According to an embodiment, a system for electrically controlling combustion fluid flow includes a charge generator configured to apply a charge or voltage to a combustion fluid flow corresponding to a combustion reaction, a combustion fluid flow barrier defining at least one aperture therethrough, at least one flow control electrode operatively coupled to the at least one aperture, a voltage source operatively coupled to the flow control electrode, and a controller configured to control an application of one or more voltages from the voltage source to the flow control electrode.
According to an embodiment, a method for electrically controlling combustion fluid flow includes outputting electrical charges to a combustion fluid to form a charged combustion fluid, supporting a body defining a plurality of apertures aligned to receive a flow of the charged combustion fluid, applying a control voltage to a control electrode disposed adjacent to the plurality of apertures, and affecting a flow of the charged combustion fluid through the plurality of apertures with an electrical interaction between the charged combustion fluid and the control voltage carried by the control electrode.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. Other embodiments may be used and/or other changes may be made without departing from the spirit or scope of the disclosure.
Various embodiments of bodies defining apertures configured to collectively carry a combustion reaction are contemplated. Some contemplated embodiments are described in International PCT Patent Application No. PCT/US2014/016626 entitled “SELECTABLE DILUTION LOW NOx BURNER” filed on Feb. 14, 2014, International PCT Patent Application No. PCT/US2014/016628 entitled “PERFORATED FLAME HOLDER AND BURNER INCLUDING A PERFORATED FLAME HOLDER” filed on Feb. 14, 2014, International PCT Patent Application No. PCT/US2014/016632 entitled “FUEL COMBUSTION SYSTEM WITH A PERFORATED REACTION HOLDER” filed on Feb. 14, 2014 and International PCT Patent Application No. PCT/US14/16622 entitled “STARTUP METHOD AND MECHANISM FOR A BURNER HAVING A PERFORATED FLAME HOLDER” filed on Feb. 14, 2014; each of which, to the extent not inconsistent with the disclosure herein, is incorporated by reference.
At least one flow control electrode 110 is operatively coupled to the at least one aperture 108. A voltage source 112 is operatively coupled to the flow control electrode 110. A controller 114 is configured to control an application of one or more voltages from the voltage source 112 to the flow control electrode 110. According to an embodiment, the system 100, 101 includes a burner 116.
The charge generator 102 can be configured to apply a charge or voltage at a first polarity to the combustion fluid flow. The controller 114 can be configured to cause the voltage source 112 to apply a voltage at the first polarity to the flow control electrode 110 to impede flow of the combustion fluid flow through the at least one aperture 108. Additionally or alternatively, the controller 114 can be configured to cause the voltage source 112 to not apply a voltage to the flow control electrode 110 to allow flow of the combustion fluid flow through the at least one aperture 108, can be configured to cause the voltage source 112 to hold the flow control electrode 110 at voltage ground to attract flow of the combustion fluid flow through the at least one aperture 108 and/or can be configured to cause the voltage source 112 to apply a voltage at a second polarity opposite from the first polarity to the flow control electrode 110 to attract flow of the combustion fluid flow through the at least one aperture 108.
Referring to
Referring to
Optionally, a counter-electrode can be arranged relative to an energized electrode to cause a flow or counter-flow of ionic wind through the aperture(s) 108. For example, the electrode 202 of
A plurality of apertures 108 form passages 720, 722 between the primary combustion region 704 and the secondary combustion region 706. According to an embodiment, passage(s) 720 between the primary combustion region 704 and the secondary combustion region 706 provide selective heat communication between the groove 712 or a surface adjacent to the primary combustion region 704 and a substantially vertical surface 724 of the flame barrier 702. According to another embodiment, a passage 722 between the primary combustion region 704 and the secondary combustion region 706 provides selective communication between the primary combustion region 704 and a substantially horizontal surface 726 of the flame barrier 702. The substantially horizontal surface 726 can act as a secondary flame holding surface. Embodiments can include both horizontal passages 720 and vertical passages 722.
In the embodiment 700, the flow control electrode(s) 110 is configured to control ignition in the secondary combustion region 706.
The combustion fluid flow barrier 106 can include a bluff body configured to selectively support a flame (corresponding to the secondary combustion reaction, not shown). The flow control electrode 110 is configured to cause the flame to be supported by the bluff body when the combustion fluid is attracted or allowed to flow through the at least one aperture 108, 720, 722. The flow control electrode 110 is also configured to cause the flame to not be supported by the bluff body when the combustion fluid is impeded from flowing through the at least one aperture 108, 720, 722. In operation, a charge generator 102 is energized by the voltage source 112 to cause the primary combustion reaction to carry a charge or voltage at a first polarity. During start-up, for example, the flow control electrodes can be raised to a voltage having a second polarity opposite to the first polarity to cause flames from the primary combustion reaction to flow through the aperture(s) 108, 720, 722 to ignite a secondary combustion reaction proximate to the combustion fluid barrier 702 and to be held by the surface 726. After the system is warmed up, it may be desirable to ignite the secondary combustion reaction at a different location. For example, delaying ignition can allow greater secondary fuel dilution, which can result in lower oxides of nitrogen (NOx) output. To delay ignition, the controller 114 can cause the voltage source 112 to electrically energize the flow control electrode(s) 110 to a voltage having the same polarity as the charge applied to the primary combustion reaction by the charge generator(s) 102. Applying a repelling voltage to the flow control electrode(s) 110 can act to effectively increase resistance to combustion fluid (in this case, flame) flow through the aperture(s) 720, 722, thus reducing the probability of the primary combustion reaction delivering sufficient heat to the secondary combustion reaction to ignite the secondary combustion reaction proximate the surfaces 724, 726 of the flame barrier 702.
According to embodiments, the charge polarity placed on the primary combustion reaction by the charge generator(s) 102 can include an alternating charge. The flow control electrode(s) 110 can operate similarly to the description above by placing an in-phase voltage on the flow control electrode(s) 110 to reduce primary flame penetration of the flame barrier 702, or by placing an approximately 180° out-of-phase voltage on the flow control electrode(s) 110 to increase primary flame penetration of the flame barrier 702.
The at least one aperture 108 can include a plurality of perforations 804 defined by the perforated flame holder 802. The controller 114 can be configured to cause the at least one flow control electrode 110 to selectively impede combustion fluid flow through the plurality of perforations 804 to cause the flame to be held at the edges of the perforated flame holder 802, and can also be configured to cause the at least one flow control electrode 110 to selectively allow or attract combustion fluid flow through the plurality of perforations 804 to cause the flame to flow through the perforations 804. For example, the controller 114 can be configured to cause the at least one flow control electrode 110 to selectively impede combustion fluid flow through a portion of the perforations 804 corresponding to a fuel turn-down. For example, the controller 114 can be configured to cause the at least one flow control electrode 110 to selectively allow and/or attract combustion fluid to flow through all or a portion of the perforations 804 proportional to a fuel flow rate.
According to embodiments, the charge polarity placed on fuel, air, flame, or other combustion fluid flow by the charge generator(s) 102 can include an alternating charge. The flow control electrode(s) 110 can operate similarly to the description above by placing an in-phase voltage on the flow control electrode(s) 110 to reduce flow through the perforations 804 in the flame holder 802, or by placing an approximately 180° out-of-phase voltage on the flow control electrode(s) 110 to increase flow through the perforations 804 in the flame holder 802.
According to embodiments, the charge polarity placed on the primary combustion reaction by the charge generator(s) 102 can include an alternating charge. The flow control electrode(s) 110 can operate similarly to the description above by placing an in-phase voltage on the flow control electrode(s) 110 to decrease exhaust gases 906 penetrating the EGR barrier 902 to increase the portion of recycled flue gases 904. Similarly, placing an approximately 180° out-of-phase voltage on the flow control electrode(s) 110 will increase exhaust gas 906 flow through the EGR barrier 902 to decrease the portion of recycled flue gases 904.
As with the embodiments described above, the charge polarity placed in the combustion air by the charge generator(s) 102 can include an alternating charge. The flow control electrode(s) 110 can operate similarly to the description above by placing an in-phase voltage on the flow control electrode(s) 110 to decrease combustion air flow through the combustion air damper 1002, or by placing an approximately 180° out-of-phase voltage on the flow control electrode(s) 110 to increase combustion air flow through the combustion air damper 1002.
Outputting electrical charges into a combustion fluid in step 1102 can include emitting charges with a corona electrode into a non-conductive combustion fluid. For example, the charges can be emitted into fuel, air, or a fuel and air mixture upstream from the apertures and control electrode. According to another embodiment, outputting electrical charges into a combustion fluid includes conducting charges from a charge electrode into a conductive combustion fluid. For example a charge generator can include a charge electrode that is in contact with a flame. Flames are relatively conductive.
The charged combustion fluid can include a fuel mixture, such as a fuel and air mixture. The charged combustion fluid can additionally or alternatively include a flue gas. The charged combustion fluid can additionally or alternatively include combustion air. The charged combustion fluid can additionally or alternatively include a flame.
As described above, various control scenarios are contemplated.
In one embodiment, outputting electrical charges to the combustion fluid includes outputting electrical charges having a first polarity and applying a control voltage to the control electrode includes applying a voltage at a second polarity the same as the first polarity. Affecting a flow of the charged combustion fluid through the plurality of apertures with an electrical interaction between the charged combustion fluid and the control voltage carried by the control electrode can include electrostatically repelling the electrical charges from the control electrode to attenuate the flow of charged combustion fluid through the apertures.
In another embodiment, outputting electrical charges to the combustion fluid includes outputting electrical charges having a first polarity and applying a control voltage to the control electrode comprises applying a voltage at a second polarity opposite to the first polarity. Affecting a flow of the charged combustion fluid through the plurality of apertures with an electrical interaction between the charged combustion fluid and the control voltage carried by the control electrode can include electrostatically attracting the electrical charges to the control electrode to enhance the flow of charged combustion fluid through the apertures.
In another embodiment, outputting electrical charges to the combustion fluid includes outputting electrical charges having a first polarity and applying a control voltage to the control electrode includes applying a voltage ground to the control electrode. Affecting a flow of the charged combustion fluid through the plurality of apertures with an electrical interaction between the charged combustion fluid and the control voltage carried by the control electrode can include electrostatically attracting the electrical charges to the control electrode to enhance the flow of charged combustion fluid through the apertures.
The method 1100 can further include operating a voltage source to output the control voltage.
Optionally, the method 1100 can include step 1106, wherein a combustion parameter is sensed. The method can also include step 1108, wherein the control voltage is selected responsive to the sensed combustion parameter. The control voltage can be set by controller and/or can be manually set by a system operator.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
The present application is a Divisional of U.S. patent application Ser. No. 14/772,033, entitled “ELECTRICALLY CONTROLLED COMBUSTION FLUID FLOW”, filed Sep. 1, 2015. U.S. patent application Ser. No. 14/772,033 is a U.S. National Phase application under 35 U.S.C. § 371 of International PCT Patent Application No. PCT/US2014/031969, entitled “ELECTRICALLY CONTROLLED COMBUSTION FLUID FLOW”, filed Mar. 27, 2014, now expired. International PCT Patent Application No. PCT/US2014/031969 claims priority benefit from U.S. Provisional Patent Application No. 61/805,924, entitled “ELECTRICALLY CONTROLLED COMBUSTION FLUID FLOW”, filed Mar. 27, 2013, now expired. Each of the foregoing applications, to the extent not inconsistent with the disclosure herein, is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2604936 | Kaehni et al. | Jul 1952 | A |
3008513 | Holden | Nov 1961 | A |
3167109 | Wobig | Jan 1965 | A |
3224485 | Blomgren et al. | Dec 1965 | A |
3228614 | Bauer | Jan 1966 | A |
3269446 | Luther | Aug 1966 | A |
3306338 | Wright et al. | Feb 1967 | A |
3358731 | Donnelly | Dec 1967 | A |
3416870 | Wright | Dec 1968 | A |
3488544 | Burley et al. | Jan 1970 | A |
3749545 | Velkoff | Jul 1973 | A |
3841824 | Bethel | Oct 1974 | A |
4020388 | Pratt, Jr. | Apr 1977 | A |
4021188 | Yamagishi et al. | May 1977 | A |
4081958 | Schelp | Apr 1978 | A |
4093430 | Schwab et al. | Jun 1978 | A |
4111636 | Goldberg | Sep 1978 | A |
4176637 | Cole | Dec 1979 | A |
4201140 | Robinson | May 1980 | A |
4362016 | Papadopulos | Dec 1982 | A |
4363208 | Hoffman et al. | Dec 1982 | A |
4397356 | Retallick | Aug 1983 | A |
4408461 | Bruhwiler et al. | Oct 1983 | A |
4430024 | Guild et al. | Feb 1984 | A |
4473349 | Kumatsu | Sep 1984 | A |
4673349 | Abe et al. | Jan 1987 | A |
4643667 | Fleming | Feb 1987 | A |
4675029 | Norman et al. | Jun 1987 | A |
4726767 | Nakajima | Feb 1988 | A |
4752213 | Grochowski et al. | Jun 1988 | A |
4899696 | Kennedy et al. | Feb 1990 | A |
5235667 | Canfield et al. | Aug 1993 | A |
5248255 | Morioka et al. | Sep 1993 | A |
5288303 | Woracek et al. | Feb 1994 | A |
5300270 | Krigmont et al. | Apr 1994 | A |
5326257 | Taylor et al. | Jul 1994 | A |
5380192 | Hamos | Jan 1995 | A |
5439372 | Duret et al. | Aug 1995 | A |
5441402 | Reuther et al. | Aug 1995 | A |
5511516 | Moore, Jr. et al. | Apr 1996 | A |
5515681 | DeFreitas | May 1996 | A |
5702244 | Goodson et al. | Dec 1997 | A |
5784889 | Joos et al. | Jul 1998 | A |
5899686 | Carbone et al. | May 1999 | A |
6065963 | Dewaegheneire et al. | May 2000 | A |
6095798 | Mitani et al. | Aug 2000 | A |
6211490 | Nosse | Apr 2001 | B1 |
7137808 | Branston et al. | Nov 2006 | B2 |
7243496 | Pavlik et al. | Jul 2007 | B2 |
7523603 | Hagen et al. | Apr 2009 | B2 |
7837962 | Eiteneer et al. | Nov 2010 | B2 |
8245951 | Fink et al. | Aug 2012 | B2 |
8851882 | Hartwick et al. | Oct 2014 | B2 |
8881535 | Hartwick et al. | Nov 2014 | B2 |
8911699 | Colannino et al. | Dec 2014 | B2 |
9062882 | Hangauer et al. | Jun 2015 | B2 |
9209654 | Colannino et al. | Dec 2015 | B2 |
9267680 | Goodson et al. | Feb 2016 | B2 |
9284886 | Breidenthal et al. | Mar 2016 | B2 |
9289780 | Goodson | Mar 2016 | B2 |
9310077 | Breidenthal et al. | Apr 2016 | B2 |
9366427 | Sonnichsen et al. | Jun 2016 | B2 |
9371994 | Goodson et al. | Jun 2016 | B2 |
9377188 | Ruiz et al. | Jun 2016 | B2 |
9377189 | Ruiz et al. | Jun 2016 | B2 |
9377190 | Karkow et al. | Jun 2016 | B2 |
9377195 | Goodson et al. | Jun 2016 | B2 |
9388981 | Karkow et al. | Jul 2016 | B2 |
20020088442 | Hansen et al. | Jul 2002 | A1 |
20020092302 | Johnson et al. | Jul 2002 | A1 |
20020155403 | Griffin et al. | Oct 2002 | A1 |
20020197574 | Jones | Dec 2002 | A1 |
20040081933 | St. Charles et al. | Apr 2004 | A1 |
20050208442 | Heiligers et al. | Sep 2005 | A1 |
20050208446 | Jayne | Sep 2005 | A1 |
20060165555 | Spielman et al. | Jul 2006 | A1 |
20070020567 | Branston et al. | Jan 2007 | A1 |
20070071657 | Okubo et al. | Mar 2007 | A1 |
20070186872 | Shellenberger et al. | Aug 2007 | A1 |
20080145802 | Hammer et al. | Jun 2008 | A1 |
20080268387 | Saito et al. | Oct 2008 | A1 |
20090056923 | Lin | Mar 2009 | A1 |
20100178219 | Verykios et al. | Jul 2010 | A1 |
20110027734 | Hartwick | Feb 2011 | A1 |
20110072786 | Tokuda et al. | Mar 2011 | A1 |
20110076628 | Miura et al. | Mar 2011 | A1 |
20110203771 | Goodson et al. | Aug 2011 | A1 |
20120135360 | Hannum et al. | May 2012 | A1 |
20120164590 | Mach | Jun 2012 | A1 |
20130004902 | Goodson et al. | Jan 2013 | A1 |
20130071794 | Colannino et al. | Mar 2013 | A1 |
20130230810 | Goodson et al. | Sep 2013 | A1 |
20130260321 | Colannino et al. | Oct 2013 | A1 |
20130291552 | Smith et al. | Nov 2013 | A1 |
20130323655 | Krichtafovitch et al. | Dec 2013 | A1 |
20130323661 | Goodson et al. | Dec 2013 | A1 |
20130333279 | Osler et al. | Dec 2013 | A1 |
20130336352 | Colannino et al. | Dec 2013 | A1 |
20140051030 | Colannino et al. | Feb 2014 | A1 |
20140065558 | Colannino et al. | Mar 2014 | A1 |
20140076212 | Goodson et al. | Mar 2014 | A1 |
20140080070 | Krichtafovitch et al. | Mar 2014 | A1 |
20140162195 | Lee et al. | Jun 2014 | A1 |
20140162196 | Krichtafovitch et al. | Jun 2014 | A1 |
20140162197 | Krichtafovitch et al. | Jun 2014 | A1 |
20140162198 | Krichtafovitch et al. | Jun 2014 | A1 |
20140170569 | Anderson et al. | Jun 2014 | A1 |
20140170571 | Casasanta, III et al. | Jun 2014 | A1 |
20140170575 | Krichtafovitch | Jun 2014 | A1 |
20140170576 | Colannino et al. | Jun 2014 | A1 |
20140170577 | Colannino et al. | Jun 2014 | A1 |
20140186778 | Colannino et al. | Jul 2014 | A1 |
20140196368 | Wiklof | Jul 2014 | A1 |
20140196369 | Wiklof | Jul 2014 | A1 |
20140208758 | Breidenthal et al. | Jul 2014 | A1 |
20140212820 | Colannino et al. | Jul 2014 | A1 |
20140216401 | Colannino et al. | Aug 2014 | A1 |
20140227645 | Krichtafovitch et al. | Aug 2014 | A1 |
20140227646 | Krichtafovitch et al. | Aug 2014 | A1 |
20140227649 | Krichtafovitch et al. | Aug 2014 | A1 |
20140248566 | Krichtafovitch et al. | Sep 2014 | A1 |
20140255855 | Krichtafovitch | Sep 2014 | A1 |
20140255856 | Colannino et al. | Sep 2014 | A1 |
20140272730 | Krichtafovitch et al. | Sep 2014 | A1 |
20140272731 | Breidenthal et al. | Sep 2014 | A1 |
20140287368 | Krichtafovitch et al. | Sep 2014 | A1 |
20140295094 | Casasanta, III | Oct 2014 | A1 |
20140295360 | Wiklof | Oct 2014 | A1 |
20140335460 | Wiklof et al. | Nov 2014 | A1 |
20150079524 | Colannino et al. | Mar 2015 | A1 |
20150104748 | Dumas et al. | Apr 2015 | A1 |
20150107260 | Colannino et al. | Apr 2015 | A1 |
20150121890 | Colannino et al. | May 2015 | A1 |
20150140498 | Colannino | May 2015 | A1 |
20150147704 | Krichtafovitch et al. | May 2015 | A1 |
20150147705 | Colannino et al. | May 2015 | A1 |
20150147706 | Krichtafovitch et al. | May 2015 | A1 |
20150219333 | Colannino et al. | Aug 2015 | A1 |
20150226424 | Breidenthal et al. | Aug 2015 | A1 |
20150241057 | Krichtafovitch et al. | Aug 2015 | A1 |
20150276211 | Colannino et al. | Oct 2015 | A1 |
20150276217 | Karkow et al. | Oct 2015 | A1 |
20150276220 | Karkow et al. | Oct 2015 | A1 |
20150285491 | Karkow et al. | Oct 2015 | A1 |
20150316261 | Karkow et al. | Nov 2015 | A1 |
20150330625 | Karkow et al. | Nov 2015 | A1 |
20150338089 | Krichtafovitch et al. | Nov 2015 | A1 |
20150345780 | Krichtafovitch | Dec 2015 | A1 |
20150345781 | Krichtafovitch et al. | Dec 2015 | A1 |
20150362178 | Karkow et al. | Dec 2015 | A1 |
20150369477 | Karkow et al. | Dec 2015 | A1 |
20160025333 | Karkow et al. | Jan 2016 | A1 |
20160033125 | Krichtafovitch et al. | Feb 2016 | A1 |
20160040872 | Colannino et al. | Feb 2016 | A1 |
20160091200 | Colannino et al. | Mar 2016 | A1 |
20160123576 | Colannino et al. | May 2016 | A1 |
20160138800 | Anderson et al. | May 2016 | A1 |
20160161110 | Krichtafovitch et al. | Jun 2016 | A1 |
20160161115 | Krichtafovitch et al. | Jun 2016 | A1 |
20160175851 | Colannino et al. | Jun 2016 | A1 |
20160215974 | Wiklof | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
0844434 | May 1998 | EP |
1139020 | Aug 2006 | EP |
2738460 | Jun 2014 | EP |
2577304 | Dec 1989 | FR |
1042014 | Sep 1966 | GB |
2456861 | Jul 2009 | GB |
58-019609 | Feb 1983 | JP |
60-216111 | Oct 1985 | JP |
61-265404 | Nov 1986 | JP |
H 07-48136 | Feb 1995 | JP |
2001-021110 | Jan 2001 | JP |
2001-033040 | Feb 2001 | JP |
2001-056120 | Feb 2001 | JP |
WO 1995000803 | Jan 1995 | WO |
WO 1996001394 | Jan 1996 | WO |
WO 2015042566 | Mar 2010 | WO |
WO 2015123149 | Aug 2010 | WO |
WO 2015123701 | Aug 2010 | WO |
WO 2013181569 | Dec 2013 | WO |
WO 2015017084 | Feb 2015 | WO |
WO 2015042614 | Mar 2015 | WO |
WO 2015042615 | Mar 2015 | WO |
WO 2015051136 | Apr 2015 | WO |
WO 2015054323 | Apr 2015 | WO |
WO 2015057740 | Apr 2015 | WO |
WO 2015061760 | Apr 2015 | WO |
WO 2015070188 | May 2015 | WO |
WO 2015089306 | Jun 2015 | WO |
WO 2015103436 | Jul 2015 | WO |
WO 2015112950 | Jul 2015 | WO |
WO 2015123381 | Aug 2015 | WO |
WO 2015123670 | Aug 2015 | WO |
WO 2015123683 | Aug 2015 | WO |
WO 2015123694 | Aug 2015 | WO |
WO 2015123696 | Aug 2015 | WO |
Entry |
---|
Timothy J.C. Dolmansley et al., “Electrical Modification of Combustion and the Affect of Electrode Geometry on the Field Produced,” Modelling and Simulation in Engineering, May 26, 2011, 1-13, vol. 2011, Himdawi Publishing Corporation. |
James Lawton and Felix J. Weinberg. “Electrical Aspects of Combustion.” Clarendon Press, Oxford. 1969, p. 158. |
M. Zake et al., “Electric Field Control of NOx Formation in the Flame Channel Flows.” Global Nest: The Int. J. May 2000, vol. 2, No. 1, pp. 99-108. |
PCT International Search Report and Written Opinion of International PCT Application No. PCT/US2014/031969 dated Aug. 19, 2014. |
James Lawton et al., Electrical Aspects of Combustion, 1969, p. 81, 296, Clarendon Press, Oxford, England. |
Arnold Schwarzenegger, A Low NOx Porous Ceramics Burner Performance Study, California Energy Commission Public Interest Energy Research Program, Dec. 2007, 6, 24, San Diego State University Foundation. |
Takeno, Abstract, Combustion Institute 1982, 1 page. |
Number | Date | Country | |
---|---|---|---|
20190113224 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
61805924 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14772033 | US | |
Child | 16217913 | US |