Method for enhancing red blood cell quality and survival during storage

Information

  • Patent Grant
  • 10251387
  • Patent Number
    10,251,387
  • Date Filed
    Monday, April 11, 2016
    8 years ago
  • Date Issued
    Tuesday, April 9, 2019
    5 years ago
  • Inventors
  • Original Assignees
    • New Health Sciences, Inc. (Lexington, MA, US)
  • Examiners
    • Landau; Sharmila G
    • McNeil; Stephanie A
    Agents
    • Arnold & Porter Kaye Scholer LLP
    • Marsh; David R.
Abstract
The present invention is a method for enhancing the quality and survival of red blood cells during storage by depleting the red blood cells of both carbon dioxide and oxygen and maintaining 2,3-diphosphoglycerate acid levels.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to a method for enhancing red blood cell quality and survival during storage.


Background of the Art


Anaerobic storage of red blood cells has been shown to enhance the metabolic status of red blood cells (RBC) and an increase in the potential storage time can be achieved using a variety of additive solutions. When combining an alkaline additive solution with anaerobic storage, it was observed that storage under anaerobic conditions yields insignificant benefits in terms of ATP levels. However, when the RBC additive pH was lowered from 8.1 to 6.5, significant improvement in metabolic parameters were observed under anaerobic conditions. While it has been suggested that overalkalinization of RBCs in alkaline additive solution results in increased intracellular pH due to CO2 removed during oxygen depletion, the direct effects of CO2 depletion on RBC quality and storage have not been demonstrated.


SUMMARY OF THE INVENTION

The present invention is a method for enhancing red blood cell quality and survival during storage by depleting a red blood cell sample of both oxygen and carbon dioxide; and transferring the oxygen- and carbon dioxide-depleted red blood cell sample to an oxygen- and carbon dioxide-impermeable environment for storage. In one embodiment, the red blood cell sample includes acidified additive solution so that 2,3-diphosphoglycerate acid levels are maintained. In some embodiments, the red blood cell sample is stored for at least three weeks and the red blood cells exhibit less than 0.2% hemolysis. In other embodiments, the red blood cells sample is stored for at least seven weeks and the red blood cells exhibit less than 0.3% hemolysis. In yet other embodiments, the red blood cells sample is stored for at least nine weeks and the red blood cells exhibit less than 0.7% hemolysis. The present disclosure provides for a method for enhancing red blood cell quality and survival during storage including the steps of reducing oxygen and carbon dioxide in a red blood cell sample; and storing the oxygen and carbon dioxide reduced red blood cell sample in an oxygen and carbon dioxide-impermeable storage environment. Adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) levels are optimized during storage in the storage environment. The present disclosure provides for a method for enhancing red blood cell quality and survival during storage including the steps of reducing oxygen and carbon dioxide in a red blood cell sample; and storing the oxygen and carbon dioxide reduced red blood cell sample in an oxygen and carbon dioxide-impermeable storage environment. Adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) levels are optimized during storage in the oxygen and carbon dioxide-impermeable storage environment.







DETAILED DESCRIPTION OF THE INVENTION

It has now been demonstrated that removal of CO2 from RBC provides a metabolic advantage for the RBC by providing for an improved maintenance of 2,3-diphosphoglycerate acid (DPG) in the RBC. Prior to the present invention, it was shown that RBCs in an oxygen depleted environment (i.e., anaerobic) have better in vivo recovery kinetics in humans, better maintenance of ATP, and better maintenance of 2,3,-DPG) However, it was suggested that the maintenance of ATP levels in the oxygen depleted RBC could be explained not because of O2 removal, but rather because, under the experimental conditions, there was a concomitant removal of CO2 leading to alkalization (i.e., increase in pH) of the RBC that in turn has a direct effect on the enzyme phosphofructokinase, a rate limiting factor in glycolysis. It has been suggested that with an acidified additive solution under anaerobic conditions, an increase in ATP is due primarily not from the pH effect on glycolysis, but rather through the effect of the deoxygenated hemoglobin binding free 2,3-DPG, wherein alkalinization may play a secondary role in ATP maintenance in the anaerobically stored RBC. Experiments where carbon monoxide was used to displace 2,3,-DPG from the deoxygenated hemoglobin were shown to provide no improvement in ATP levels over storage (i.e., ATP was similar to oxygen stored RBC).


Based upon the above suggestions, one would expect that CO2 depletion would contribute to alkalization of the RBC cytosol in addition to the alkalization effect of protons (H+) being bound by deoxygenated hemoglobin. This additional alkalization from CO2 depletion would then increase the flux through glycolysis (Scheme 1) because of the effect on the phosphofructokinase enzyme and increase the production of ATP.




embedded image


As described in Table 1, maintaining CO2 when O2 was depleted matched the pH of the control aerobic condition whereas CO2 removal resulted in alkalinization. ATP was higher in the CO2 replete anaerobic arm than the control and the CO2 depleted anaerobic arm. Glycolysis rate, as indicated by lactate accumulation and glucose consumption, was equivalent in the CO2 replete arm than in the control arm. Glycolysis rate was slightly greater in the CO2 depleted anaerobic arm that the other two, but ATP in this arm was lower than the CO2 replete arm that has a pH the same as the control arm. These observations indicate that the main ATP metabolic advantage for anaerobic storage is not through the pH affect on phosphofructokinase. Further, ATP association with hemoglobin and less ATP utilization through the pentose phosphate pathway or other pathways may be important contributors to the maintenance of ATP over storage in the anaerobic environment. However, unexpectedly, 2,3-DPG was depleted in the CO2 replete anaerobic arm like the control, indicating that there is a previously undescribed effect of CO2 (perhaps through pH) on diphosphoglycerate mutase and/or diphosphoglycerate phosphatase in DPG synthesis or other pathway.












TABLE 1







Anaerobic




Control
with CO2
Anaerobic with


Results
Aerobic
preservation1
CO2 depletion2



















Expected
Glycolysis
Control
Equal to
Greater than



(Lactate)

control
control



ATP
Control
Greater than
Greater than




OK
control
control





(because
Perhaps





anaerobic)
slightly






greater than






CO2 replete



2,3-DPG
Control
Greater than
Greater than




depleted
control
control





(because
(through





anaerobic)
~21 days)


Observed
Glycolysis
Control
Equal to
Greater than



(Lactate)

control
control




Control
Greater than
Greater than




OK
control
control





Greater
Less than CO2





than CO2
replete**





depleted**


Observed
2,3-DPG
Control
Equal to
Greater than




depleted
control**
control





Less
(through





than CO2
~21 days)





depleted**
Greater than






CO2 replete**






1Ar/CO2 purged and Ar/CO2 stored.




2Ar purged and Ar stored.



**Unexpected results.






DPG was not maintained by the association with O2-depleted hemoglobin as shown in the CO2 replete anaerobic arm. DPG was maintained in the CO2 depleted arm. After approximately day 21 DPG did fall along with pH. This DPG fall may be associated with pH, indicating that enzymes in the DPG synthesis pathway may be affected by pH. Therefore, to maintain DPG in anaerobic storage, removal of CO2 before and during storage of RBC is required.


Accordingly, the present invention is a method for enhancing red blood cell quality and survival during storage by depleting a red blood cell sample of both oxygen and carbon dioxide; and transferring the oxygen- and carbon dioxide-depleted red blood cell sample to an oxygen- and carbon dioxide impermeable environment. For the purposes of this invention, a red blood cell sample refers to whole blood; anti-coagulated whole blood (AWB); packed red cells obtained from AWB; and red cells separated from plasma and resuspended in physiological fluid. A red blood cell sample is typically supplied in a source container and can include any treated or untreated fluid from a living organism that contains red blood cells, particularly blood, including whole blood, warm or cold blood, and fresh blood; treated blood, such as blood diluted with a physiological solution, including but not limited to saline, nutrient, and/or anticoagulant solutions; analogous blood products derived from blood or a blood component. The red blood cell sample may include leukocytes, may be treated to remove leukocytes, may be treated with gamma or X-ray irradiation, washed, or treated to reduce or eliminate pathogens.


Depletion of both oxygen and carbon dioxide from the red blood cell sample can be achieved using any technique or combination of techniques described herein. For example, the instant method can employ gas purging and/or selective removal of O2 and/or CO2 with, e.g., a gas permeable membrane, an O2 and/or CO2 adsorbent, a molecular imprinted polymer, or a combination thereof. Techniques for purging blood via gas exchange with an inert gas such as argon are well-known and routinely practiced in the art. Gas permeable membranes have also been developed for removing O2 and/or CO2 from a liquid. Typically, the membranes are formed into hollow fibers and packaged in membrane modules, wherein the rate of gas transfer across the membrane is proportional to the gas permeability coefficient, the membrane surface area, the trans-membrane gas partial pressure difference, and inversely proportional to the membrane thickness. Exemplary gas permeable membrane modules of use in depleting oxygen and/or carbon dioxide are available from commercial sources. For example, PermSelect® Silicone Hollow Fiber Membranes, available from MedArray Inc. (Ann Arbor, Mich.); and Liqui-Cel® Membrane Contactors, available from Membrana-Charlotte (Charlotte, N.C.), are marketed for use in depleting oxygen and carbon dioxide from liquids in pharmaceutical and medical applications.


“Adsorbent” for the present purposes refers to a porous solid, particulate material or mixture of materials, which selectively admits and retains within its pores (or adsorbs) O2 and/or CO2 from a liquid. Suitable adsorbents for use in the present method are those having good selectivity for O2 and/or CO2 over other constituents (e.g., N2), good kinetics, high durability, good chemical compatibility, and reasonably low cost. For example, molecular sieves are materials whose atoms are arranged in a lattice or framework in such a way that a large number of interconnected uniformly sized pores exist. The pores generally only admit molecules of a size about equal to or smaller than that of the pores. Molecular sieves, thus, can be used to adsorb and separate or screen molecules based on their size with respect to the pores. One class of molecular sieves is zeolites, which have been shown to exhibit exceptional selective capture and storage of CO2. Zeolites are hydrated silicates of aluminum. As such, zeolites, on account of their chemical composition, are part of a broader class of adsorbents called aluminosilicates. Other molecular sieves are formed from aluminophosphates, called ALPO41S, titanosilicates, metalloaluminates, etc. Zeolites can be naturally occurring or artificial. Activated alumina, activated carbon, and silica gel are other broad classes of adsorbents that could be used to capture CO2. In some embodiments, the adsorbents are attached to a substrate (e.g., a bead, pellet, granule or particle) to facilitate contact with and removal of the adsorbents from the RBC.


A molecular imprinted polymer (MIP) is a polymer formed in the presence of a molecule that is extracted afterwards, thus leaving complementary cavities behind. These polymers show a chemical affinity for the original molecule and are of use in sensing and separation methods. For example, metal complexing imprinted polymers have been prepared for gas molecules such as NO, CO, CO2 and oxygen, wherein the imprinted cavities in the polymer matrices were sized to the appropriate gas molecules used as the template. Moreover, copolymerization of these metal complexes into organic hosts such as porous methacrylate polymers has been shown to provide a substrate for binding gaseous molecules such as CO. Accordingly, molecular imprinted polymers in a bead, pellet, granule or particle format can be used in removal of CO2 and oxygen in the instant method.


As exemplified herein, gas purging can achieve a pCO2 of about 5 mmHg and a pO2 of about 10 mmHg. Accordingly, in particular embodiments, the oxygen- and carbon dioxide-depleted red blood cell sample of the invention has a pCO2 of less than or equal to about 5 mmHg and a pO2 of less than or equal to about 10 mmHg. Alternatively, in so far as gas permeable membranes can deplete the oxygen in a liquid to a level of at least 1 ppb and CO2 to a level of at least 1 ppm, other embodiments of this invention include depleting oxygen and carbon dioxide in the red blood cell sample to at least 1 ppb and 1 ppm, respectively. As is routine in the art, a pO2 needle probe, or pO2 and pCO2 microelectrode can be used to measure oxygen and carbon dioxide levels in the oxygen- and carbon dioxide-depleted red blood cell sample.


Once the red blood cell sample is depleted of both oxygen and carbon, the red blood cell sample is transferred to an oxygen- and carbon dioxide-impermeable environment for storage. As used herein, an oxygen- and carbon dioxide-impermeable environment is a storage container or storage container system that is impermeable to oxygen and carbon dioxide. In accordance with the present invention, an oxygen- and carbon dioxide-impermeable storage container is a container, pouch, bag, or bottle that is constructed of a material compatible with a biological fluid, such as whole blood or a blood component and is capable of withstanding centrifugation and sterilization. Such containers are known in the art and include, e.g., for example, blood collection and satellite bags. Storage containers of use in the instant method can be made of plasticized polyvinyl chloride, e.g., PVC plasticized with dioctylphthalate, diethylhexylphthalate, or trioctyltrimellitate. The bags may also be formed from polyolefin, polyurethane, polyester, and polycarbonate. In one embodiment, the storage container itself is constructed of an oxygen- and carbon dioxide-impermeable material. Impermeable materials are routinely used in the art and any suitable material can be used. Existing systems use oxygen- and carbon dioxide-impermeable receptacles composed of layers of ethylene vinyl alcohol copolymer and modified ethylene vinyl acetate copolymer, impermeable to oxygen and carbon dioxide ingress. In another embodiment, the storage container is a component of a storage container system that is impermeable to oxygen and carbon dioxide. Such systems include, but are not limited to, use of an oxygen- and carbon dioxide-impermeable over wrap or over bag which encloses the storage container.


To ensure that there is no ingress of oxygen or carbon dioxide into the sample during transfer, in particular embodiments, the oxygen- and carbon dioxide-depleted red blood cell sample is transferred to the storage container under positive pressure. Positive pressure is a pressure within a system that is greater than the environment that surrounds that system. Positive pressure can be attained by transferring the sample to the storage container in a closed system, e.g., via tubing between one or more of the source container, oxygen and carbon dioxide depletion apparatus, and storage container. Airtight, pressurized fluid delivery systems for facilitating positive fluid flow are known in the art. Transfer of the oxygen- and carbon dioxide-depleted red blood cell sample to the storage container can be achieved using various techniques including, but not limited to peristalsis, a siphon, or a combination thereof. By way of illustration, the red blood cell sample can be transferred via a tube from the source container to a gas permeable membrane module or molecular sieve device and subsequently to the source container via another tube, wherein the source container, membrane or sieve, and storage container are positioned in an inverted siphon configuration.


As used herein, tubing can be any conduit or means which provides fluid communication between containers, and is typically made from the same flexible material as is used for the containers, and is desirably oxygen- and carbon dioxide impermeable. The tubing may extend into the interior of the containers herein, and may be used as a siphon, for example. There may be a number of tubes providing fluid communication to any individual container, and the tubes may be oriented in a number of ways. A seal, valve, clamp, transfer leg closure, or the like can also be located in or on the tubing. It is intended that the present invention is not limited by the type of material used to construct the containers or the conduit which connects the containers.


Once transferred to the storage container, the red blood cell sample can be stored under aerobic or anaerobic conditions, i.e., conditions of low or no oxygen. Desirably the sample is stored between 1° C. and 6° C. to further enhance the survival of the red blood cells.


Compared to a red blood cell sample not prepared in accordance with the present method, the quality and survival of the red blood cell sample of the invention is enhanced. In this respect, the red blood cells of the instant sample exhibit less than 0.7%, hemolysis at 9 weeks, less than 0.3% hemolysis at 7 weeks, and less than 0.2% hemolysis at 3 weeks after treatment by the instant method. The determination of red blood cell hemolysis is routinely practiced in the art and any suitable method can be employed.


Moreover, when the instant method is carried out in the presence of acidified additive solution (i.e., an additive solution of between pH 5.5 and 7.0, or more desirably between 6.25 and 6.75), 2,3-DPG levels of the RBCs are maintained at higher levels than controls (e.g., a sample wherein carbon dioxide is not depleted); i.e., 2,3-DPG levels are approximately 60% higher than controls at 3 weeks. 2,3-DPG levels are routinely measured and any suitable method can be used to determined whether 2,3-DPG levels of a red blood cell sample produced by the instant method are being maintained above control samples.


By maintaining 2,3-DPG levels within the RBC, the RBC can provide better oxygen transfer to tissues when the RBC is transfused to patients. This improvement can also provide improved recovery of transfused RBC in patients and study subjects. The present finding provides a mechanism to increase the acceptable storage time of RBC for transfusion or other purposes. In this respect, the red blood cells of the red blood cell sample can be used, e.g., in a transfusion, for at least 4, 5, 6, 7, 8, or 9 weeks after treatment by the instant method.


Example 1: Materials and Methods

It was determined whether removal of CO2 during oxygen depletion by gas exchange affects RBC in a significant manner during subsequent anaerobic storage. Using a three-way, split-unit study, 12 units (6 units with AS3 and 6 with OFAS3) were evaluated, which compared anaerobically stored RBC units with oxygen depletion accomplished using 100% Ar vs. a 95% Ar/5% CO2 gas mixture. As a control, one of the three-way split units was stored conventionally in AS3 (also known as NUTRICEL, Pall Corp.) (Hess, et al. (2000) supra) additive or the OFAS3 (Dumont, et al. (2009) supra).


The primary endpoints of this study included the weekly determination of biochemical parameters such as hemoglobin, extracellular pH (pHe), internal pH (pHi), partial pressure of carbon dioxide (pCO2), partial pressure of oxygen (pO2), hematocrit, ATP, 2,3-DPG levels, supernatant hemoglobin, glucose, lactate, Na+, K+ and % hemolysis carried out during nine weeks of refrigerated storage.


Preparation of Red Cells for Storage.


Each unit of blood (500 mL) was collected into LEUKOTRAP RC Whole Blood Collection, Filtration and Storage System with Pall RC2D Filter containing CP2D in the primary bag. The blood was held at room temperature (RT) for 30 minutes, prior to centrifugation. Subsequently, the blood was centrifuged at 2,000×g for 3 minutes (‘soft spin’-slow stop and no brake), and the supernatant (platelet-rich plasma fraction) was expressed into the attached satellite bag and discarded. After centrifugation, additive solution (100 mL of AS-3 or 200 mL of OFAS3) was added to the unit of packed red blood cells (pRBC). When OFA was being added, the pre-prepared bag was sterilely docked to the pRBC collection bag set. The pRBC unit was mixed very well with the “blood vortex” method-opposite end rotation. Subsequently, the pRBC unit in additive solution was leukoreduced at room temperature using the attached RC2D filter. The pRBC unit was divided equally into three 600 mL bags by mass for the following treatment: Control, 100% Ar, and 5% CO2/Ar. Before transferring the pRBC unit into the three 150 mL bags, each bag was purged with the appropriate gas: control (none), 100% Ar, or 5% CO2/Ar. Upon transfer, the control bag was mixed for 70 minutes on an agitator at room temperature. For the 100% Ar bag and 5% CO2/Ar bag, the RBC was depleted of oxygen as described herein. Each 150 mL bag was sampled by sterilely docking a plasma transfer set (syringe with tubing). After removal of the 9 mL of pRBC for testing, the bag was purged completely of “gas head” with a syringe. Each unit was placed within a temperature monitored blood storage refrigerator which maintained the temperature at 4° C. On a weekly basis for 9 weeks, each unit was mixed and sampled.


Oxygen Depletion with 100% Argon.


Argon was filter sterilized through a 0.22 micron hydrophilic filter and introduced into the pRBC bag. Care was taken not to pressurize the bag at this point. The bag was gently mixed with a rocking motion for 10 minutes at 21-25° C., then the gas was gently expressed through the filter using a vacuum. Flushing with Argon gas, gentle mixing, and gas phase expression was repeated six additional times at 21-25° C. (for a total of seven times). After the final exchange, a 9 mL sample was taken from the bag. Analysis of oxygen and carbon dioxide levels in the depleted RBC indicated that the pCO2 was about 5 mmHg and the pO2 was about 10 mmHg (at a temperature of from 21-25° C. The bags were stored in a gas-tight canister containing a Pd catalyst (DIFCO). The vacuum was set at ˜−0.7 bar (1 bar=0.987 standard atmosphere). The canister was filled with Ar to ˜0.7 bar. The canister was evacuated to ˜−0.7 bar, and filled with 10% H2/90% Ar gas mixture to +0.3 bar. Hydrogen and the Pd catalyst form a fully functional oxygen scavenging system. The canister was placed within a temperature monitored blood storage refrigerator, which maintained 4° C.


Oxygen Depletion with 95% Argon/5% CO2.


A gas mixture of Argon/5% CO2 gas was filter sterilized through a 0.22 micron hydrophilic filter and introduced into the bag. Care was taken not to pressurize the bag at this point. The bag was gently mixed with a rocking motion for 10 minutes at 21-25° C., and the gas was gently expressed through the filter using a vacuum. Flushing with the gas mixture, gentle mixing, and gas phase expression, were repeated six additional times at 21-25° C. (for a total of seven times). After the final exchange, a 9 mL sample was taken from the bag. The bags were stored in a gas-tight canister containing a Pd catalyst. The vacuum was set at ˜−0.7 bar. The canister was filled with Ar to ˜0.7 bar. The canister was evacuated to ˜−0.7 bar, and filled with 5% CO2/10% H2/90% Ar gas mixture to +0.3 bar. The canister was placed within a temperature monitored blood storage refrigerator, which maintained 4° C.


Example 2: CO2 Depletion Provides a Metabolic Advantage for Stored RBC

The instant analysis was a matched three arm study including a control sample, a sample depleted of O2 and CO2 with Ar, and a sample depleted of O2 with 95% Ar/5% CO2. Whole blood was collected into CP2D (Pall), centrifuged 2000×g for 3 minutes, plasma removed, and additive solution AS-3 (Nutricel, Pall), or experimental OFAS3 added. The unit was evenly divided into three 600 mL bags. Two bags were gas exchanged with Ar or Ar/CO2, transferred to 150 mL PVC bags and stored at 1-6° C. in anaerobic cylinders with Ar/H2 or Ar/H2/CO2. One control bag was treated in the same manner without a gas exchange and stored at 1-6° C. in ambient air. Bags were sampled weekly for up to 9 weeks and a panel of in vitro tests were conducted on each sample including intra- and extra-cellular pH (pHi, pHe).


As shown in Table 2, purging with Ar resulted in alkalization of the RBC and upregulation of glycolysis compared to control. pH and lactate of Ar/CO2-purged RBC were equivalent to aerobically stored controls (p>0.5, days 0-21). ATP levels were higher in Ar/CO2 (p<0.0001). DPG was maintained beyond 2 weeks in the Ar-purged arm only (p<0.0001). Surprisingly, DPG was lost at the same rate in both control and Ar/CO2 arms (p=0.6). Hemolysis was low in all arms, but may have been influenced by the weekly mixing.


By reducing carbon dioxide and oxygen in the red blood cell ATP levels were maintained at higher levels for nine weeks relative to ATP levels in a red blood cell sample in which neither oxygen nor carbon dioxide were depleted. 2,3-DPG levels were maintained at a higher level for three weeks than 2,3-DPG levels in a red blood cell sample in which neither oxygen nor carbon dioxide were depleted. Oxygen depletion has a positive impact on ATP levels in red blood cell samples and carbon dioxide depletion has a positive impact on 2.3-DGP levels. Optimal results are achieved when both oxygen and carbon dioxide are depleted.


Although the present disclosure describes in detail certain embodiments, it is understood that variations and modifications exist known to those skilled in the art that are within the disclosure. Accordingly, the present disclosure is intended to encompass all such alternatives, modifications and variations that are within the scope of the disclosure as set forth in the disclosure.
















TABLE 2








ATP
2,3-DPG
Lactate
Glucose
Hemo-




pHi
(μmol/
(μmol/
(mmol/
(mmol/
lysis


Arm
Day
(22° C.)
gHb)
gHb)
gHb)
gHb)
(%)






















Con-
0
7.11 ±
4.1 ±
12.2 ±
0.01 ±
0.38 ±
0.20 ±


trol

0.04
0.7
1.8
0
0.13
0.04



21
6.77 ±
4.3 ±
0.2 ±
0.11 ±
0.30 ±
0.20 ±




0.05
1.0
0.2
0.02
0.13
0.06



42
6.56 ±
3.1 ±
0.2 ±
0.16 ±
0.27 ±
0.30 ±




0.06
0.8
0.1
0.02
0.13
0.10



63
6.44 ±
2.1 ±
0.3 ±
0.2 ±
0.26 ±
0.53 ±




0.07
0.6
0.2
0.02
0.13
0.20


Ar/
0
7.14 ±
4.6 ±
12.2 ±
0.02 ±
0.38 ±
0.17 ±


CO2

0.03
0.7
1.8
0
0.12
0.04



21
6.76 ±
5.5 ±
0.2 ±
0.1 ±
0.33 ±
0.19 +




0.04
1.3
0.2
0.02
0.13
0.08



42
6.58 ±
4.0 ±
0.1 ±
0.15 ±
0.30 ±
0.32 ±




0.05
1.3
0.0
0.03
0.13
0.11



63
6.51 ±
2.4 ±
0.1 ±
0.19 ±
0.28 ±
0.61 ±




0.06
1.0
0.0
0.03
0.13
0.26


Ar
0
7 .38 ±
4.6 ±
14.3 ±
0.02 ±
0.38 ±
0.18 ±




0.06
0.8
1.6
0
0.13
0.05



21
6.67 ±
4.7 ±
6.2 ±
0.16 ±
0.33 ±
0.19 ±




0.04
0.9
3.0
0.02
0.14
0.04



42
6.42 ±
3.3 ±
0.4 ±
0.21 ±
0.32 ±
0.28 ±




0.06
0.9
0.2
0.02
0.13
0.08



63
6.31 ±
1.8 ±
0.4 ±
0.24 ±
0.3 ±
0.64 ±




0.09
0.9
0.2
0.02
0.14
0.35





mean ± sd






The results of this analysis indicated that the addition of 5% CO2 to the purging gas prevented CO2 loss with an equivalent starting pHi and pHe to control bags. Maintenance of ATP in the Ar/CO2 arm demonstrated that ATP production was not solely a function of the pH effect on glycolysis. CO2 in anaerobic storage prevented the maintenance of DPG, and DPG appeared to be pH dependent. Therefore, CO2 as well as O2 depletion provided metabolic advantage for stored RBC.

Claims
  • 1. A method for enhancing red blood cell quality and survival during storage comprising depleting a red blood cell sample of leukocytes;depleting said leukocyte depleted red blood sample of platelets;adding an additive solution having a pH ranging from 5.5 to 7.0;depleting said leukoreduced and platelet reduced red blood cell sample of both oxygen and carbon dioxide prior to storage, wherein carbon dioxide is depleted to a level of 5 mmHg at 21-25° C.;reducing pathogens in said red blood cell sample; andtransferring the leukocyte, platelet, pathogen and oxygen- and carbon dioxide-depleted red blood cell sample to an oxygen- and carbon dioxide-impermeable environment for storage, wherein said red blood cell sample has an acidic pH,thereby enhancing red blood cell quality and survival during storage.
  • 2. The method of claim 1, wherein 2,3-diphosphoglycerate (2,3-DPG) acid levels are maintained for at least two weeks.
  • 3. The method of claim 1, wherein the red blood cell sample is stored for at least three weeks.
  • 4. The method of claim 3, wherein the red blood cells exhibit less than 0.2% hemolysis.
  • 5. The method of claim 1, wherein the red blood cells sample is stored for at least seven weeks.
  • 6. The method of claim 5, wherein the red blood cells exhibit less than 0.3% hemolysis.
  • 7. The method of claim 1, wherein the red blood cells sample is stored for at least nine weeks.
  • 8. The method of claim 7, wherein the red blood cells exhibit less than 0.7% hemolysis.
  • 9. The method of claim 1, wherein the red blood cell sample is depleted of oxygen to a level of approximately 10 mmHg at 21-25° C.
  • 10. The method of claim 1, wherein said additive solution has a pH ranging from 6.25 to 6.75.
  • 11. The method of claim 1, wherein the oxygen- and carbon dioxide-impermeable environment for storage is between 1° C. and 6° C.
  • 12. The method of claim 1, wherein the red blood cell sample is selected from the group consisting of whole blood, anti-coagulated whole blood, packed red cells and red cells separated from plasma.
  • 13. A method for enhancing red blood cell quality and survival during storage comprising (a) reducing oxygen and carbon dioxide in a red blood cell sample comprising an acidified additive solution prior to storage;(b) reducing pathogens; and(c) storing the oxygen and carbon dioxide reduced red blood cell sample in an oxygen and carbon dioxide-impermeable storage environment, wherein said red blood cell sample has an acidic pH, wherein adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) levels are optimized during storage in the oxygen- and carbon dioxide-impermeable storage environment.
  • 14. The method of claim 13, wherein the red blood cell sample is depleted of oxygen to a level of approximately 10 mmHg at 21-25° C.
  • 15. The method of claim 13, wherein the red blood cell sample is depleted of carbon dioxide to a level of 5 mmHg at 21-25° C.
  • 16. The method of claim 13, wherein reducing carbon dioxide in the red blood cell sample elevated 2,3-DPG levels relative to a red blood cell sample in which carbon dioxide was not depleted.
  • 17. The method of claim 13, wherein reducing carbon dioxide and oxygen in the red blood cell sample maintains ATP levels higher for a nine week period than ATP levels in a red blood cell sample in which neither oxygen nor carbon dioxide are depleted and maintains 2,3-DPG levels higher for three weeks than 2,3-DPG levels in a red blood cell sample in which neither oxygen nor carbon dioxide are depleted.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 13/218,114, filed Aug. 25, 2011, which claims priority based on U.S. Provisional Application No. 61/376,899, filed Aug. 25, 2010, which are incorporated herein by reference in their entirety.

US Referenced Citations (273)
Number Name Date Kind
3064647 Earl Nov 1962 A
3361041 Grob Jan 1968 A
3668837 Gross Jun 1972 A
3668838 McNeil et al. Jun 1972 A
3803810 Rosenberg Apr 1974 A
3910841 Esmond Oct 1975 A
3942529 Waage Mar 1976 A
4086924 Latham, Jr. May 1978 A
4131200 Rinfret Dec 1978 A
4162676 Talcott Jul 1979 A
4222379 Smith Sep 1980 A
4225439 Spranger Sep 1980 A
4228032 Talcott Oct 1980 A
4253458 Bacehowski et al. Mar 1981 A
4256692 Cover Mar 1981 A
4262581 Ferrell Apr 1981 A
4300559 Gajewski et al. Nov 1981 A
4314480 Becker Feb 1982 A
4342723 Sado et al. Aug 1982 A
4366179 Nawata et al. Dec 1982 A
4370160 Ziemelis Jan 1983 A
4381775 Nose' et al. May 1983 A
4386069 Estep May 1983 A
4398642 Okudaira et al. Aug 1983 A
4440815 Zomorodi et al. Apr 1984 A
4455299 Grode Jun 1984 A
4540416 Hattori et al. Sep 1985 A
4568328 King et al. Feb 1986 A
4572899 Walker et al. Feb 1986 A
4579223 Otsuka et al. Apr 1986 A
4585735 Meryman et al. Apr 1986 A
4629544 Bonaventura et al. Dec 1986 A
4654053 Sievers et al. Mar 1987 A
4670013 Barnes et al. Jun 1987 A
4701267 Watanabe et al. Oct 1987 A
4713176 Schoendorfer et al. Dec 1987 A
4731978 Martensson May 1988 A
4748121 Beaver et al. May 1988 A
4749551 Borgione Jun 1988 A
4769175 Inoue Sep 1988 A
4769318 Hamasaki et al. Sep 1988 A
4798728 Sugisawa Jan 1989 A
4837047 Sato et al. Jun 1989 A
4859360 Suzuki et al. Aug 1989 A
4861867 Estep Aug 1989 A
4880548 Pall et al. Nov 1989 A
4880786 Sasakawa et al. Nov 1989 A
4902701 Batchelor et al. Feb 1990 A
4925572 Pall May 1990 A
4986837 Shibata Jan 1991 A
4998990 Richter et al. Mar 1991 A
5000848 Hodgins et al. Mar 1991 A
5023054 Sato et al. Jun 1991 A
5037419 Valentine et al. Aug 1991 A
5120659 King et al. Jun 1992 A
5139668 Pan et al. Aug 1992 A
5143763 Yamada et al. Sep 1992 A
5152905 Pall et al. Oct 1992 A
5192320 Anazawa et al. Mar 1993 A
5194158 Matson Mar 1993 A
5208335 Ramprasad et al. May 1993 A
5229012 Pall et al. Jul 1993 A
5254248 Nakamura et al. Oct 1993 A
5286407 Inoue et al. Feb 1994 A
5328268 LaFleur Jul 1994 A
5353793 Bornn Oct 1994 A
5356375 Higley Oct 1994 A
5360734 Chapman et al. Nov 1994 A
5362442 Kent Nov 1994 A
5368808 Koike et al. Nov 1994 A
5382526 Gajewski et al. Jan 1995 A
5386014 Nho et al. Jan 1995 A
5387624 Morita et al. Feb 1995 A
5417986 Reid et al. May 1995 A
5427663 Austin et al. Jun 1995 A
5443743 Gsell Aug 1995 A
5449617 Falkenberg et al. Sep 1995 A
5476764 Bitensky Dec 1995 A
5506141 Weinreb et al. Apr 1996 A
5529821 Ishikawa et al. Jun 1996 A
5605934 Giertych Feb 1997 A
5617873 Yost et al. Apr 1997 A
5624794 Bitensky et al. Apr 1997 A
5635358 Wilding et al. Jun 1997 A
5686304 Codner Nov 1997 A
5691452 Gawryl et al. Nov 1997 A
5693122 Bermdt Dec 1997 A
5693230 Asher Dec 1997 A
5698250 DelDuca et al. Dec 1997 A
5709472 Prusik et al. Jan 1998 A
5744056 Venkateshwaran et al. Apr 1998 A
5730989 Wright May 1998 A
5750115 Van Den Bosch May 1998 A
5783094 Kraus et al. Jul 1998 A
5783148 Cottingham et al. Jul 1998 A
5789151 Bitensky et al. Aug 1998 A
5789152 Black et al. Aug 1998 A
5811142 DelDuca et al. Sep 1998 A
5846427 Kessler et al. Dec 1998 A
5858015 Fini Jan 1999 A
5858643 Ben-Hur et al. Jan 1999 A
5863460 Slovacek et al. Jan 1999 A
5895810 Light et al. Apr 1999 A
5902747 Nemser et al. May 1999 A
5906285 Slat May 1999 A
5955519 Neri Sep 1999 A
5962650 Osterberg et al. Oct 1999 A
5972710 Weigl et al. Oct 1999 A
6007529 Gustafsson et al. Dec 1999 A
6027623 Ohkawa Feb 2000 A
6042264 Prusik et al. Mar 2000 A
6045701 Ung-Chhun et al. Apr 2000 A
6047203 Sackner et al. Apr 2000 A
6076664 Yeager Jun 2000 A
6080322 Deniega et al. Jun 2000 A
6090062 Sood et al. Jul 2000 A
6097293 Galloway et al. Aug 2000 A
6148536 Iijima Nov 2000 A
6150085 Hess et al. Nov 2000 A
6156231 McKedy Dec 2000 A
6162396 Bitensky et al. Dec 2000 A
6164821 Randall Dec 2000 A
6187572 Platz et al. Feb 2001 B1
6210601 Hottle et al. Apr 2001 B1
6231770 Bormann et al. May 2001 B1
6248690 McKedy Jun 2001 B1
6254628 Wallace et al. Jul 2001 B1
6287284 Woarburton-Pitt Sep 2001 B1
6315815 Spadaccini Nov 2001 B1
6337026 Lee et al. Jan 2002 B1
6358678 Bakaltcheva et al. Mar 2002 B1
6368871 Christel et al. Apr 2002 B1
6387461 Ebner et al. May 2002 B1
6402818 Sengupta et al. Jun 2002 B1
6403124 Dottori Jun 2002 B1
6413713 Serebrennikov Jul 2002 B1
6436872 McKedy Aug 2002 B2
6439577 Jorgensen et al. Aug 2002 B2
6447987 Hess et al. Sep 2002 B1
6468732 Malin et al. Oct 2002 B1
6475147 Yost et al. Nov 2002 B1
6482585 Dottori Nov 2002 B2
6494909 Greenhalgh Dec 2002 B2
6527957 Denienga et al. Mar 2003 B1
6558571 Powers May 2003 B1
6564207 Abdoh May 2003 B1
6582496 Cheng et al. Jun 2003 B1
6610772 Clauberg et al. Aug 2003 B1
6626884 Dillon et al. Sep 2003 B1
6688476 Breillatt, Jr. et al. Feb 2004 B2
6695803 Robinson et al. Feb 2004 B1
6697667 Lee et al. Feb 2004 B1
6703492 Spadaccini Mar 2004 B1
6723051 Davidson et al. Apr 2004 B2
6761695 Yost et al. Jul 2004 B2
6773407 Yost et al. Aug 2004 B2
6808675 Coelho et al. Oct 2004 B1
6817979 Nihtila Nov 2004 B2
6866783 Baurmeister et al. Mar 2005 B2
6878335 Britten et al. Apr 2005 B2
6899822 McKedy May 2005 B2
6955648 Mozayeni et al. Oct 2005 B2
6977105 Fujieda et al. Dec 2005 B1
7041800 Gawryl et al. May 2006 B1
7097690 Usher et al. Aug 2006 B2
7104958 Crutchfield et al. Sep 2006 B2
7125498 McKedy Oct 2006 B2
7208120 Bitensky et al. Apr 2007 B2
7347887 Bulow et al. Mar 2008 B2
7361277 Bormann et al. Apr 2008 B2
7431995 Smith et al. Oct 2008 B2
7452601 Ebner et al. Nov 2008 B2
7517146 Smith et al. Apr 2009 B2
7666486 Sato et al. Feb 2010 B2
7713614 Chow et al. May 2010 B2
7721898 Yagi et al. May 2010 B2
7723017 Bitensky et al. May 2010 B2
7754798 Ebner et al. Jul 2010 B2
7763097 Federspiel Jul 2010 B2
7775376 Bonaguidi et al. Aug 2010 B2
7784619 Jacobson Aug 2010 B2
8070664 Rochat Dec 2011 B2
8071282 Bitensky et al. Dec 2011 B2
8535421 Yoshida et al. Sep 2013 B2
8569052 Federspiel et al. Oct 2013 B2
8864735 Sano et al. Oct 2014 B2
9005343 Yoshida et al. Apr 2015 B2
9067004 Yoshida et al. Jun 2015 B2
9199016 Yoshida et al. Dec 2015 B2
9296990 Federspiel et al. Mar 2016 B2
9539375 Yoshida et al. Jan 2017 B2
9801784 Yoshida et al. Oct 2017 B2
20010027156 Egozy et al. Oct 2001 A1
20010037078 Lynn et al. Nov 2001 A1
20010049089 Dottori Dec 2001 A1
20020062078 Crutchfield et al. May 2002 A1
20020066699 Boggs et al. Jun 2002 A1
20020085952 Ellingboe et al. Jul 2002 A1
20020086329 Shvets et al. Jul 2002 A1
20020099570 Knight Jul 2002 A1
20020176798 Linker et al. Nov 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20030003575 Vacanti et al. Jan 2003 A1
20030039582 Chambers et al. Feb 2003 A1
20030062299 Lee et al. Apr 2003 A1
20030106861 Gibbs et al. Jun 2003 A1
20030124504 Bitensky et al. Jul 2003 A1
20030153074 Bitensky et al. Aug 2003 A1
20030183801 Yang et al. Oct 2003 A1
20030189003 Kraus et al. Oct 2003 A1
20030190272 Raine et al. Oct 2003 A1
20030201160 Goodrich et al. Oct 2003 A1
20030215784 Dumont Nov 2003 A1
20030233934 Wijmans et al. Dec 2003 A1
20040013566 Myrick et al. Jan 2004 A1
20040026341 Hogberg et al. Feb 2004 A1
20040097862 Lampeter et al. May 2004 A1
20040126880 Manders et al. Jul 2004 A1
20040168982 Bitensky et al. Sep 2004 A1
20040254560 Coelho et al. Dec 2004 A1
20050038342 Mozayeni et al. Feb 2005 A1
20050085785 Shang et al. Apr 2005 A1
20050137517 Blickhan et al. Jun 2005 A1
20050139806 Havens et al. Jun 2005 A1
20050208462 Bitensky et al. Sep 2005 A1
20050210141 Oyama et al. Sep 2005 A1
20050230856 Parekh et al. Oct 2005 A1
20050233302 Hess et al. Oct 2005 A1
20060081524 Sengupta et al. Apr 2006 A1
20060118479 Shevkoplyas et al. Jun 2006 A1
20060160724 Gawryl et al. Jul 2006 A1
20060169138 Schmidt Aug 2006 A1
20060226087 Robinson et al. Oct 2006 A1
20060278073 McHugh Dec 2006 A1
20070078113 Roth et al. Apr 2007 A1
20070099170 Goodrich et al. May 2007 A1
20070240569 Ooya Oct 2007 A1
20080027368 Kollar et al. Jan 2008 A1
20080098894 Sabatino May 2008 A1
20080160107 McCaney et al. Jul 2008 A1
20080243045 Pasqualini Oct 2008 A1
20080276803 Molaison et al. Nov 2008 A1
20090017128 Monzyk et al. Jan 2009 A1
20090084720 Dannenmaier et al. Apr 2009 A1
20090235619 Ostler et al. Sep 2009 A1
20090269837 Shevkoplyas et al. Oct 2009 A1
20100021879 Delgado et al. Jan 2010 A1
20100133203 Walker et al. Jun 2010 A1
20100221697 Sehgal Sep 2010 A1
20100282662 Lee et al. Nov 2010 A1
20100294128 Schmidt Nov 2010 A1
20100313755 Koros et al. Dec 2010 A1
20100331767 Frankowski Dec 2010 A1
20110092875 Beck Apr 2011 A1
20120024156 Yoshida et al. Feb 2012 A1
20120077182 Bitensky et al. Mar 2012 A1
20120100523 Federspiel et al. Apr 2012 A1
20120115124 Yoshida et al. May 2012 A1
20120129148 Hess et al. May 2012 A1
20120129149 Federspiel et al. May 2012 A1
20120146266 Oda et al. Jun 2012 A1
20120219633 Sowemimo-Coker Aug 2012 A1
20130004937 Yoshida et al. Jan 2013 A1
20130197420 Fissell, IV et al. Aug 2013 A1
20130259744 Yoshida et al. Oct 2013 A1
20130327677 McDorman Dec 2013 A1
20140012185 Ishizuka et al. Jan 2014 A1
20140134503 Lockett et al. May 2014 A1
20140146266 Zhang May 2014 A1
20140158604 Chammas et al. Jun 2014 A1
20140248005 David et al. Sep 2014 A1
20160007588 Levesque et al. Jan 2016 A1
20160242410 Yoshida et al. Aug 2016 A9
Foreign Referenced Citations (92)
Number Date Country
2477946 Sep 2003 CA
1195965 Oct 1998 CN
2502700 Jul 2002 CN
1642628 Jul 2005 CN
2780207 May 2006 CN
2894710 May 2007 CN
3722984 Jan 1989 DE
10327988 Jul 2004 DE
0 100 419 Feb 1984 EP
0 217 759 Apr 1987 EP
0 299 381 Jan 1989 EP
0 890 368 Jan 1999 EP
1 109 447 Oct 2003 EP
1 891 999 Feb 2008 EP
2635114 Sep 2013 EP
2 581 289 Nov 1986 FR
1 044 649 Oct 1966 GB
2283015 Apr 1995 GB
58-194879 Nov 1983 JP
59-115349 Jul 1984 JP
61-109577 May 1986 JP
63-63616 Mar 1988 JP
01-104271 Apr 1989 JP
3-284263 Dec 1991 JP
5-503075 May 1993 JP
5-503304 Jun 1993 JP
H05-148151 Jun 1993 JP
5-305123 Nov 1993 JP
H05-317413 Dec 1993 JP
06-121920 May 1994 JP
2668446 Jul 1997 JP
2700170 Jan 1998 JP
10-501443 Feb 1998 JP
2000-516963 Dec 2000 JP
2002-253936 Sep 2002 JP
2004089495 Mar 2004 JP
2005-533041 Nov 2005 JP
2005-535279 Nov 2005 JP
2006-502078 Jan 2006 JP
2007-260393 Oct 2007 JP
2008-86996 Apr 2008 JP
2008-529550 Aug 2008 JP
2008-253452 Oct 2008 JP
10501443 Feb 2010 JP
2010-503501 Feb 2010 JP
2010-116626 May 2010 JP
2010-538735 Dec 2010 JP
201192905 May 2011 JP
2014-518283 Jul 2014 JP
2014-527436 Oct 2014 JP
10-0721054 May 2006 KR
1718766 Jan 1990 SU
WO 8102239 Aug 1981 WO
WO 8600809 Feb 1986 WO
WO 8902274 Mar 1989 WO
WO 9104659 Apr 1991 WO
WO 9208348 May 1992 WO
WO 9529662 Nov 1995 WO
WO 96029103 Sep 1996 WO
WO 96029346 Sep 1996 WO
WO 96029864 Oct 1996 WO
WO 96039026 Dec 1996 WO
WO 97037628 Oct 1997 WO
WO 1998046073 Oct 1998 WO
WO 98051147 Nov 1998 WO
WO 9925726 May 1999 WO
WO 199929346 Jun 1999 WO
WO 9948963 Sep 1999 WO
WO 2000011946 Mar 2000 WO
WO 03043419 May 2003 WO
WO 03043571 May 2003 WO
WO 2003086577 Oct 2003 WO
WO 03103390 Dec 2003 WO
WO 2004043381 May 2004 WO
WO 2006057473 Jun 2006 WO
WO 2006088455 Aug 2006 WO
WO 2009132839 Nov 2009 WO
WO 2011014855 Feb 2011 WO
WO 2011046841 Apr 2011 WO
WO 2011046963 Apr 2011 WO
WO 2011068897 Jun 2011 WO
WO 2012027582 Mar 2012 WO
WO 2012061731 May 2012 WO
WO 2013006631 Jan 2013 WO
WO 2013022491 Feb 2013 WO
WO 2013023156 Feb 2013 WO
WO 2013153441 Oct 2013 WO
WO 2013177339 Nov 2013 WO
WO 2014134503 Sep 2014 WO
WO 2014194931 Dec 2014 WO
WO 2016145210 Sep 2016 WO
WO 2016172645 Oct 2016 WO
Non-Patent Literature Citations (179)
Entry
U.S. Appl. No. 10/295,781, filed Nov. 15, 2002, Bitensky et al.
U.S. Appl. No. 62/131,130, filed Mar. 15, 2015, Wolf et al.
U.S. Appl. No. 62/151,957, filed Apr. 23, 2015, Yoshida et al.
U.S. Appl. No. 12/901,350, filed Oct. 8, 2010, Yoshida et al.
Benson et al., “Accumulation of Pro-Cancer Cytokines in the Plasma Fraction of Stored Packed Red Cells,” J Gastrointest Surg., 16:460-468 (2012).
Buskirk et al., “Accumulation of Biologic Response Modifiers During Red Blood Cell Cold Storage,” Transfusion, 49(Supp13): 102A-103A (2009).
Chaplin et al., “The Proper Use of Previously Frozen Blood Cells for Transfusion,” Blood, 59:1118-1120 (1982).
Cognasse et al., “The role of microparticles in inflammation and transfusion: A concise review,” Transfus. Apher. Sci. 53(2):159-167 (2015).
Fatouros et al., “Recombinant factor VII SQ—influence of oxygen, metal ions, pH and ionic strength on its stability in aqueous solution,” International Journal of Pharmaceutics, 155(1):121-131 (1997).
“Friction Factor for Flow in Coils and Curved Pipe,” Neutrium Available on the world wide web at neutrium.net/fluid_flow/friction-factor-for-flow-in-coils-and-curved-pipe/. (2017).
Grigioni et al., “A discussion on the threshold limited for nemo lysis related to Reynolds shear stress,” J. Biomech., 32:1107-1112 (1999).
Heaton et al., “Use of Adsol preservation solution for prolonged storage of low viscosity AS-1 red blood cells,” Br J. Haematol, 57(3):467-478 (1984).
Hess et al., “Storage of Red Blood Cells: New Approaches,” Transfusion Medicine Reviews, 16(4):283-295 (2002).
International Search Report for PCT/US2016/021794 dated Jul. 18, 2016.
Irsch et al., “Pathogen inactivation of platelet and plasma blood components for transfusion using the Intercept Blood SystemTM,” Transfusion Medicine and Hemotherapy, 38:19-31 (2011).
Jams et al., “Barrier Properties of polypropylene/polyamide blends produced by microlayer coextrusion,” Polymer 43:2401-2408 (2002).
Kaiser-Guignard et al., “The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates,” Blood Reviews 28:235-241 (2014).
Kakaiya et al., “Platelet preservation in large containers,” Vox Sanguinis, 46(2):111-118 (1984).
Kilkson et al., “Platelet metabolism during storage of platelet concentrates at 22° C.,” Blood 64(2):406-414 (1984).
Kynar Flex Product Catalog, downloaded May 20, 2015 from Kynar.com.
Lowndes, “Blood Interference in fluorescence spectrum: Experiment, analysis and comparison with intraoperative measurements on brain tumor,” Bachelor Thesis, Linköping University, pp. 1-42 (2010).
Lundblad, “Factor VIII—Reducing agents, copper ions, and stability,” http://lundbladbiotech.com.
Moroff et al., “Factors Influencing Changes in pH during Storage of Platelet Concentrates at 20-24° C.,” Vox Sanguinis, 42(1):33-45 (1982).
Moroff et al., “Concepts about current conditions for the preparation and storage of platelets,” Transfus Med Rev V(1):48-59 (1991).
Musante et al., “Active Focal Segmental Glomerulosclerosis is Associated with Massive Oxidation of Plasma Albumin,” Journal of the American Society of Nephrology, 18(3):799-810 (2007).
Parkkinen et al., “Plasma ascorbate protects coagulation factors against photooxidation,” Thromb Haemost 75(2):292-297 (1996).
Picker et al., “Current methods for the reduction of blood-borne pathogens: a comprehensive literature review,” Blood Transfusion 11:343-348 (2013).
Pidcoke et al., “Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time,” Transfusion 53:137S-149S(2013).
Poncelet et al., “Tips and tricks for flow cytometry-based analysis and counting of microparticles,” Transfus. Apher. Sci. 53(2):110-126 (2015).
Ramstack et al., “Shear-induced activation of platelets,” J. Biomech., 12:113-125 (1979).
Reynolds et al., “S-nitrosohemoglobin deficiency: A mechanism for loss of physiological activity in banked blood,” Proceedings of the National Academy of Sciences, 104(43):17058-17062 (2007).
Rock et al., “Nutricel as an additive solution for neonatal transfusion,” Transfusion Science, 20:29-36 (1999).
Schubert et al., “Whole blood treated with riboflavin and ultraviolet light: Quality assessment of all blood components produced by the buffy coat method,” Transfusion 55(4):815-823 (2014).
Sheffield et al., “Changes in coagulation factor activity and content of di(2-ethylhexyl) phthate in frozen plasma units during refrigerated storage for up to 5 days after thawing,” Transfusion, 52:494-502 (2012).
Su et al., “Impermeable barrier films and protective coatings based on reduced graphene oxide,” Nature Communications 5 Article No. 4843 (2014).
Sutera et al., “Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow,” Biophys. J., 15:1-10 (1975).
“Transition and Turbulence,” https://www.princeton.edu/˜asmits/Bicycle_web/transition.html . Adapted from the Engine and the Atmosphere: An Introduction to Engineering by Z. Warhaft, Cambridge University Press, (1997).
Wallvik et al., “Platelet Concentrates Stored at 22° C. Need Oxygen the Significance of Plastics in Platelet Preservation,” Vox Sanguinis, 45(4):303-311 (1983).
Wallvik et al., “The platelet storage capability of different plastic containers,” Vox Sanguinis, 58(1):40-44 (1990).
Yazer et al., “Coagulation factor levels in plasma frozen within 24 hours of phlebotomy over 5 days of storage at 1 to 6° C.,” Transfusion, 48:2525-2530 (2008).
Zimring et al., “Established and theoretical factors to consider in assessing the red cell storage lesion,” Blood, 125:2185-2190 (2015).
Fage et al., “On transition from laminar to turbulent flow in the boundary layer,” The gamma-ray transition of radio-bromine, Proceedings of the Royal Society, 178(973):205-227 (1940).
Alcantar et al., “Polyethylene glycol-coated bioLcompatible surfaces,” Journal of Biomedical Materials Research, 51(3):343-351 (2000).
Anderson et al., “Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities,” Lab Chip, 4:98-103 (2004).
Barbee et al., “The Fahraeus Effect,” Microvascular Research, 3:6-16 (1971).
Barclay et al., “A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux,” Microcirculation, 7(5):335-346 (2000).
Bardy et al., “Technetium-99m Labeling by Means of Stannous Pyrophosphate: Application to Bleomycin and Red Blood Cells,” Journal of Nuclear Medicine, 16(5):435-437 (1975).
Barras et al., “Einfluss der Rejuvenation auf die rheologischen Eigenschaften gelagerter Erythrozyten,” VASA, 23(4):305-311 (1994) (with English translation).
Bensinger et al., “Prolonged maintenance of 2,3-DPG in liquid blood storage: Use of an internal CO2 trap to stabilize pH,” J. Lab. Clin. Med., 89(3):498-503 (1977).
Beutler et al., “Storage of red cell concentrates in CPD-A2 for 42 and 49 days,” The Journal of Laboratory and Clinical Medicine, 102(1):53-62 (1983).
Borenstein et al., “Microfabrication Technology for Vascularized Tissue Engineering,” Biomedical Microdevices, 4(3):167-175 (2002).
Brody et al., “Deformation and Flow of Red Blood Cells in a Synthetic Lattice: Evidence for an Active Cytoskeleton,” Biophysical Journal, 68:2224-2232 (1995).
Burns et al., “Artificial microvascular network: a new tool for measuring rheologic properties of stored red blood cells,” Transfusion, 52(5):1010-1023 (2012).
Carmen, “The Selection of Plastic Materials for Blood Bags,” Transfusion Medicine Reviews, 7(l):1-10 (1993).
Carr et al., “Nonlinear Dynamics of Microvascular Blood Flow,” Annals of Biomedical Engineering, 28:641-652 (2000).
Cell Deformability, RheoSCAN (RheoScan-AnD300/RheoScan-D300), obtained on Dec. 11, 2012, from: http://www.rheoscan.com/products/products/products-01.html.
Chilton et al., “Privacy Protection of Health Information: Patient Rights and Pediatrician Responsibilities,” Pediatrics, 104(4):973-977 (1999).
Cokelet et al., “Fabrication of in Vitro Microvascular Blood Flow Systems by Photolithography,” Microvascular Research, 46:394-400 (1993).
Dale et al., “Human Vaccination with Escherichia coli J5 Mutant Induces Cross-Reactive Bactericidal Antibody against Neisseria gonorrhoeae Lipooligosaccharide,” The Journal of Infectious Diseases, 166:316-325 (1992).
De Angelis et al., “Erythrocyte Shape Control in Stored Blood: The Effect of Additive Solutions on Shape Recovery,” Haematologica, 73:7-12 (1988).
de Korte et al., “Prolonged maintenance of 2,3-diphosphoglycerate acid and adenosine triphosphate in red blood cells during storage,” Transfusion, 48:1081-1089 (2008).
De Venuto et al., “Rejuvenation of Human Red Blood Cells During Liquid Storage,” Transfusion, 14(4):338-344 (1974).
Deible et al., “Molecular barriers to biomaterial thrombosis by modification of surface proteins with polyethylene glycol,” Biomaterials, 19:1885-1893 (1998).
Dumaswala et al., “Glutamine- and Phosphate-Containing Hypotonic Storage Media Better Maintain Erythrocyte Membrane Physical Properties,” Blood, 88(2):697-704 (1996).
Dumaswala et al., “Improved Red Blood Cell Preservation Correlates With Decreased Loss of Bands 3, 4.1, Acetylcholinestrase, and Lipids in Microvesicles,” Blood, 87(4):1612-1616 (1996).
Dumaswala et al., “Studies in Red Blood Cell Preservation: 9. The Role of Glutamine in Red Cell Preservation,” Vox Sang, 67:255-259 (1994).
Dumont et al., “Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery,” Transfusion, 49(3):458-464 (2009).
Dumont et al., “CO2-Dependent Metabolic Modulation in Red Blood Cells Stored Under Anaerobic Conditions,” Transfusion, vol. 00 (2015).
Durapore® Membrane Filters—Filter Discs and Membranes, retrieved on Aug. 26, 2014, from: www.emdmillipore.com/US/en/product/Durapore.
Effenhauser et al., “Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips,” Anal. Chem., 69:3451-3457 (1997).
European Search Report completed on Feb. 11, 2005, in European Patent Application No. 02 78 2307.9.
Extended European Search Report dated Mar. 5, 2015, in European Patent Application No. 12821624.9.
Extended European Search Report dated Nov. 4, 2014, in European Patent Application No. 12807324.4.
Extended European Search Report, dated Aug. 8, 2014 for European Patent Application No. 10823965.8.
Extended European Search Report, dated Jun. 15, 2015, in European Patent Application No. 11820660.6.
Extended European Search Report, dated Oct. 23, 2014, for European Patent Application No. 11838889.1.
Fahraeus et al., “The Viscosity of the Blood in Narrow Capillary Tubes,” Am. J. Physiol., 96(3):562-568 (1931).
Fang et al., “Inhibition of Lipopolysaccharide-Associated Endotoxin Activities In Vitro and n Vivo by the Human Anti-Lipid A Monoclonal Antibody SdJ5-1.17.15,” Infection and Immunity, 61(9):3873-3878 (1993).
Frame et al., “A System for Culture of Endothelial Cells in 20-50-μm Branching Tubes,” Microcirculation, 2(4):377-385 (1995).
Fung et al., “High-Resolution Data on the Geometry of Red Blood Cells”, Biorheology, 18:369-385 (1981).
Gañán-Calvo et al., “Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws,” J. Aerosol Sci., 28(2):249-275 (1997).
Gifford et al., “A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence,” British Journal of Haematology, 135:395-404 (2006).
Gifford et al., “Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes,” Biophysical Journal, 84:623-633 (2003).
Green et al., “10. Liposomal Vaccines,” Immunobiology of Proteins and Peptides VII, Plenum Press, New York, pp. 83-92 (1995).
Greenwalt et al., “Studies In Red Blood Cell Preservation. 7. In vivo and in Vitro Studies with a Modified Phosphate-Ammonium Additive Solution,” Vox Sang, 65:87-94 (1993).
Greenwalt et al., “Studies in Red Blood Cell Preservation. 8. Liquid Storage of Red Cells in Glycerol-Containing Additive Solution,” Vox. Sang, 67:139-143 (1994).
Greenwalt et al., “Studies in red blood cell preservation. 10. 51Cr Recovery of Red Cells after Liquid Storage in a Glycerol-Containing Additive Solution,” Vox Sang, 70:6-10 (1996).
Greenwalt et al., “The effect of hypotonicity, glutamine, and glycine on red cell preservation,” Transfusion, 37:269-276 (1997).
Griffith, “Temporal chaos in the microcirculation,” Cardiovascular Research, 31:342-358 (1996).
Gulliksson et al., “Storage of whole blood overnight in different blood bags preceding preparation of blood components: in vitro effects on red blood cells,” Blood Transfus 7:210-215 (2009).
Hamasaki et al., “Acid-citrate-dextrose-phosphoenolpyruvate medium as a rejuvenant for blood storage,” Transfusion, 23(1):1-7 (1983).
Hess et al., “Alkaline CPD and the preservation of RBC 2,3-DPG,” Transfusion, 42:747-752 (2002).
Hess et al., “Successful storage of RBCs for 9 weeks in a new additive solution,” Transfusion, 40:1007-1011 (2000).
Hess, “Extended Liquid Storage of Red Blood Cells,” Blood Donors and the Supply of Blood and Blood Products, National Academy Press, Washington, D.C., pp. 99-102 (1996).
Hess, “Storage of red blood cells under anaerobic conditions,” Vox Sanguinis, 93:183 (2007).
Hodgson et al., “Prophylactic use of human endotoxin-core hyperimmune gammaglobulin to prevent endotoxaemia in colostrum-deprived, gnotobiotic lambs challenged orally with Escherichia coli,” FEMS Immunology and Medical Microbiology, 11:171-180 (1995).
Högman et al.,“Effects of Oxygen on Red Cells during Liquid Storage at +4° C.,” Vox Sang., 51:27-34 (1986).
Högman et al., “Cell Shape and Total Adenylate Concentration as Important Factors for Posttransfusion Survival of Erythrocytes,” Biomed. Biochim. Acta, 42:S327-S331 (1983).
Högman et al., “Effects of Oxygen and Mixing on red cells stored in plastic bags at +4° C.,” Biomed. Biochim. Acta., 46:5290-S294 (1987).
Högman et al., “Shall Red Cell Units Stand Upright, Lie Flat or be Mixed During Storage? In Vitro Studies of Red Cells Collected in 0.5 CPD and Stored in RAS2 (Erythrosol®),” Transfus. Sci., 16(2):193-199 (1995).
Högman, “Preparation and Preservation of Red Cells,” Vox Sanguinis 74(Suppl. 2):177-187 (1998).
Holme et al., “Current Issues Related to the Quality of Stored RBC's,” Transfusion and Apheresis Science, Elsevier Science, 33(1):55-61 (2005).
Huang et al., “Continuous Particle Separation Through Deterministic Lateral Displacement,” Science, 304:987-990 (2004).
International Preliminary Report on Patentability completed on Feb. 14, 2012, in International Patent Application No. PCT/US2010/52084.
International Preliminary Report on Patentability completed on May 21, 2012, in International Patent Application No. PCT/US2010/52376.
International Preliminary Report on Patentability completed on Oct. 18, 2011, in International Patent Application No. PCT/US2010/031055.
International Search Report completed on Apr. 26, 2011, in International Patent Application No. PCT/US2010/044045.
International Search Report completed on Dec. 21, 2011, in International Patent Application No. PCT/US11/49168.
International Search Report completed on Feb. 12, 2012, in International Patent Application No. PCT/US11/59372.
International Search Report completed on Feb. 8, 2011, in International Patent Application No. PCT/US10/52084.
International Search Report completed on Jul. 10, 2014 in International Patent Application No. PCT/US2014/019537.
International Search Report completed on Jul. 8, 1996, in International Patent Application No. PCT/US96/09005.
International Search Report completed on Jun. 18, 2012, in International Patent Application No. PCT/US12/30930.
International Search Report completed on May 20, 2010, in International Patent Application No. PCT/US2010/31055.
International Search Report completed on Nov. 10, 2003, in International Patent Application No. PCT/US02/36735.
International Search Report completed on Nov. 22, 2010, in International Patent Application No. PCT/US2010/052376.
International Search Report completed on Nov. 9, 2012, in International Patent Application No. PCT/US12/45426.
International Search Report completed on Sep. 24, 2012, in International Patent Application No. PCT/US12/50380.
Jain, et al., “Determinants of Leukocyte Margination in Rectangular Microchannels,” PLoS One, 4(9):1-8 (2009).
Jayasinghe et al., “Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization,” Nanotechnology, 15:1519-1523 (2004).
Jiang et al., “Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen sensors,” Soft Matter, 8:923-926 (2011).
Jo et al., “Surface modification using silanated poly(ethylene glycol)s,” Biomaterials, 21:605-616 (2000).
Johnson et al., “Regulation of blood flow in single capillaries,” American Journal of Physiology, 212:1405-1415 (1967).
Kaihara et al., “Silicon Micromachining to Tissue Engineer Branched Vascular Channels for Liver Fabrication,” Tissue Engineering, 6(2):105-117 (2000).
Kiani et al., “Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms,” American Journal of Physiology, 266(5):H1822-H1828 (1994).
Kikuchi et al., “Modified Cell-Flow Microchannels in a Single-Crystal Silicon Substrate and Flow Behavior of Blood Cells,” Microvascular Research, 47:126-139 (1994).
Koch et al., “Duration of Red-Cell Storage and Complications After Cardiac Surgery,” The New England Journal of Medicine, 358:1229-1239 (2008).
Koch et al., “Peripheral blood leukocyte no production and oxidative stress in multiple sclerosis,” Multiple Sclerosis, 14:159-165 (2008).
Krogh, “Studies on the physiology of capillaries. II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog,” The Journal of Physiology, 55:412-422 (1921).
Kuraoka, et al., “Ship-in-a-bottle synthesis of a cobalt phthalocyanine/porous glass composite membrane for oxygen separation,” Journal of Membrane Science, 286(1-2):12-14 (2006).
Lugowski et al., “Anti-endotoxin antibodies directed against Escherichia coli R-1 oligosaccharide core-tetanus toxoid conjugate bind to smooth, live bacteria and smooth lipopolysaccharides and attenuate their tumor necrosis factor stimulating activity,” FEMS Immunology and Medical Microbiology, 16:31-38 (1996).
Mazor et al., “Prolonged Storage of Red Cells: The Effect of pH, Adenine Phosphate,” Vox Sanguinis, 66:264-269 (1994).
McDonald et al., “Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices,” Accounts of Chemical Research, 35(7):491-499 (2002).
Meryman et al., “Extending the storage of red cells at 4° C.,” Transfus. Sci., 15(2):105-115(1994).
Meryman et al., “Prolonged storage of red cells at 4° C.,” Transfusion, 26(6):500-505 (1986).
Moll et al., “Dean vortices applied to membrane process. Part II: Numerical approach,” Journal of Membrane Science, 288:321-335 (2007).
Moroff et al., “Proposed standardization of methods for determining the 24-hour survival of stored red cells,” Transfusion, 24:109-114 (1984).
Murphy et al., “Platelet Storage at 22° C.: Role of Gas Transport Across Plastic Containers in Maintenance of Viability,” Blood, 46(2):209-218 (1975).
Murphy et al., “Increased Mortality, Postoperative Morbidity, and Cost After Red Blood Cell Transfusion in Patients Having Cardiac Surgery,” Circulation, 116:2544-2552 (2007).
Ng et al., “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis, 23:3461-3473 (2002).
Ohkuma et al., “The preservative-exchange method using a sextuple-bag system for a 10-week storage period of red blood cells,” Transfusion Medicine, 1:257-262 (1991).
Poxton, “Antibodies to lipopolysaccharide,” Journal of Immunological Methods, 186:1-15 (1995).
Prefiltration before membrane filtration, hydrophobic, 25 μm 142 mm, retrieved on Aug. 26, 2014, from: www.emdmillipore.com/US/en/product/Prefiltration-before-membrane-filtration.
Pries et al., “Biophysical aspects of blood flow in the microvasculature,” Cardiovascular Research, 32:654-667 (1996).
Sambuceti et al., “Why should we study the coronary microcirculation?,” Am J Physiol Heart Circ Physiol, 279:H2581-H2584 (2000).
Shevkoplyas et al., “Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device,” Lab Chip, 6:914-920 (2006).
Shimizu et al., “Multicenter Clinical Evaluation of Red Cell Concentrates Stored up to 6 Weeks in MAP, a new additive solution,” Japanese Journal of Clinical Hematology, 33(2):148-156 (1992) (with English translation).
Skalak et al., “Deformation of Red Blood Cell in Capillaries,” Science, 164(3880):717-719 (1969).
Sohmer et al., “Phosphoenolypyruvate (PEP) Effects on Fresh and Stored Red Blood Cells,” Proceedings of the Society for Experimental Biology and Medicine, 171:24-33 (1982).
Supplementary European Search Report dated Jan. 20, 2015 in European Patent Application No. 12822378.2.
Sutton et al., “A Novel Instrument for Studying the Flow Behaviour of Erythrocytes through Microchannels Simulating Human Blood Capillaries,” Microvascular Research, 53:272-281 (1997).
Szymanski et al., “Effect of rejuvenation and frozen storage on 42-day-old AS-1 RBCs,” Transfusion, 41:550-555 (2001).
The International Committee for Standardization in Hematology, “Recommended Methods for Radioisotope Red Cell Survival Studies,” Blood, 38(3):378-386 (1971).
Tinmouth et al., “The Clinical Consequences of the Red Cell Storage Lesion,” Transfusion Medicine Reviews, 15(2):91-107 (2001).
Tracey et al., “A Silicon Micromachined Device for Use in Blood Cell Deformability Studies,” IEEE Transactions on Biomedical Engineering, 42(8):751-761 (1995).
Tsukada et al., “Direct Measurement of Erythrocyte Deformability in Diabetes Mellitus with a Transparent Microchannel Capillary Model and High-Speed Video Camera System,” Microvascular Research, 61:231-239 (2001).
Valeri et al., “The survival, function, and hemolysis of human RBCs stored at 4° C. in additive solution (AS-1, AS-3, or AS-5) for 42 days and then biochemically modified, frozen, thawed, washed, and stored at 4° C. in sodium chloride and glucose solution for 24 hours,” Transfusion, 40:1341-1345 (2000).
Wang et al., “Fabrication of PLGA microvessel scaffolds with circular microchannels using soft lithography,” Journal of Micromechanics and Microengineering, 17(10):2000-2005 (2007).
Weinberg et al., “Transfusions in the Less Severely Injured: Does Age of Transfused Blood Affect Outcomes?,” The Journal of TRAUMA, 65(4):794-798 (2008).
Wilding et al., “Manipulation and Flow of Biological Fuids in Straight Channels Micromachined in Silicon,” Clinical Chemistry, 40(1):43-47 (1994).
Wood et al., “The Viability of Human Blood Stored in Phosphate Adenine Media,” Transfusion, 7(6):401-408 (1967).
Wu et al., “Polymer microchips bonded by O2-plasma activation,” Electrophoresis, 23:782-790 (2002).
Yoshida et al., “Anaerobic storage of red blood cells,” Blood Transfusion, 8:220-236 (2010).
Yoshida et al., “Extended storage of red blood cells under anaerobic conditions,” Vox Sanguinis, 92:22-31 (2007).
Yoshida et al., “Storage of red blood cells under anaerobic conditions: reply,” Vox Sanguinis, 93:184 (2007).
Yoshida et al., “The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells,” Transfusion, 48:2096-2105 (2008).
Zhang et al., “Modification of Si(100) surface by the grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion,” J Biomed Mater Res, 56:324-332 (2001).
Zimrin et al., “Current issues relating to the transfusion of stored red blood cells,” Vox Sanguinis, 96:93-103 (2009).
International Search Report for PCT/US2016/033151 dated Oct. 13, 2016.
Cardo et al., “Pathogen inactivation of Leishmania donovani infantum in plasma and platelet concentrates using riboflavin and ultraviolet light,” Vox Sanguinis 90:85-91 (2006).
Cardo et al., “Pathogent inactivation of Trypanosoma cruzi in plasma and platet concentrates using riboflavin and ultraviolet light,” Transfusion and Apheresis Science 37:131-137 (2007).
Corbin, “Pathogen Inactivation of Blood Components: Current Status and Introduction of an Approach Using Riboflavin as a Photosensitizer,” International Journal of Hematology Supplement II 76:253-257 (2002).
Erickson et al., “Evaluation of in vitro Quality of Stored RBC after Treatment with S303 Pathogen Inactivation at Varying Hematocrits,” Transfusion DUP—General Collection 48(2) Supplement (2008).
Fast et al., “Inactivation of Human White Blood Cells in Red Blood Cell Products Using the MIRASOL® System for Whole Blood,” Blood Abstract #2897 110(11)(pt. 1) (2007).
Goodrich, “The Use of Riboflavin for the Inactivation of Pathogens in Blood Products,” Vox Sanguinis Suppl. 2 78:211-215 (2000).
Janetzko et al., “Pathogen reduction technology (Mirasol®) treated singledonor platelets resuspended in a mixture of autologous plasma and PAS,” Vox Sanguinis 97:234-239 (2009).
Vrielink et al., “Transfusion-transmissible infections,” Current Opinion in Hematology 5:396-405 (1998).
International Search Report for PCT/US2016/051115 dated Nov. 21, 2016.
International Search Report for PCT/US2017/034410 dated Dec. 22, 2017.
Related Publications (1)
Number Date Country
20160219868 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
61376899 Aug 2010 US
Continuations (1)
Number Date Country
Parent 13218114 Aug 2011 US
Child 15095943 US