1. Field of the Invention
The present invention relates to a method for driving a plasma display panel (PDP) of a surface discharge format and a display apparatus.
A PDP is commercialized as a wall-hung TV set or a monitor display of a computer, and the screen size thereof has reached 60 inches. In addition, PDP is a digital display device made of binary light emission cells, so it is suitable for a display of digital data and is expected as a multimedia monitor. In order to respond the market request and to promote a large size and a high definition, it is necessary to develop a panel structure as well as a driving method.
2. Description of the Prior Art
An AC type PDP for a color display employs a surface discharge format. The surface discharge format has an arrangement of electrodes in which display electrodes that become anodes and cathodes in a display discharge for ensuring a luminance are arranged in parallel on a front or back substrate, and address electrodes are arranged so as to cross a pair of the display electrodes. In the surface discharge format PDP, a partition is necessary for separating a discharge space for each column of a matrix display along the longitudinal direction of the display electrode (hereinafter referred to as the row direction). As the simplest partition pattern having good productivity, a so-called stripe pattern is known in which a linear band-like partition in a plan view is arranged at each boundary between columns.
There are two kinds of arrangements of display electrodes in the surface discharge format. In one arrangement, a pair of display electrodes is arranged for each row. The total number of the display electrodes is twice the number of rows n. In this format each row is independent of other rows, so the driving sequence can be simplified. However, in the case of the stripe pattern, an electrode gap between neighboring rows (referred to as a reverse slit) should be sufficiently large value, e.g., several times an arrangement interval (a surface discharge gap length) so as to prevent an interference of discharge between rows. In the other arrangement, display electrodes whose number is the number of rows n plus one are arranged substantially at the constant pitch. In this format, neighboring display electrodes constitute an electrode pair for a surface discharge, and each display electrode except for the both ends of the arrangement works for both displays of an odd row and an even row. From the viewpoint of a high definition (a fine pitch of rows) and effective usage of a display surface, the arrangement at a constant pitch is advantageous.
In a display, regardless of the arrangement format of display electrodes, an address discharge is generated between one electrode of the display electrode pair corresponding to each row and the address electrode, and a discharge is generated between display electrodes using the address discharge as a trigger, so that a charge quantity in a dielectric (a wall charge quantity) is controlled for addressing in accordance with a display content. After the addressing, a sustaining voltage Vs having alternating polarity is applied to the display electrode pair. The sustaining voltage Vs satisfies the inequality (1).
VfXY−VWXY<Vs<VfXY (1)
Here, VfXY is a discharge starting voltage between display electrodes, and VWXY is a wall voltage between display electrodes.
By applying the sustaining voltage Vs, a cell voltage (a sum of a driving voltage applied to an electrode and a wall voltage) exceeds the discharge starting voltage VfXY only in the cell having a predetermined quantity of wall charge, so that a surface discharge is generated along a substrate surface. If the application period is shortened, the light emission looks continuous.
In synchronization with the row selection, the address electrode A of the row to which the selected cell belongs that generates the address discharge among the selected row is biased to the selecting potential Va′ (application of an address pulse). In
The bias potential Vxa′ of the display electrode X is 80-90 volts.
The selecting potential Vy′ (the amplitude of the scanning pulse) is −170 volts.
The selecting potential Va′ (the amplitude of the address pulse) is 60-70 volts.
In the conventional driving method, the cell-selecting voltage Vay′ applied to the interelectrode AY by the scanning pulse and the address pulse is set to the value (230-240 volts) higher than the discharge starting voltage VfAY of the interelectrode AY regardless of the potential of the display electrode X, so that an address discharge is generated at the interelectrode AY. Namely, the addressing is performed in which a cell is selected by controlling potentials of two kind electrodes (the display electrode Y and the address electrode A) out of three kinds electrodes.
As explained above, in a PDP having a structure of display electrodes that are arranged at a constant pitch, one display electrode is commonly used by both displays of an odd row and an even row, so the display format is limited to an interlaced format. In the interlaced format, a half of the total rows are not used for display of each field. For example, even rows do not emit light in odd fields. Therefore, luminance of the display becomes lower than the progressive format. Especially, if the partition pattern is a grid pattern that can prevent the interference of discharge securely, the light emission area of each cell becomes narrower than in the case of the stripe pattern, so the non-light emission area in the screen increases. If the display is performed in which display data of one row are adapted to two rows in each field for increasing the luminance, the resolution in the column direction is reduced by half. Furthermore, the interlaced format can hardly satisfy a display quality that is required to high-resolution equipment such as a DVD or a full-specification HDTV, since a flicker is generated in a still picture display.
An object of the present invention is to provide a progressive display having an electrode structure in which two neighboring rows share a display electrode.
In the present invention, as a first aspect, three electrodes related to each cell, i.e., a pair of display electrodes for row display and an address electrode for selecting a column are controlled so that an address discharge is generated only when a predetermined voltage is applied to each of three interelectrodes among the three electrodes. In addressing process, the voltage applied to each of the three interelectrodes is controlled not to exceed the discharge starting voltage, and the application period of the voltage is set individually for three interelectrodes. The potential of each electrode is controlled so that the address discharge is not generated when the application periods of only two interelectrodes overlap but is generated when the application periods of three interelectrodes overlap with each other. For example, a voltage a little lower than the discharge starting voltage is applied to the interelectrode AY between one electrode of the display electrode pair and the address electrode, so that the selected cell becomes the state just before the discharge. In this state, an appropriate voltage lower than the discharge starting voltage is applied to the interelectrode XY between the display electrodes. When the electric field of the interelectrode XY is added to the electric field of the interelectrode AY, discharges are generated at the interelectrode XY and at the interelectrode AY substantially simultaneously. By this control, the rows can be selected independently also in the electrode structure in which two neighboring rows share a display electrode, so that the progressive display can be realized.
Concerning the potential control according to the present invention, a driving circuit that can control all display electrodes independently can be used. Otherwise, a driving circuit that can control one electrode of the display electrode pair can be used. In the latter case, the address period is divided into a first half and a second half, and the other electrode of the display electrode pair (the non-individually controlled electrode) is divided into two groups. Then, one group of display electrodes is made active in the first half, and the other group of display electrodes is made active in the second half.
There are two kinds of electrode structures in which two neighboring rows share a display electrode. In one structure the display electrodes are arranged at a constant pitch, while in the other structure a pair of display electrodes is arranged for each row so that one display electrode is connected with that of the neighboring row. In addition, in the structure of connecting non-neighboring rows by a multilayered wiring, the progressive display can be realized in accordance with the control of the present invention.
In the present invention, as a second aspect, the address period is divided into a first half and a second half so as to realize an erasing format of addressing. In the first half the polarity of the wall charge of the row that is selected in the second half is inverted, while in the second half the polarity of the wall charge of the row that is selected in the first half is inverted, so that an independent row selection is realized for each of two rows sharing a display electrode.
Hereinafter, the present invention will be explained more in detail with reference to embodiments and drawings.
In the PDP 1, display electrodes constituting an electrode pair for generating a display discharge are placed in parallel, and address electrodes are arranged so as to cross the display electrodes. The display electrode extends in the row direction of the screen (in the horizontal direction), and the address electrode extends in the column direction (in the vertical direction).
The driving unit 70 includes a controller 71, a power source circuit 73, a data converting circuit 79, a scanning driver 85, an address driver 87, and a sustaining driver 89. The driving unit 70 is supplied with frame data Df that are multivalued image data indicating luminance levels of red, green and blue colors from an external device such as a TV tuner or a computer along with various synchronizing signals. The frame data Df are temporarily memorized in a frame memory included in the data converting circuit 79.
In the display performed by the PDP 1, a binary control for lighting reproduces gradation, so a time series frame of an input image is divided into subframes of a predetermined number q. The data converting circuit 79 converts the frame data Df into subframe data Dsf for the gradation display and sends the data to the address driver 87. The subframe data Dsf are a group of display data for q screens, in which one bit corresponds to one cell. A value of each bit indicates whether the cell in the corresponding subframe requires a light emission, more exactly whether the address discharge is required or not.
The scanning driver 85 applies a scanning pulse for row selection to n of display electrode pairs. The address driver 87 controls potentials of m address electrodes in accordance with the subframe data Dsf. The sustaining driver 89 applies a sustaining voltage having alternating polarity to (n+1) of display electrodes. These drivers are supplied with a predetermined power from the power source circuit 73 via wiring conductors (not shown).
First Embodiment
[Panel Structure]
In
On the inner surface of a glass substrate 21 of the back substrate structure 20, address electrodes A are arranged one for one row, and the address electrodes A are covered with a dielectric layer 24. A partition 29 having a height of approximately 150 μm is provided on the dielectric layer 24. The partition 29 includes portions for dividing the discharge space for each column (hereinafter referred to as vertical walls) 291 and portions for dividing the discharge space for each row (hereinafter referred to horizontal walls) 292. The surface of the dielectric layer 24 and the side face of the partition 29 are covered with fluorescent substance layers 28R, 28G and 28B of red, green and blue colors for color display. The italic letters R, G and B in
As shown in
[Driving Method]
The frame period Tf assigned to a frame that is image information of a scene is displayed by the progressive format. In order to reproduce colors by gradation display for each color, one frame is divided into eight subframes, for example. Namely, each frame is replaced with a group of eight subframes. The number of display discharge times of each subframe is set by weighting so that the relative ratio of the luminance in the subframes becomes approximately 1:2:4:8:16:32:64:128. Since combinations of on and off for each subframe can realize 256 steps of luminance setting for each of read, green and blue colors, 2563 colors can be displayed. However, it is not necessary to display the subframes in the order of the luminance weight.
Each of the subframe periods Tsf1-Tsf8 assigned to the subframes is divided into a preparation period TR for equalizing a charge distribution of the entire screen, an address period TA for forming an electrification distribution corresponding to a display content, and a display period TS for keeping on state to ensure a luminance corresponding to a gradation level. The preparation period TR and the address period TA are constant regardless of the luminance weight. The display period TS is longer for the larger weight of luminance.
In the preparation period TR, the pulse Pry1 and the pulse Pry2 having the opposite polarity to each other are applied sequentially to the odd display electrodes Z. The pulse Prx1 and the pulse Prx2 having the opposite polarity to each other are applied sequentially to the even display electrodes Z. The application of a pulse means to bias the electrode temporarily to a potential different from the reference potential (e.g., the ground potential). In this example, each of the pulses Pry1, Pry2 and Prx1 is a ramp waveform pulse or an obtuse waveform pulse increasing in the amplitude for generating a microdischarge. By applying the pulses Prx2 and Pry2, the wall voltage can be regulated to a value corresponding to the difference between the discharge starting voltage and the pulse amplitude. The pulses Prx1 and Pry1 are applied for generating an appropriate wall voltage to the cell that was lighted in the previous subfield and the cell that was not lighted.
In the address period TA, the potential of the display electrode Z is controlled as will be explained later for row selection, and in synchronization with the control an address pulse Pa is applied to the address electrode A corresponding to the cell to be lighted so that an address discharge is generated.
In the display period TS, the odd display electrodes Z and even display electrodes Z are alternately supplied with a sustaining pulse Ps. The amplitude of the sustaining pulse Ps is the sustaining voltage Vs.
In the first embodiment, each of the display electrodes Z is controlled as scanning electrode independently. Among the (n+1) display electrodes Z, odd display electrodes (corresponds to the display electrodes Y) are supplied sequentially with the scanning pulse Py having the negative polarity, while even display electrodes (corresponding to the display electrodes X) are supplied sequentially with the scanning pulse Px having the positive polarity. The pulse width of the scanning pulse Py and the scanning pulse Px basically corresponds to two rows in the row selection. However, the width of the pulse that is applied to the display electrodes of the both ends of the arrangement can correspond one row, so that the address period TA can be shortened. The application timing of the scanning pulses Py and Px are shifter from each other, so as to overlap only for the time corresponding to one row in the display electrode pair corresponding to each row (indicated with “LINE” in FIG. 6). The period of the double application becomes the selection period of the corresponding row. As shown in
In synchronization with the row selection by the scanning pulse Py and the scanning pulse Px, the address pulse Pa is applied to the cell to be lighted. An address discharge is generated in the cell to which all of the scanning pulse Py, the scanning pulse Px, and the address pulse Pa are applied.
In the above-mentioned sequence it is important that the interelectrode XY between two display electrodes, the interelectrode AY between the address electrode A and the display electrode Y, and the interelectrode AX between the address electrode A and the display electrode X are supplied with voltages that do not exceed the discharge starting voltages VfXY, VfAY and VfAX, respectively, so that required address discharges are generated. Namely, as being clear from the comparison between FIG. 7 and
The selecting potential Vx (the amplitude of the scanning pulse Px) is 180 volts.
The selecting potential Vy (the amplitude of the scanning pulse Py) is −100 volts.
The selecting potential Va (the amplitude of the address pulse Pa) is 60-70 volts.
Since cell-selecting voltage Vay applied to the interelectrode AY is lower than the discharge starting voltage VfAY, a discharge is not generated when the row selection voltage Vxy is not applied to the interelectrode XY. When the row selection voltage Vxy is applied, though the row selection voltage Vxy is also lower than the discharge starting voltage VfXY of the interelectrode XY, a counter discharge is generated at the interelectrode AY by the electric field thereof and the electric field of the cell-selecting voltage Vay. Then, a surface discharge is generated at the interelectrode XY, resulting in the address discharge. The cell voltage of each interelectrode varies along with the wall charge being formed by the address discharge. After the selected row is transferred from j to the next, an address discharge is not generated since there is no overlapping period of the application period of the cell-selecting voltage Vay with that of the row selection voltage Vxy in the row j. Namely, in the row j the charge distribution formed by the addressing is kept until the display period TS.
Second Embodiment
In the second embodiment, the period setting is performed in the same way as in the first embodiment. The feature of setting in the second embodiment is to further divide each address period TA of the subframe periods Tsf1-Tsf8 into a first half TA11 and a second half TA12.
In the second embodiment, among the (n+1) display electrodes Z, odd display electrodes (display electrodes Y) are controlled individually as scanning electrodes. Even display electrodes (display electrodes X) are made common electrodes that do not require individual control. The display electrodes X are classified into a first group (display electrodes Xodd) and a second group (display electrodes Xeven) in accordance with whether the arrangement order counted by noting only the common electrodes is odd or even.
In the first half TA11 of the address period TA, the display electrodes Xodd are biased, while a scanning pulse Py is sequentially applied to all display electrodes Y one by one. When a scanning pulse is applied in the arrangement order of the display electrodes Y, the row selection is performed in which two rows are selected among the four rows from the first row at intervals of two rows as shown in FIG. 10. In synchronization with the row selection of the scanning pulse Py, an address pulse Pa is applied to the address electrode A corresponding to the cell to be lighted. An address discharge is generated in the cell to which the display electrode X is biased, the scanning pulse Py is applied, and the address pulse Pa is applied.
In the second half TA12 of the address period TA, the display electrodes Xeven are biased, while a scanning pulse Py is sequentially applied to the display electrodes Y except for the head of the arrangement one by one. When the scanning pulse is applied to the display electrode Y in the arrangement order, the row selection is performed in which rows that were not selected in the first half TA11 are selected at intervals of two rows as shown in FIG. 10. In synchronization with the row selection of the scanning pulse Py, an address pulse Pa is applied to the address electrode A corresponding to the cell to be lighted. An address discharge is generated in the cell to which the display electrode X is biased, the scanning pulse Py is applied, and the address pulse Pa is applied.
Also in the addressing of the above-mentioned sequence, each of the three interelectrodes XY, AY and AX is supplied with a voltage that does not exceed the discharge starting voltages thereof, so that a required address discharge is generated. Within the range that satisfies this condition, the first half TA11 and the second half TA12 can be set voltage independently from each other. If an unnecessary charge is generated at the interelectrode AY in the first half TA11, one or both of the bias potential of the display electrode X and the amplitude of the scanning pulse Py in the second half TA12 can be set a little higher than in the first half TA11 for improving the reliability of the addressing. In addition, in order to eliminate the influence of the unnecessary charge a pulse can be applied to the display electrode Y, for example, between the first half TA11 and the second half TA12, so as to generate a discharge for inverting the polarity of the charge.
In the second embodiment, since the display electrodes X are not controlled individually, the necessary components of the scanning circuit are less than in the first embodiment, so the scanning driver 85 can be constituted inexpensively.
Third Embodiment
The period setting of the third embodiment is similar to that of the second embodiment. In the third embodiment, each address period TA of the subframe periods Tsf1-Tsf8 is divided into a first half TA11 and a second half TA12 in the same way as in the second embodiment. The preparation periods TR11 and TR12 are assigned to each of the first half TA11 and the second half TA12. Namely, a preparation period is provided just before the first half TA11 as well as between the first half TA11 and the second half TA12.
Also in the third embodiment, among the (n+1) display electrodes Z, odd display electrodes (display electrodes Y) are controlled individually as scanning electrodes. Even display electrodes (display electrodes X) are made common electrodes that do not require individual control. The display electrodes X are classified into a first group (display electrodes Xodd) and a second group (display electrodes Xeven) in accordance with whether the arrangement order counted by noting only the common electrodes is odd or even.
In the preparation period TR11, the wall charge of the row that is addressed in the ensuing first half TA11 is equalized. All of the display electrodes Y are supplied with the above-mentioned pulses Pry1 and Pry2, and the display electrodes Xodd of the first group are supplied with the above-mentioned pulses Prx1 and Prx2. The display electrodes Xeven of the second group are not supplied with the pulse.
In the first half TA11 of the address period TA, the display electrodes Xodd are sustained in the biased state in the same way as in the preparation period TR11, while all display electrodes Y are sequentially supplied with the scanning pulse Py one by one in the same way as in the second embodiment (FIG. 9). When a scanning pulse is applied in the arrangement order of the display electrodes Y, the row selection is performed in which two rows are selected among the four rows from the first row at intervals of two rows as shown in FIG. 10. In synchronization with the row selection of the scanning pulse Py, an address pulse Pa is applied to the address electrode A corresponding to the cell to be lighted. An address discharge is generated in the cell to which the display electrode X is biased, the scanning pulse Py is applied, and the address pulse Pa is applied.
In the preparation period TR12, the wall charge of the row that is addressed in the ensuing second half TA12 is equalized. All display electrodes Y are supplied with the above-mentioned pulses Pry1 and Pry2, and the display electrodes Xeven are supplied with the above-mentioned pulses Prx1 and Prx2. Concerning the display electrodes Xodd, in order to keep the charge of the row that has been addressed, a pulse Prx3 having the same polarity with the pulse Pry1 is applied in synchronization with the application of the pulses Pra1 and Pry1 so as to prevent an unnecessary discharge.
In the second half TA12 of the address period TA the display electrodes Xeven are sustained in the biased state, while all display electrodes Y are sequentially supplied with a scanning pulse Py one by one. When a scanning pulse is applied to the display electrodes Y except for the head in the arrangement order, the row selection is performed in which rows that were not selected in the first half TA11 are selected at intervals of two rows as shown in FIG. 10. In synchronization with the row selection of the scanning pulse Py, an address pulse Pa is applied to the address electrode A corresponding to the cell to be lighted. An address discharge is generated in the cell to which the display electrode X is biased, the scanning pulse Py is applied, and the address pulse Pa is applied.
As explained above, the preparation process is performed twice in the third embodiment, so the reliability of the addressing is high. The display electrode Y that is used as a scanning electrode is a common electrode for two neighboring rows in the electrode arrangement explained with reference to FIG. 2. Therefore, in the address discharge in the first half TA11 in one of the two rows, there is a possibility that the counter discharge is generated at the interelectrode AY in the other row. When the counter discharge is generated and the unnecessary wall charge is formed at the interelectrode AY, the probability that a desired address discharge is not generated due to the influence of the wall charge when the addressing of the row is tried in the second half. Therefore, the second preparation process is performed just before the second half TA12. Thus, the discharge condition is prepared in the first half TA11 and the second half TA12, so that a stable addressing is performed both in the first half TA11 and in the second half TA12.
Also in the third embodiment, since the display electrodes X are not controlled individually in the same way as in the second embodiment, necessary components of the scanning circuit can be less than the first embodiment, so that the scanning driver 85 can be realized inexpensively.
Fourth Embodiment
In the fourth embodiment all display electrodes Z are controlled individually as scanning electrodes. Each display electrode Z is supplied with a scanning pulse Px having a first polarity and a scanning pulse Py having a second polarity. One electrode of the display electrode pair corresponding to the selected row is supplied with a scanning pulse Px, and the other electrode is supplied with a scanning pulse Py by setting the application timing. Concerning the display electrodes Z of the ends of the arrangement, one of the scanning pulse Px and the scanning pulse Py is applied. As shown in
Fifth Embodiment
The PDP 1b shown in
The inner surface of the back glass substrate 21 is provided with address electrodes A each of which is arranged for a column. The address electrodes A are covered with a dielectric layer 24. On the dielectric layer 24, a partition 29b having a height of approximately 150 μm is formed. The partition pattern is a stripe pattern that divides the discharge space for each column. The surface of the dielectric layer 24 and the side face of the partition 29b are covered with fluorescent substance layers 28R, 28G and 28B for color display. The italic letters R, G and B in
In the fifth embodiment, n display electrodes Y are divided into groups by two rows so as to make electrically common electrodes. The common display electrodes Y (here, referred to as a display electrode YG) are controlled individually as scanning electrodes. By making common electrodes, the number of necessary components of the scanning circuit is reduced so that the scanning driver becomes less expensive than the conventional driving method in which each row is controlled independently. Concerning the display electrode X, display electrodes X of odd rows make a first group (display electrodes Xodd), and display electrodes X of even rows make a second group (display electrodes Xeven), so that each group is controlled as a whole.
The voltage control is performed in the sequence similar to the above-mentioned second embodiment for the grouped display electrodes X and Y. Namely, in the first half TA11 of the address period TA, the display electrodes Xodd are biased, while all display electrodes YG are sequentially supplied with a scanning pulse Py one by one. When the scanning pulse Py is applied in the arrangement order of the display electrodes YG, the row selection is performed in the order of every other row from the head row as shown in FIG. 16. In the second half TA12, the display electrodes Xeven are biased, while all display electrodes YG are sequentially supplied with a scanning pulse Py one by one. When the scanning pulse Py is applied in the arrangement order of the display electrodes Y, the row selection is performed in the order of every other row selecting a row that was not selected in the first half TA11 as shown in FIG. 16. In the first half TA11 and the second half TA12, in synchronization with the row selection of the scanning pulse Py, an address pulse Pa is applied to the address electrode A corresponding to the cell to be lighted. An address discharge is generated in the cell to which the display electrode X is biased, the scanning pulse Py is applied, and the address pulse Pa is applied.
Sixth Embodiment
The sixth embodiment is applied to a PDP 1 having a partition 29 of a grid shape in a plan view for dividing the discharge space for each cell as shown in FIG. 2. The scheme of the period setting in the driving method of the sixth embodiment is similar to that of the second embodiment (FIG. 8).
In the sixth embodiment, among (n+1) display electrodes Z, even display electrodes (display electrodes Y) are controlled individually as scanning electrodes. Odd display electrodes (display electrodes X) are made common electrodes that do not require individual control, and the display electrodes X are classified into a first group (display electrodes Xodd) and a second group (display electrodes Xeven) in accordance with whether the arrangement order is odd or even counted by noting the common electrodes.
In the preparation period TR, a ramp waveform pulse, an obtuse waveform pulse and a rectangular pulse are combined appropriately to be applied, so that every row generates a wall charge that enables a discharge when the sustaining voltage is applied. The polarity of wall charge at the end of the preparation period TR is plus at the display electrode X side of each row and is minus at the display electrode Y side. Regarding the charge in the vicinity of the display electrodes X and Y, substantially the same quantity of wall charge having the same polarity exists at both sides of horizontal wall 292 as shown in FIG. 18.
Referring to
It is important that the addressing is performed only for one row despite each display electrode Y is common to two neighboring rows. As explained above, prior to the row selection the polarity of the wall charges in the rows to which the display electrodes Xeven are related is inverted, so that the wall charge in the rows works so as to cancel the scanning pulse Py. Therefore, the address discharge is not generated.
In the second half TA12 of the address period TA, all display electrodes Y are supplied with the sustaining pulse Ps first, so that the polarity of the wall charge in the row to which the display electrodes Xeven are related is inverted again (#2). Namely, the charged state of the cell to be addressed in the second half TA12 is returned to the state at the end of the preparation period TR. Then, the display electrodes Xodd are supplied with a sustaining pulse Ps (#3). Thus, a discharge is generated in the non-selected cell of the row that was selected in the first half TA11, so that the polarity of the remaining wall charge is inverted. Following this wall charge control, the potentials of all display electrodes Y are gradually altered to the selecting potential (Vy) and then are biased to the non-selecting potential (Vsc), so that the display electrodes Xeven are biased to the selecting potential (Vax). In this sate, all display electrodes Y are sequentially supplied with a scanning pulse Py one by one. When the scanning pulse Py is applied in the arrangement order of the display electrode Y, the rows that were not selected in the first half TA11 are selected sequentially as shown in FIG. 19. In synchronization with the row selection of the scanning pulse Py, the address pulse Pa is applied to the address electrode A corresponding to the selected cell to generate an address discharge. Since the polarity of the wall charge is previously inverted for the nontarget rows in the same way as in the first half TA11, the wall charge works so as to cancel the scanning pulse Py. Therefore, an address discharge is not generated in the nontarget rows.
The practical example of the bias potential is as follows.
Vs is 160-190 volts
Vy is −40-−90 volts
Vsc is 0-60 volts
Vax is 0-80 volts
In the display period TS, all display electrodes Y are supplied with a sustaining pulse Ps at the same time. Thus, a display discharge is generated in the row related to the display electrode Y and the display electrode Xodd. After that, all display electrodes X (Xodd+Xeven) and all display electrodes Y are supplied with the sustaining pulse Ps alternately. A display discharge is generated every application in the row having a non-selected cell.
According to the present invention, a progressive display can be realized in the electrode structure in which two neighboring rows share a display electrode. In addition, components of the scanning circuit are reduced and the driving circuit can be less expensive. Furthermore, a stable progressive display without an interference of the discharge disturbing a display can be realized. Furthermore, the reliability of the addressing can be improved, and a more stable progressive display can be realized.
While the presently preferred embodiments of the present invention have been shown and described, it will be understood that the present invention is not limited thereto, and that various changes and modifications may be made by those skilled in the art without departing from the scope of the invention as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2000-304404 | Oct 2000 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5854540 | Matsumoto et al. | Dec 1998 | A |
6091380 | Hashimoto et al. | Jul 2000 | A |
6144349 | Awata et al. | Nov 2000 | A |
6320326 | Shino et al. | Nov 2001 | B1 |
6342873 | Ueoka et al. | Jan 2002 | B1 |
6344841 | Moon | Feb 2002 | B1 |
6380912 | Kang et al. | Apr 2002 | B1 |
6420830 | Youn | Jul 2002 | B1 |
6452590 | Awamoto et al. | Sep 2002 | B1 |
6489722 | Yoshida et al. | Dec 2002 | B1 |
6504519 | Ryu et al. | Jan 2003 | B1 |
20010024092 | Kim et al. | Sep 2001 | A1 |
20020039086 | Hirakawa et al. | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
10-003280 | Jan 1998 | JP |
2000-39866 | Feb 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20020039086 A1 | Apr 2002 | US |