The present invention relates to a method for estimating a wind speed at a position of a wind turbine. According to the method of the invention, the wind speed can be estimated fast and in a stable and reliable manner.
When operating a wind turbine it is sometimes desirable to be able to estimate the wind speed prevailing at the wind turbine, more particularly the wind speed experienced by the wind turbine blades of the wind turbine. When the wind speed is measured, this is often done at a point behind the rotor of the wind turbine. Thereby the measured wind speed is affected by the impact on the wind by the rotor, and therefore it does not reflect the wind speed at a position in front of the rotor. Furthermore, since the wind speed is typically measured in a single point, it will not reflect variations in the wind speed across an area defined by the rotor. Accordingly, controlling the wind turbine on the basis of such a measured wind speed may lead to inaccurate control of the wind turbine.
Therefore, various attempts have previously been made in order to provide an estimate for the wind speed at a wind turbine.
U.S. Pat. No. 5,155,375 discloses a controller and a method for operating a variable speed wind turbine to better track wind speed fluctuations for greater efficiency in conversion of wind energy to electrical energy. The rotor speed is controlled with a wind speed supplied by a wind observer which predicts the average wind speed at a subsequent point in time over the cross section presented to the wind by the wind turbine. The wind speed is predicted as a function of the present (previously predicted) wind speed and correction terms including net torque and the difference between the predicted and actual rotor speed.
It is an object of the invention to provide a method for estimating a wind speed at a wind turbine that can be performed in a fast and reliable manner.
The method provides a method for estimating a wind speed at a wind turbine, the wind turbine comprising a rotor carrying a set of wind turbine blades, each wind turbine blade having a variable pitch angle, the method comprising the steps of:
The invention provides a method for estimating a wind speed at a wind turbine, the wind turbine comprising a rotor carrying a set of wind turbine blades. The wind turbine blades catch the wind, thereby causing the rotor to rotate, i.e. the energy of the wind is transformed into mechanical energy. The rotor is connected to a generator, e.g. via a drive train. Thereby the mechanical energy, in the form of rotational movements of the rotor, is transformed into electrical energy, which may be supplied to a power grid.
The estimated wind speed may advantageously be a wind speed prevailing in front of the rotor of the wind turbine, i.e. the wind speed which is experienced by the wind turbine blades carried by the rotor.
Each of the wind turbine blades has a variable pitch angle. Thus, each of the wind turbine blades can be rotated about a longitudinal axis, in order to adjust an angle of attack between the wind and the wind turbine blade. Accordingly, the wind turbine is of a pitch controlled type.
According to the method of the invention, a rotational speed, ω, of the rotor and a pitch angle, θ, of the wind turbine blades are obtained. This may include measuring the rotational speed and/or the pitch angle. As an alternative, the rotational speed and/or the pitch angle may be obtained from a control unit controlling the wind turbine, the rotor and/or a pitch system of the wind turbine.
Next, a minimum tip speed ratio, λmin, is derived, based on the obtained pitch angle, θ. The minimum tip speed ratio, λmin, is selected in such a manner that it defines a limit between a stable and a potentially unstable control region. In the present context the term ‘stable control region’ should be interpreted to mean a control region in which the wind speed is estimated in a stable manner. For instance, the stable control region could be a region where the wind speed estimation converges. Similarly, in the present context the term ‘potentially unstable control region’ should be interpreted to mean a control region in which the estimation of the wind speed may become unstable. For instance, an unstable control region could be a control region in which the wind speed estimation does not converge. Accordingly, the minimum tip speed ratio, λmin, defines a limit or a boundary in the sense that when the wind turbine is operated at tip speed ratios below the minimum tip speed ratio, λmin, the estimation of the wind speed is unstable, and when the wind turbine is operated at tip speed ratios above the minimum tip speed ratio, λmin, the estimation of the wind speed is stable.
Next, an initial tip speed ratio, λinit, is selected in such a manner that λinit>λmin. Thus, the initial tip speed ratio, λinit, is within the stable region, i.e. if the wind turbine is operated at the initial tip speed ratio, λinit, the estimation of the wind speed is stable.
Then an initial estimated wind speed, vinit, is derived, based on the selected initial tip speed ratio, λinit, and the obtained rotational speed. The tip speed ratio is defined as:
where ω is the rotational speed of the rotor, R is the radius of the rotor, and v is the wind speed. Accordingly, the initial estimated wind speed, vinit, can be derived as:
Finally, an estimated wind speed, vest, is iteratively estimated, based on the obtained rotational speed, ω, and the obtained pitch angle, θ, and using the derived initial estimated wind speed, vinit, as a starting point. Thus, the initial estimated wind speed, vinit, is used as a starting point for an iterative process for estimating the wind speed at the wind turbine. Since the initial estimated wind speed, vinit, corresponds to a tip speed ratio, λinit, which is within the stable control region, it provides a good starting point for the iterative process, which ensures that the iterative process converges fast and reliably. Thus, it is ensured that the wind speed is estimated in a stable manner, such as in a converging manner. This is even true if the actual tip speed ratio is not within the stable control region, e.g. in a stall situation, in case of icing on the wind turbine blades or in case of yaw error, because the initial tip speed ratio, λinit, is still selected in the stable control region in this case.
Thus, the invention provides an iterative method for estimating a wind speed, and it is ensured that an accurate estimate for the wind speed is reached in a fast and reliable manner.
The method may further comprise the step of controlling the wind turbine in accordance with the estimated wind speed, vest. According to this embodiment, the invention further provides a method for controlling a wind turbine.
The step of controlling the wind turbine may, e.g., include controlling the pitch angle of the wind turbine blades, the rotational speed of the rotor, a power output of the wind turbine, etc.
Alternatively or additionally, the estimated wind speed, vest, may be used for other purposes, such as fault detection in the wind turbine.
The step of deriving a minimum tip speed ratio, λmin, may comprise using a minimum tip speed ratio look-up table comprising interrelated values of pitch angle, θ, and minimum tip speed ratio, λmin. According to this embodiment, the minimum tip speed ratio look-up table is provided before operation of the wind turbine is initiated, and during operation the previously tip speed ratio look-up table is consulted whenever this is required in order to derive a minimum tip speed ratio. Using a look-up table is a simple approach, which limits the required processing power for performing the method.
The minimum tip speed ratio look-up table may provide discrete interrelated values of pitch angle, θ, and minimum tip speed ratio, λmin. In this case an interpolation between two discrete values may be performed when the minimum tip speed ratio, λmin, is derived, based on the pitch angle, θ.
The selected initial tip speed ratio, λinit, may exceed the minimum tip speed ratio, λmin, at least by a predefined amount. According to this embodiment, the selected initial tip speed ratio, λinit, is well within the stable control region, thereby representing a very good starting point for the iterative process, ensuring that the wind speed is estimated in a fast and reliable manner.
The method may further comprise the steps of:
According to this embodiment, an estimated tip speed ratio, λest, corresponding to the estimated wind speed, vest, is calculated and compared to the minimum tip speed ratio, λmin. The estimated tip speed ratio, λest, is calculated as:
When the estimated tip speed ratio, λest, decreases below the minimum tip speed ratio, λmin, this is an indication that an unstable control region is entered, and that the estimated wind speed, vest, provided by the method may no longer be reliable. Therefore a flag is set, indicating this to the system and/or to an operator. As a consequence, the wind turbine is no longer controlled in accordance with the estimated wind speed. Instead, the wind turbine is controlled in accordance with an estimated wind speed, which corresponds to the minimum tip speed ratio, λmin, and in accordance with the flag, i.e. bearing in mind that the estimated wind speed, vest, is unreliable.
The method may further comprise the steps of:
According to this embodiment, once the flag, indicating that the estimated wind speed, vest, is unreliable, has been set, the estimated tip speed ratio, λest, is continuously calculated, in the manner described above, and compared to the minimum tip speed ratio, λmin. When the estimated tip speed ratio, λest, increases above the minimum tip speed ratio, this is an indication that a stable control region is once again entered. Accordingly, the estimated wind speed, vest, is once again considered reliable.
As a consequence, the flag is removed, and the wind turbine is once again controlled in accordance with the estimated wind speed, vest.
According to one embodiment, the flag may remain set until the estimated tip speed ratio, λest, has increased above the minimum tip speed ratio, by a predefined amount and/or for a predefined period of time. Thereby it is avoided that the flag is continuously set and removed in the case that the estimated tip speed ratio, λest, is close to the minimum tip speed ratio, λmin.
The step of iteratively deriving an estimated wind speed, vest, may comprise using a cP look-up table comprising interrelated values of rotational speed, ω, wind speed, v, pitch angle, θ, and power coefficient, cP.
According to this embodiment, a power coefficient, cP, is obtained as an intermediate step when estimating the wind speed, vest, by means of the cP look-up table. The power coefficient, cP, derived as an intermediate step in this manner may be used for other purposes than estimating the wind speed and/or controlling the wind turbine. For instance, the power coefficient, cP, may be used for monitoring purposes.
The step of iteratively deriving an estimated wind speed, vest, may comprise estimating a power output, Pest, of the wind turbine, and comparing the estimated power output, Pest, to a measured power output, Pmeas, of the wind turbine. If the estimated power output, Pest, differs from the measured power output, Pmeas, then the estimated wind speed, vest, probably also differs from the actual wind speed. Therefore, the estimated wind speed, vest, is adjusted for the next iteration, if it is determined that the estimated power output, Pest, differs from the measured power output, Pmeas.
There is also provided a wind turbine and a computer program product configured to implement one or more of the features of the method described hereinabove.
All embodiments and features of the invention described herein may be combined in any combination.
The invention will now be described in further detail with reference to the accompanying drawings in which
In the estimating block 1, an estimated power output, Pest, is calculated, based on the supplied parameters, ω, θ and vest. This includes deriving a power coefficient, cP, e.g. by means of a cP look-up table, based on an estimated tip speed ratio, λest, and the pitch angle, θ.
The estimated power output, Pest, is compared to a measured power output, Pmeas, at a comparator 2. This results in an error signal, Perr. If the error signal, Perr, is zero, then Pest=Pmeas, indicating that the estimated wind speed, vest, supplied to the estimator block 1 is equal to or close to the actual wind speed prevailing at the wind turbine.
If the error signal, Perr, is positive, then the measured power output, Pmeas, is larger than the estimated power output, Pest, indicating that the expected power output at the estimated wind speed, vest, is lower than the actual power output. This indicates that the estimated wind speed, vest, is lower than the actual wind speed prevailing at the wind turbine, and the estimated wind speed, vest, should therefore be increased.
Similarly, if the error signal, Perr, is negative, then the measured power output, Pmeas, is smaller than the estimated power output, Pest, indicating that the expected power output at the estimated wind speed, vest, is higher than the actual power output. This indicates that the estimated wind speed, vest, is higher than the actual wind speed prevailing at the wind turbine, and the estimated wind speed, vest, should therefore be decreased.
The adjustments to the estimated wind speed, vest, described above, are performed in the following manner. The error signal, Perr, is multiplied by a gain factor, kest, at multiplier 3, and the resulting signal is supplied to an integrator 4. At the integrator 4 the signal received from the multiplier 3 is integrated, resulting in a new estimated wind speed, vest, which is supplied to the estimating block 1 for the next iteration.
Thus, the estimation process described above is an iterative process. In order to start the iterative process, an initial wind speed, vinit, is supplied to the estimating block 1. The initial wind speed, vinit, is derived in the following manner.
A minimum tip speed ratio, λmin, is derived, based on the measured pitch angle, θ. The minimum tip speed ratio, λmin, defines a limit between a stable and an unstable control region, at the measured pitch angle, θ. Thus, at tip speed ratios above the minimum tip speed ratio, λmin, the wind speed is estimated in a stable manner, and at tip speed ratios below the minimum tip speed ratio, λmin, the wind speed is potentially estimated in an unstable manner.
An initial tip speed ratio, λinit, is selected, in such a manner that λinit>λmin. Accordingly, the selected initial tip speed ratio, λinit, is well within the stable control region. The initial estimated wind speed, vinit, is then derived, based on the measured rotational speed, ω, of the rotor and the selected initial tip speed ratio, λinit. Thus, the initial wind speed, vinit, which is used as a starting point for the iterative process described above, corresponds to the initial tip speed ratio, λinit, and is therefore also well within the stable control region at the measured pitch angle, θ. This ensures that the iterative process converges in a fast and reliable manner, i.e. a reliable estimate for the wind speed is reached fast.
The power output, P, of the wind turbine is given as:
where P is the power output, ρ is the air density, A is an area swept by the rotor, cP(λ,θ) is the power coefficient, depending on the tip speed ratio, λ, and the pitch angle, θ, and v is the wind speed.
It can be assumed that the wind turbine is operated within a stable control region as long as the partial derivative of the power output with respect to the wind speed is positive. The partial derivative of the power output with respect to wind speed is given as:
The partial derivative of the rotor power coefficient is given as:
Inserting this in the equation above regarding the partial derivative of the power output results in:
Hence, the wind turbine is operated within a stable control region if:
This sets a restriction on the gradient of the power coefficient, cP, versus the tip speed ratio, λ. This is illustrated in the graph of
i.e. portions where the wind speed estimation would not converge. These portions are all in a region where the power output is above the rated power output. However, for other pitch angles and/or for other rotors, such regions may occur below rated power, in which case it is necessary to establish the minimum tip speed ratio, in the manner described above, in order to ensure stable wind speed estimation.
At step 7 a minimum tip speed ratio, λmin, is derived, based on the measured pitch angle, θ. The minimum tip speed ratio, λmin, defines a limit between a stable and an unstable control region for the wind speed estimation. The minimum tip speed ratio, λmin, may, e.g., be derived in the manner described above with reference to
Thus, when the wind turbine is operated at tip speed ratios which are above the minimum tip speed ratio, λmin, the wind speed estimation is within a stable control region. When the wind turbine is operated at tip speed ratios which are below the minimum tip speed ratio, λmin, the wind speed estimation is within an unstable control region.
At step 8 an initial tip speed ratio, λinit, is selected in such a manner that λin>λmin. Thus, the initial tip speed ratio, λinit, is selected in such a manner that it is well within the stable control region.
At step 9 an initial estimated wind speed, vinit, is derived, based on the selected initial tip speed ratio, λinit. Thus, the derived initial estimated wind speed, vinit, corresponds to the initial tip speed ratio, λinit, and therefore the initial estimated wind speed, vinit, is also well within the stable control region. Therefore the initial estimated wind speed, vinit, is a good starting point for an iterative process for estimating the wind speed prevailing at the wind turbine.
Accordingly, at step 10, an iterative process is started, in which a new estimated wind speed, vest, is derived, based on the initial estimated wind speed, vinit, the measured rotational speed, ω, and the measured pitch angle, θ.
At step 11 the rotational speed, ω, and the pitch angle, θ, are measured, and at step 12 the wind turbine is operated in accordance with the estimated wind speed, vest, the measured rotational speed, ω, and the measured pitch angle, θ. Then the process is returned to step 10, where a new estimated wind speed, vest, is derived, based on the previous estimated wind speed, vest, the measured rotational speed, ω, and the measured pitch angle, θ. Accordingly, an iterative process is performed in order to obtain an estimated wind speed, vest, which is close to the actual wind speed prevailing at the wind turbine.
Since the initial estimated wind speed, vinit, which is used as a starting point for the iterative process, is selected in such a manner that it is well within the stable control region, it is ensured that the iterative process converges fast and reliably. Thus, a reliable estimate for the wind speed is reached fast.
While embodiments of the invention have been shown and described, it will be understood that such embodiments are described by way of example only. Numerous variations, changes and substitutions will occur to those skilled in the art without departing from the scope of the present invention as defined by the appended claims. Accordingly, it is intended that the following claims cover all such variations or equivalents as fall within the spirit and the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2014 70724 | Nov 2014 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DK2015/050353 | 11/20/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/078668 | 5/26/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5155375 | Holley | Oct 1992 | A |
8803352 | Koerber et al. | Aug 2014 | B1 |
20100133817 | Kinzie et al. | Jun 2010 | A1 |
20110084485 | Miranda et al. | Apr 2011 | A1 |
20120078518 | Krishna | Mar 2012 | A1 |
20130140819 | Abdallah et al. | Jun 2013 | A1 |
20130302161 | Koerber | Nov 2013 | A1 |
20150354535 | Pineda Amo | Dec 2015 | A1 |
20160084233 | Evans | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
102562446 | Jul 2012 | CN |
102619685 | Aug 2012 | CN |
103244350 | Aug 2013 | CN |
2014199055 | Oct 2014 | JP |
2009153614 | Dec 2009 | WO |
2014111504 | Jul 2014 | WO |
2014111522 | Jul 2014 | WO |
Entry |
---|
Chinese Office Action for Application No. 201580063374.0 dated Jul. 16, 2018. |
Danish Search Report for PA 2014 70724, dated Jun. 17, 2015. |
International Search Report for PCT/DK2015/050353, dated Feb. 18, 2016. |
Number | Date | Country | |
---|---|---|---|
20170314533 A1 | Nov 2017 | US |