paper P by an ink jetted from the head for the printer 3 toward the recording paper P, and thereafter the recording paper P is discharged by paper discharge rollers 6 (recording paper transporting mechanism).
Moreover, as shown in
The channel unit 11 includes a stacked body 14 which is formed by stacking a plurality of plates having an opening. On an upper surface of the stacked body 14, a vibration plate 15 is provided. On the other hand, a plate assembly 18 is integrally attached on a lower surface of the stacked body 14. The plate assembly 18 is formed by attaching a nozzle plate 16 which has nozzles 16a, and a spacer plate 17 which has through holes 17a corresponding to the nozzles 16a. Moreover, the actuator unit 12 is provided on an upper surface of the vibration plate 15 (refer to
Moreover, as shown in
The stacked body 14, as shown in
Ink channels in the channel unit 11 are formed by openings in the plates 14A to 14F, and 16, and 17 which are stacked. The ink which flows through the ink channels is discharged from the nozzles 16a in the head for the printer 3.
The cavity plate 14A is a rectangular shaped metallic plate, and a plurality of cavities which form the pressure chambers 14Aa is formed along a longitudinal direction of the plate. These pressure chambers 14Aa (cavities) are formed as through holes in the cavity plate 14A by etching. The vibration plate 15 is stacked on an upper surface of the cavity plate 14A, closing the pressure chambers 14Aa (cavities).
The base plate 14B is a metallic plate in which communicating holes 14Ba from manifolds 14Da and 14Ea (common ink chambers) to each of the pressure chambers 14Aa, and communicating holes 14Bb from each of the pressure chambers 14Aa to each of the nozzles 16a are formed respectively. The aperture plate 14C is a metallic plate in which communicating channels 14Ca communicating each of the pressure chambers 14Aa and the manifolds 14Da and 14Ea are formed as recess channels on an upper surface of the aperture plate 14C, and communicating holes 14Cb from each of the pressure chambers 14Aa to each of the nozzles 16a are formed. The manifold plates 14D and 14E are metallic plates, each provided with communicating holes 14Db and 14Eb from each of the pressure chambers 14Aa to each of the nozzles 16a, in addition to the manifolds 14Da and 14Ea. The damper plate 14F is a metallic plate in which, recesses which form damper chambers 14Fa on a lower surface, and communicating holes 14Fb communicating each of the pressure chambers 14Aa and each of the nozzles 16a, are formed.
Next, the actuator unit 12 will be described below by referring to
Each of the individual electrodes 12B, as shown in
On the other hand, as shown in
As shown in
To find a relationship of a width of each of the electrodes and a gap (spacing distance) between the electrodes, with an amount of deformation of the vibration plate 15, as shown in
Next, connections of the first common electrodes 12C, the second common electrodes 12D, and the third common electrodes 12E with drawn wires will be described by referring to
Incidentally, as it has been described above, by arranging the individual electrodes 12B, and the first common electrodes 12C, the second common electrodes 12D, and the third common electrodes 12E, when a performance (capacitance value) of each of the channels is measured in order to select a piezoelectric material (PZT), it is possible to measure the capacitance value at only locations effective for drive.
In other words, firstly, a total capacitance value which is a total amount of the capacitance value of both end portions of each of the pressure chambers 14Aa is measured between the first common electrode 12C and the second common electrode 12D. Since a relative portion of the first common electrode 12C and the second common electrode 12D is only an area effective for piezoelectric deformation, it is possible to measure the capacitance value accurately. According to the measured capacitance value, piezoelectric materials (PZT) are separated to ranks, and a voltage value to be applied is determined.
Next, a capacitance value of an individual drive area is measured between each of the individual electrodes 12B and each of the third common electrodes 12E. Since a relative portion of the individual electrode 12B and the third common electrode 12E is only an area effective for deformation of the piezoelectric material (PZT), it is possible to measure an accurate capacitance value of each of the channels.
By selecting a piezoelectric material (PZT) in such manner, each of the channels has a uniform channel performance (capacitance value) and a stable and uniform discharge performance.
The piezoelectric layer 12A is made of a ferroelectric lead zirconate titanate (PZT) based ceramics material, and is polarized downward in a direction of thickness. The individual electrodes 12B (including a terminal 12Ba of the individual electrodes 12B) and the first common electrodes 12C, the second common electrodes 12D, and the third common electrodes 12E are made of a metallic material such as Ag—Pd material, and are connected to a driving circuit 49 which will be described later, by a signal wire of the flexible cable 13 by which a drive signal is supplied, and the drive voltage is selectively supplied from the driving circuit 49 to the individual electrodes 12B and the first common electrodes 12C, the second common electrodes 12D, and the third common electrodes 12E.
Next, an electrical structure of the ink-jet printer 1 will be described by referring to
As shown in
The CPU 21, is connected to an operation panel 25 for inputting various commands, a motor driver 27 which drives a carriage motor 26 which reciprocates the carriage 2, and a motor driver 29 which drives a transporting motor 28 which drives a transporting unit. Furthermore, the CPU 21 is connected to a paper sensor 30 which detects a presence or an absence of the recording paper P, an origin sensor 31 which detects that the head for the printer 3 at an origin position, and an ink cartridge sensor 32 which detects that an ink cartridge (not shown in the diagram) is in a normal mounted state.
The CPU 21, the ROM 23, the RAM 24, and the control circuit 22 are connected via an address bus 41 and a data bus 42. Moreover, the CPU 21 generates a recording timing signal TS and a control signal RS according to a computer program stored in advance in the ROM 23, and transfers each of the signals TS and RS to the control circuit 22. Moreover, the control circuit 22 stores in an image memory 45 a recording data which is transferred from an external equipment such as a personal computer 43 via an interface 44. Further, the control circuit 22 generates a reception interrupt signal WS from the data which is transferred from the personal computer 43 etc. via the interface 44, and transfers the signal WS to the CPU 21. The control circuit 22, according to the recording timing signal TS and the control signal RS, generates a recording data signal DATA for forming the recording data on the recording paper P, a drive waveform signal ICK, a strobe signal STB, and a transfer clock TCK synchronized with the recording data signal DATA, based on the recording data which is stored in the image memory 45, and transfers each of these signals DATA, TCK, STB, and ICK to the driving circuit 46.
Next, a drive operation of the head for the printer 3 described above will be described. In the following description, as shown in
Here, in a case of a pushing ejection, all channels are set to be in ON state (projected downward) immediately before printing, and only channels to discharge an ink are set to be in OFF state, and a negative pressure is generated, and simultaneously with a bouncing (a rebound) of a pressure wave, the channel is put in ON state and the ink is discharged by doubling the pressure wave. Therefore during a standby time, it is a state in which the voltage is applied, and there is a problem of migration. On the other hand, as shown in table 1 in the embodiment, the voltage is not applied to any of the electrodes 12B to 12E during the standby time. Therefore, there is an advantage that the problem of migration does not arise.
Next, a first driving step in which the vibration plate 15 of the jetting channel is deformed to form a projection upward will be described below. For a pressure chamber 14Aa which discharges the ink, the second electric potential is applied to the first common electrodes 12C, and the first electric potential is applied to the second common electrodes 12D and the third common electrode 12E, and the first electric potential is applied to the individual electrode 12B. In other words, while letting the first common electrodes 12C and the second common electrodes 12D to be at different electric potentials, the individual electrode 12B and the third common electrode 12E are kept at the same electric potential.
When the drive voltage is applied to the second areas S2, the second areas S2 are contracted in a direction of surface of the piezoelectric layer 12A by a piezoelectric effect. However, since the lower surface of the piezoelectric layer 12A, in other words, the surface facing the pressure chamber 14Aa, is fixed to the vibration plate 15, the upper surface of the piezoelectric layer 12A, in other words, the surface not facing the pressure chamber 14Aa is contracted substantially. Therefore, the second areas S2 are deformed to form a projection in a direction opposite to the pressure chamber 14Aa. In other words, the state is changed from a state shown in
On the other hand, for the pressure chamber 14Aa which does not discharge the ink, the second electric potential is applied to the first common electrodes 12C, the first electric potential is applied to the second common electrodes 12D and the third common electrode 12E, and the second electric potential is applied to the individual electrode 12B. In other words, while letting the first common electrodes 12C and the second common electrodes 12D to be at different electric potentials, the individual electrode 12B and the third common electrode 12E are let to be at different electric potentials.
In this case, the second areas S2, due to the drive voltage being applied, are deformed to form a projection in a direction opposite to the pressure chamber 14Aa. On the other hand, since the drive voltage is applied also to the first area S1, the first area S1 is contracted in the direction of surface of the piezoelectric layer 12A due to the piezoelectric effect. However, since the lower surface of the piezoelectric layer 12A, in other words, the surface facing the pressure chamber 14Aa is fixed to the vibration plate 15, the upper surface of the piezoelectric layer 12A, in other words, the surface not facing the pressure chamber 14Aa is contracted substantially. Therefore, the first area is deformed in the direction of the pressure chamber 14Aa. In other words, the deformation of the first area S1 and the second areas S2 are mutually negated, and as a result, it is not deformed in any of the directions (refer to
Next, a second driving step of deforming the vibration plate 15 of the jetting channel to form a projection on a lower side will be described below. After carrying out the first driving step, for the pressure chamber 14Aa which discharges the ink, the second electric potential is applied to the first common electrodes 12C and the second common electrodes 12D, the first electric potential is applied to the third common electrode 12E, and the second electric potential is applied to the individual electrode 12B. In other words, while letting the first common electrodes 12C and the second common electrodes 12D to be at the same electric potential, the individual electrode 12B and the third common electrode 12E are let to be at different electric potentials.
In this case, since the drive voltage is not applied to the second areas S2, the piezoelectric effect is not developed (generated), and the second areas S2 are not deformed. On the other hand, since the drive voltage is applied to the first area S1, the piezoelectric effect is developed (generated) and the first area S1 is deformed in the direction approaching toward the pressure chamber 14Aa (refer to
For the pressure chamber 14Aa which does not discharge the ink, the second electric potential is applied to the first common electrodes 12C and the second common electrodes 12D, the first electric potential is applied to the third common electrode 12E, and the first electric potential is applied to the individual electrode 12B. In other words, while letting the first common electrodes 12C and the second common electrodes 12D to be at the same electric potential, the individual electrode 12B and the third common electrode 12E are let to be at the same electric potential.
In this case, since the drive voltage is not applied to both the first area S1 and the second areas S2, the piezoelectric effect is not developed, and the first area S1 and the second areas S2 are not deformed in any of the directions (refer to
As it has been described above, in the present embodiment, the drive voltage is generated by combining the deformation of the second areas S2 in the first driving step (pulling) and the deformation of the first area S1 in the second driving step (pushing). Consequently, when compared to a head having any one of the pushing ejection and the pulling ejection, it is possible to have a substantial amount of deformation of the piezoelectric layer (actuator) with the same drive voltage, and a high jetting pressure is achieved. Moreover, with a drive voltage lower than in the head having any one of the pushing ejection and the pulling ejection, it is possible to achieve the amount of deformation of the piezoelectric layer of the same degree as in the head having any one of the pushing ejection and the pulling ejection. Moreover, the structure is simple in which the individual electrodes 12B, the first common electrodes 12C, the second common electrodes 12D, and the third common electrodes 12E are arranged sandwiching one piezoelectric layer 12A, and it is not necessary to increase substantially the number of drawn wires 12F to 12H required for wiring these common electrodes 12B to 12E.
Moreover, since in the first driving step, the drive voltage is applied between the first common electrodes 12C and the second common electrodes 12D, in the second driving step, the drive voltage is applied between the individual electrode 12B and the third common electrode 12E, and only an area effective for driving is polarized, the piezoelectric layer 12A becomes stronger against degradation without leaving an unnecessary internal-stress area in the piezoelectric layer 12A.
In the embodiment described above, the individual electrodes 12B and the first common electrodes 12C are arranged on the upper side of the piezoelectric layer 12A, and the second common electrodes 12D and the third common electrodes 12E are arranged on the upper side of the piezoelectric layer 12A. However, it is also possible to make a structure in which the individual electrodes 12B and the first common electrodes 12C are arranged on the lower side of the piezoelectric layer 12A, and the second common electrodes 12D and the third common electrodes 12E are arranged on the upper side of the piezoelectric layer 12A.
The embodiment described above is an example in which the present invention is applied to the head for the ink-jet printer. However, embodiments to which the present invention is applicable are not restricted to this embodiment. According to the present invention, since it is possible to increase the amount of deformation of the actuator without increasing the drive voltage, the present invention without being restricted to an ink droplet jetting apparatus, is also applicable to apparatuses used in various fields such as medical treatment and analysis.
Number | Date | Country | Kind |
---|---|---|---|
2006-261790 | Sep 2006 | JP | national |