1. Field of the Invention
The present invention relates to improvements in a patented energy storage method for use with cranes and other load hoisting machinery. More particularly, it relates to improvements in a method for storing energy in a flywheel which is driven by the DC drive motor of the load hoisting machinery. The DC motor is powered during the load lowering process, and when the hoist machinery is not consuming power, to drive the flywheel. The energy is resupplied to the system when the load is being raised and needs more power.
2. Description of the Prior Art
The present invention relates to improvements in a system or method for energy storage in load hoisting cranes which are driven by electrical power. It is particularly useful for machinery which is driven by diesel-electric generators that experience a wide range of varying loads. The system stores energy at reverse or small load and supplies power at peak or large loads. Theoretically, this is a simple mechanical query, having as a result the benefit that the primary electrical source is only required to supply relatively constant average power and is not required to supply peak power. However, until now, the practical aspects of the query have prevented its use.
Combination battery and generator energy storage systems have been utilized to accomplish this result in the past, and theoretically they are very effective. However, in reality, the battery component imposes numerous problems such as: small electrical capacity, electrical inefficiency, large physical battery volume, heavy weight, and short battery life, whereby such a system is not currently a viable way to accomplish energy storage utilizing even state-of-the-art battery technology.
Flywheel type energy storage systems have also been utilized to accomplish the result. However, in order for the flywheel to store energy to create power, it must be capable of being driven over a wide range of speeds. In order to transmit the energy to the flywheel at the variable speeds, a DC motor has been utilized as most suitable, but the DC motor-driven flywheel has not been proven satisfactory for numerous reasons among which the following are most limiting:
1. In order for the flywheel to store energy, the energy is measured by ½×I×ω2 where I=the moment of inertia, and ω=the rotating angular speed. Therefore, high rotating speeds can store much more energy in the flywheel because the energy is measured by a square of the rotational speed. However, the DC motor which must be interconnected to the flywheel has severe rotational speed limitations due to the weak centrifugal strength of its rotor's coil component;
2. The DC motor requires continuous maintenance such as brush replacement, commutator repair, and maintaining insulation integrity;
3. A DC motor is comparatively large, heavy, and expensive.
For these reasons and others, the flywheel-driven energy storage type system utilizing a DC motor has likewise not been a viable way to accomplish the result.
Recent developments in inverter technology have progressed to the point where AC squirrel cage induction motors using inverters are replacing DC motors. The inverter converts DC to AC with arbitrary frequency and also converts AC to DC in reverse. By virtue of the AC arbitrary frequency, the AC squirrel cage induction motor can rotate with arbitrary rotational speed up to very high speeds solving some of the described problems associated with DC motors.
During lowering of the load 23, reverse current is sent back to the power grid 27 and, in this example, is used by other consumers. However, since the reverse power current includes surge and deviant frequencies, other consumers dislike receiving it. It is expected that in the future sending reverse power back to the power grid may be prohibited. In-that event, the reverse power will be consumed by a resistor, the same as disclosed in the system of
The method of the present invention is provided for the desired purpose of energy storage and recovery for load-moving machinery systems powered by a DC motor which is controlled by an AC generator delivering power through a diode converter. The steps of the method of the invention comprise driving the DC motor of the load-moving machinery to act as a generator and create reverse power when the machinery is lowering or braking a load. The generated reverse power combined with unused power, which occurs when the machinery is at small load or idle, the combined powers being defined as rest power, drive an induction motor. A flywheel is rotated by the induction motor to store the rest power as energy. A rotational speed signal is generated proportional to the rotational speed of the flywheel. The voltage is measured at the power input side of the diode. The rotational speed signal and the measured voltage are transmitted to a programmable logic controller (PLC). The PLC controls the inverter so as to convert DC to AC with a controlled frequency. By controlling the electrical frequency, the rest power can be stored in the flywheel as rotational energy. Power can be retrieved from the flywheel to rotate the induction motor as a generator. The frequency is determined in the PLC by a programmed logic depending on the flywheel revolution speed. The induction motor is then rotated by the flywheel to produce power whereby power is returned through an inverter to the DC motor when it is consuming power in excess of average power consumption.
The present invention also includes new apparatus for performing the method thereof. The load moving machinery energy storage system is comprised of a direct current motor interconnected to a wire rope drum for raising and lowering a load. The motor is controlled by a diode and an energy storage system including a flywheel for storing and discharging energy. The flywheel is driven by an induction motor controlled by an inverter and driving a pulse generator. The storage system also includes a programmable logic controller (PLC) controlling the inverter, means for sensing voltage at the power input side of the diode, programmed logic for the programmable logic controller for comparing sensed voltage and the output of the pulse generator with a set voltage value, and an engine driven AC generator (ACG) producing power controlled by the diode for the load moving machinery.
It is therefore an important object of the present invention to provide an improved method for energy storage for the operation of DC motor-driven hoist machinery to reduce the overall power requirements for the operation of the machinery.
It is another object of the present invention to provide an improved method for energy storage for the operation of DC motor-driven hoist machinery to average out the power consumption requirements of the machinery.
It is a further object of the present invention to provide a method for the operation of DC motor-driven hoist machinery that eliminates the need to send power back to the source when the motor is driven by lowering the load or to absorb the power in a resistor or a brake.
It is still another object of the present invention to provide a method for energy storage for the operation of DC motor-driven hoist machinery that can utilize a flywheel for electrical energy storage.
And it is yet a further object of the present invention to provide a new apparatus for a DC motor-driven hoist machinery energy storage system that reduces the number of power inverters required to permit the system to function.
Other objects and advantages of the present invention will become apparent when the apparatus of the present invention is considered in conjunction with the accompanying drawings.
Reference is made to the drawings for a description of the preferred embodiment of the present invention wherein like reference numbers represent like elements on corresponding views.
Reference is made to
The patented energy storage system is shown in
When a load is being lowered by the hoist machinery 19 and 21, energy is stored in the rotation of the flywheel 41. This occurs from the following obvious relationships: the load hoist drum 21 reverse drives its hoist motor, the system's first induction motor 19, during lowering of the load 23. The first induction motor acts as a generator creating AC current or reverse power. The generated AC current is converted to DC by the first inverter 17 and the DC current flows between the diode 15 and the first inverter 17. As a result, the voltage at the point A becomes high.
The voltage at the point A also becomes high when the load hoist machinery is at idle, stopping, or hoisting a light load. Electricity supplied from the main power source, the AC generator or the municipal utility power grid, through the diode 15 elevates the voltage at the point A when the power consumption of the load hoist machinery is quite small or almost zero. This creates unused power. When the load hoist machinery hoists a heavy load, and its power consumption is large, the voltage at the point A becomes lower due to the lack of electricity.
The energy storage system works so as to store both the unused power and the generated reverse power produced by the first induction motor 19 when it is driven to act as a generator when lowering a load. The combined unused power and the reverse power are defined for purposes herein as rest power.
The rest power is controlled by a second inverter 35. A second induction motor 37 is driven by the rest power and is controlled by the second inverter to rotate the flywheel 41. The rest power is stored in the flywheel rotational energy when the voltage at point A is high. The system works so as to retrieve power from the flywheel rotational energy and supply the lack of electricity when the voltage at the point A is low.
The measured voltage at point A, and the rotational speed detected by a tachometer or pulse generator 39 which is connected to the flywheel 41, are transmitted or inputted to the programmable logic controller (PLC) 43. The PLC controls the second inverter 35 so as to convert DC to AC with a controlled frequency. The frequency is controlled by a programmed logic in the PLC depending on the voltage at point A and the rotational speed of the flywheel. The voltage at the point A is compared with a set voltage value V0 which can be pre-set manually in the programmed logic.
If the voltage at point A is higher than the set or predetermined value VO, the PLC 43 commands the second inverter 35 to convert DC to AC with the frequency corresponding to the rotational speed plus alpha whereby the flywheel 41 is accelerated by the second induction motor 37 and power is stored in the flywheel as rotational energy. If the voltage at the point A is lower than the set value VO, the second inverter controls the AC with the frequency corresponding to the rotational speed minus alpha whereby the flywheel is decelerated by the second induction motor, thereby generating power which is supplied to the first induction motor whereby energy is recovered from the flywheel. By controlling the frequency, the second induction motor can be controlled to act as either a motor or generator to accelerate the flywheel or retrieve energy from it.
Reference is made to
Reference is made to
When the voltage at A is the set value VO, neither storage nor retrieval of energy is effected by the energy storage system. The set value VO is determined by the average load and mechanical and electrical efficiency. The reduced capacity requirements for the diesel engine and the AC generator permitted by the invention for the operation of the load hoisting machinery can be determined from the average load and mechanical and electrical efficiencies of the machinery.
Reference is made to
Reference is made to
The present invention comprises a method for energy storage and recovery for load moving machinery powered by a DC motor 45 which is controlled by an AC generator 13 delivering power through a diode converter 15. The steps comprise driving the DC motor to act as a generator and create reverse power when lowering or braking a load. The reverse power combined with unused power, when the load hoisting machinery is at small load or idle, is defined as rest power. The rest power is utilized for driving a second induction motor 37 through an inverter 33, and the rest power is controlled by the inverter. A flywheel 41 is rotated by the second induction motor to store the rest power. When the DC motor is consuming power in excess of its average power consumption, the induction motor is rotated by the flywheel to supply power to the DC motor.
The method of the present invention also includes generating a rotational speed signal proportional to the rotational speed of the flywheel 41 and measuring the voltage at the power input side of the DC motor. The rotational speed signal and the measured voltage are transmitted to a programmable logic controller 43. The measured voltage is compared in the controller with a preset value for determining whether the induction motor 37 should drive or be driven by the flywheel 41. The method further includes that if the controller determines that the measured voltage is higher than the set value, the inverter 33 converts DC to AC with the frequency corresponding to the flywheel rotational speed plus alpha whereby the flywheel is accelerated by the induction motor, and energy is stored in the flywheel rotation. Accordingly, if the voltage is lower than the set value, the inverter controls the AC with the frequency corresponding to the flywheel rotational speed minus alpha whereby the flywheel is decelerated by the induction motor thereby generating reverse power which is supplied to the DC motor through the inverter whereby power is recovered from the flywheel rotation.
The method of the present invention also includes utilizing a DC motor instead of an induction motor for driving the load hoist thereby eliminating an inverter. Larger inverters, such as those used in crane hoist drive systems, are very expensive. Therefore, the new DC drive and power storage system will be cheaper to utilize than an AC drive and system.
The apparatus of the present invention is a load moving machinery energy storage system which includes a direct current (DC) motor 45 interconnected to a wire rope drum 21 for raising and lowering a load 23. The DC motor is controlled by a diode which receives power from a power grid or an engine driven (11) AC generator (ACG) 13. The energy storage system includes a flywheel 41 for storing and discharging energy. The flywheel is driven by an induction motor 37 which is controlled by an inverter 33 and drives a pulse generator 39. A programmable logic controller (PLC) controls the inverter. A means is provided for sensing voltage at the power input side of the DC motor. Programmed logic is provided for said PLC for comparing the sensed voltage and the output of the pulse generator with a set voltage value to determine whether energy should be extracted from or added to the flywheel by decreasing or increasing its rotational speed.
Therefore, in addition to providing a less expensive load hoist apparatus by the present invention, the energy storage system of the present invention is very effective so as to permit the reduction of the capacity of the diesel engine and the AC generator, or the amount of the draw from the power source, and which thereby contributes to an effective energy utilization and savings. Also, in the case that the power source is not stable and fluctuates, the energy storage system of the invention can be used as a power stabilizer.
Thus, it will be apparent from the foregoing description of the invention in its preferred form that it will fulfill all the objects and advantages attributable thereto. While it is illustrated and described in considerable detail herein, the invention is not to be limited to such details as have been set forth except as may be necessitated by the appended claims.