1. Field of the Invention
The current invention relates to liquid crystal display (LCD) devices that use a light source for viewing of an image. More particularly, the invention relates to a method and apparatus for enhancing an image displayed on a LCD panel illuminated by a lighting device.
2. Background Information
Various liquid crystal display (LCD) devices use a lighting source to either project an image onto a display surface such as a screen or have the light source positioned behind the LCD panel for direct viewing of an image produced on the LCD panel. A desire to reduce power consumption and improve the contrast of images displayed by LCD technology has led to various techniques for dynamically varying the light intensity of the light source and/or backlight of such LCD devices. Typically such variations in intensity of the light source results in a net dimming of the displayed image below the light intensity at which it was designed to be viewed.
In order to overcome this problem various compensation techniques have been proposed for an image being displayed. Techniques such as those described in U.S. patent publications 2006/0268180 and 2007/0092139 use tone-scale mapping to compensate the video signal for lower backlight intensity. These tone-mapping techniques utilise histogram analysis of the video image which requires high real-time computing power. Tone mapping is also suitable for whole backlight dimming, but is less suitable for dynamic and localised dimming techniques.
Another technique has been proposed in U.S. 2007/0041636 which utilises two sequential mapping functions. A first mapping value is determined by substituting RGB values into the first mapping function and a second enhanced mapping value is obtained by substituting the first mapping value into the second mapping function. Again such a technique has a high real-time computational overhead and while being suitable for whole backlight dimming is not a suitable for dynamic or localised dimming techniques.
Accordingly, is an object of the present invention to provide a backlight device for providing backlighting to a liquid crystal display panel and a method of controlling brightness of a liquid crystal display panel which overcomes or substantially ameliorates the above problems.
There is disclosed herein a method for image enhancement in a display illuminated by a lighting device. The method comprises providing a non-linear mapping function, determining an illumination level for the lighting device, determining by use of the mapping function and illumination level a compensation factor for each pixel, and adjusting brightness properties of each pixel by its compensation factor. There is also disclosed herein an apparatus having components for carrying out the method.
The mapping function relates a lighting device illumination level to a compensation factor. It may be a single dimensional lookup table having a plurality of predetermined compensation factors or an equation.
Preferably, the lighting device for the display has a plurality of illumination regions each have an illumination level and illuminating one or more pixels and the compensation factor of each pixel is determined based on the illumination level of the illumination region illuminating the pixel.
More preferably, the method and/or apparatus are practiced in an LCD panel illuminated by a dynamically illuminated backlight device having a plurality of independently controllable illumination regions.
Further aspects of the invention will become apparent from the following description.
An exemplary form of the present invention will now be described by way of example only and with reference to the accompanying drawings, in which:
Reference will now be made in detail to an exemplary embodiment of the present invention, an example of which is illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
The described exemplary embodiment illustrates the invention as practiced in a backlit LCD display, for example an LCD TV, used to show video images comprising a plurality of sequential frames each made up of a plurality of pixels. This is not intended to limit the scope of use or functionality of the invention. The invention is equally applicable to the enhancement of static images displayed on an LCD screen. For example, many organisations, advertisers or artisans use LCD screens to display static, albeit periodically changing, information, advertisements and/or photographs and images of artwork. The invention can equally be used to enhance the appearance on the screen of such information, advertisements and/or images.
Likewise, that the invention is exemplified as practiced in a backlit LCD display is not intended to limit the scope of use or functionality of the invention. The invention can equally be practiced in any display apparatus that uses a light source to project an image onto a projection surface or a flat panel display that uses a backlight to display images for direct viewing. Such displays include digital micro-mirror device displays (DMDs), liquid crystal on silicon (LCOs) displays and of course LCD displays.
In its earlier U.S. patent application Ser. No. 11/707,517, the entire contents of which are incorporated herein by reference, applicant describes an LCD display device having a backlight divided into a plurality of individually controllable illumination regions. Luminance of each illumination region is controlled in accordance with video signal properties for a corresponding region of the LCD display. If an area of the displayed image is bright then the corresponding illumination region of the backlight has high luminance and if a region of the image is dark then the corresponding illumination region of the backlight has no or low luminance. By dynamically controlling luminance of each illumination region of the backlight in accordance with properties of a corresponding part of the displayed image the contrast and dynamic range of the displayed image in improved. Additionally, each individually controllable illumination region of the backlight may comprise a variable colour lighting source, such as clusters of individually controllable red, green and blue (RGB) LEDs thus allowing the illumination region to be controlled from dark (black) through the colour spectrum to white. The backlight luminance and colour can be dynamically controlled in accordance with properties of the corresponding part of the displayed image in order to improve both colour contrast and colour dynamic range.
In U.S. patent application Ser. No. 11/707,517 the LEDs of the backlight are individually controlled and thus the brightness of the backlight is not uniform and varies with the image. Another benefit of this system is that the whole backlight brightness is generally dimmer than that of prior art constant backlight systems. This is because in the white or bright areas of the display image the backlight will be at its maximum value, which might typically be the same brightness as a prior art constant backlight systems, however significant portions of the image will have lower brightness and thus the backlight will be dimmer. In order to keep the viewable brightness of the image noticeably unchanged on the screen the LCD pixel transmittance is adjusted in accordance with backlight brightness levels. In this invention, after the backlight illumination level for each illumination region of the backlight is determined (the illumination of each backlight block/region varying with brightness of corresponding blocks of the image) an adjustment or compensation factor is determined for pixels illuminated by that block using a mapping function, and the transmittance of the relevant pixels adjusted by the adjustment or compensation factor.
The transmittance of a pixel in an LCD panel is controlled by the incoming RGB video signal according to the equation
T=Tmax×(I/255)γ
The apparent brightness of an image when viewed on the LCD display is a function of the backlight luminance and the LCD transmittance, which is given by the equation
L=BL×T
Substituting for T we get
L=BL×Tmax×(I/255)γ
To keep the image brightness constant with any variance of the backlight illumination level we require that
L′=L
BL′×(I′/255)γ=BL×(I/255)γ
I′=I×[BL/BL′]1/γ
I′=[Iγ/χ]l/γ
The relationship between adjustment factor χ and backlight illumination level is graphically illustrated in
When the overall backlight illumination level is high (>L3) the adjustment factor is at a minimum and when the backlight illumination level is low (<L1) the adjustment factor is linearly decreased from maximum to a certain value. While the backlight illumination level is moderate, the adjustment factor is inversely proportional to the illumination level with an offset constant, a. The value of constant a is determined based on the LCD display properties.
This mapping function may be stored in the brightness controller as a function for determination of the adjustment factor by calculation. However, in the preferred embodiment the mapping function is stored as a single dimension look-up table (LUT) in which a corresponding adjustment factor for the full range of backlight illumination levels from 0 to Lmax are given. After determination of the appropriate adjustment factor each pixel in the image is adjusted by the adjustment factor.
Referring to
In an alternative embodiment of the invention the backlight is a simple white color although it is divided into different backlight illumination regions so that different areas can be illuminated at different brightness levels. In this embodiment of this invention there is only one brightness level for each region of the backlight and so each color channel of the RGB video signal for the LCD display is adjusted by the same adjustment factor.
An example and exemplified embodiment of the invention have been described above. This is not intended to limit the scope of use of functionality of the invention. It should be appreciated that modifications and alternations obvious to those skilled in the art are not to be considered as beyond the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
7027016 | Sakashita | Apr 2006 | B2 |
7199776 | Ikeda et al. | Apr 2007 | B2 |
7309851 | Huang et al. | Dec 2007 | B2 |
20020126079 | Willis et al. | Sep 2002 | A1 |
20040104886 | Kawano | Jun 2004 | A1 |
20040257324 | Hsu | Dec 2004 | A1 |
20050184952 | Konno et al. | Aug 2005 | A1 |
20060268180 | Chou | Nov 2006 | A1 |
20070041636 | Yoon et al. | Feb 2007 | A1 |
20070092139 | Daly | Apr 2007 | A1 |
20070120806 | Schmidt et al. | May 2007 | A1 |
20070236517 | Kimpe | Oct 2007 | A1 |
20080117446 | Fukasawa | May 2008 | A1 |
Number | Date | Country |
---|---|---|
101042841 | Sep 2007 | CN |
1995129113 | May 1995 | JP |
2000330542 | Nov 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20090160877 A1 | Jun 2009 | US |