The present invention relates to a method for estimating collision between at least one piece of space debris and a satellite in orbit around the Earth. More particularly, the present invention relates to a method allowing a satellite in Earth orbit to be able to autonomously calculate, on board the satellite, its probability of collision with at least one piece of space debris as well as manoeuvres of avoiding the at least one piece of space debris.
The current context is marked by an increase in mega-constellation projects, where up to 1000 satellites can be operated. In addition, the number of pieces of tracked debris is likely to increase sharply: the population of pieces of tracked debris will increase from 20 000 to 100 000 objects when the radar surface of the detected pieces of debris increases from 10 to 5 cm. These two phenomena will lead to a higher number of calculations of the probability of collision with the pieces of debris and therefore also of calculations of manoeuvres to avoid pieces of debris, thus increasing the workload of the operators on the ground.
It is known to evaluate a probability P1 of collision between a satellite and a piece of space debris in several ways according to the thesis presented and defended on December ten, two thousand and fifteen by Romain Serra, entitled “Proximity operations in orbit: evaluation of the risk of collision and calculation of optimal manoeuvres for avoidance and rendezvous”, said thesis being publicly accessible in particular via the website “archives-ouvertes.fr” under the reference tel-01261497. Document US2008/0033648 which describes a method for determining an avoidance manoeuvre is known. However, this method requires significant calculation power, which limits its effectiveness.
The present invention aims at overcoming these disadvantages with a totally innovative approach.
The object of the present invention is a method for estimating collision between a satellite in orbit around the Earth and at least one piece of space debris, the method including the steps implemented by information processing means on the ground, of:
According to one feature, the method according to the invention further includes a step implemented by the calculation means on board the satellite preceding the step of calculating the first probability of collision, of:
determining the time of closest approach corresponding to a real time of closest approach, by successively incrementing, from a reference time of closest approach predetermined by the information processing means on the ground and transmitted beforehand to the satellite, a time shift verifying, at the real time of closest approach, a result which is almost zero of the scalar product of a difference between a true orbital position of the satellite and an orbital position of the piece of space debris with a difference between a true orbital speed of the satellite and an orbital speed of the piece of space debris, the orbital position and the orbital speed of the satellite and respectively of the piece of space debris being obtained from the orbit of the satellite and respectively of the piece of space debris.
According to another feature of the invention, the step of calculating the first probability of collision, implemented by calculation means on board the satellite, comprises maximising the first probability of collision by dilution of covariances of the orbital positions of the satellite and said piece of space debris.
According to another feature, the method according to the invention further comprises the steps implemented by calculation means on board the satellite, when the first collision probability is greater than a predefined collision probability threshold:
determining a first manoeuvre to avoid said piece of space debris at a time of the first avoidance manoeuvre predetermined according to a first thrust of the satellite optimising the radial separation from the true orbit of the satellite;
correcting the true orbital position of the satellite at the time of the first avoidance manoeuvre according to a first orbital correction dependent on the thrust vector of the satellite relating to the first avoidance manoeuvre;
propagating a second corrected true orbit of the satellite from the corrected true orbital position and its covariance up to the time of closest approach according to said state transition matrix and the reference orbit of the satellite;
calculating a second probability of collision between the satellite and said piece of space debris at the time of closest approach according to the second true orbit of the satellite.
According to another feature, the method according to the invention in addition comprises the steps implemented by calculation means on board the satellite, when the second probability of collision is greater than the predefined collision probability threshold, of:
determining a second manoeuvre to avoid said piece of space debris at a second time of avoidance manoeuvre predetermined according to a second thrust of the satellite optimising the radial separation from the second true orbit of the satellite;
correcting the orbital position of the satellite on the second true orbit, at the time of the second avoidance manoeuvre according to a second orbital correction dependent on the thrust vector of the satellite relating to the second avoidance manoeuvre;
propagating a third corrected true orbit of the satellite from the corrected orbital position of the satellite in the previous step and its covariance up to the time of closest approach according to said state transition matrix and the reference orbit of the satellite;
calculating a third probability of collision between the satellite and said piece of space debris at the time of closest approach according to the third true orbit of the satellite.
According to another feature of the invention, the time of the avoidance manoeuvres takes place according to an argument of the latitude of manoeuvre opposed to the argument of the latitude of collision with the piece of space debris.
According to another feature of the invention, the time of the avoidance manoeuvres is determined according to the steps of:
determining a plurality of free manoeuvre time slots each allowing the execution of a manoeuvre to avoid said piece of space debris;
allocating to each avoidance manoeuvre a manoeuvre time during a determined free time slot of a manoeuvre distinct from another free time slot of another avoidance manoeuvre.
According to another feature of the invention, the allocation step comprises the steps of:
determining the maximum possible radial separation between the satellite and the piece of space debris at the time of closest approach on each of the determined free manoeuvre slots;
classifying the free time slots according to a rating representative of the radial separation determined for each free manoeuvre slot;
the allocation step including the allocation to each avoidance manoeuvre, of the free time slot of a manoeuvre with the best determined rating distinct from the free time slot of another avoidance manoeuvre.
According to another feature of the invention, each avoidance manoeuvre includes the direction relating to the maximum radial separation associated with the free manoeuvre time slot allocated to each avoidance manoeuvre.
According to another feature of the invention, each avoidance manoeuvre includes a maximum authorised speed difference during the free manoeuvre time slot allocated to each avoidance manoeuvre.
According to another feature of the invention, orbital correction relating to each avoidance manoeuvre is determined according to the steps of:
propagating the true orbit of the satellite up to the time of the avoidance manoeuvre so as to obtain an orbital position before the manoeuvre;
evaluating the effect of the manoeuvre applied to the orbit before the manoeuvre at the time of the avoidance manoeuvre so as to determine the true orbit after the avoidance manoeuvre at the time of the avoidance manoeuvre;
propagating the orbit before the manoeuvre up to the time of closest approach so as to obtain an orbital position of the true orbit without avoidance manoeuvre at the time of closest approach;
propagating the orbital position after the manoeuvre up to the time of closest approach so as to obtain an orbital position of the true orbit with avoidance manoeuvre at the time of closest approach;
determining the orbital position difference at the time of closest approach according to the effect of the manoeuvre, according to the orbital position of the true orbit without avoidance manoeuvre at the time of closest approach and according to the orbital position of the true orbit with avoidance manoeuvre at the time of closest approach.
Another object of the invention relates to a system for estimating collision between a satellite in orbit around the Earth and at least one piece of space debris, the system comprising:
means for processing information on the ground configured for:
Another object of the invention relates to a computer program product comprising a first set of instructions which, when the program is executed by a first computer, lead the latter to implement the steps by processing means on the ground, of the method according to the invention and comprising a second set of instructions which, when the program is executed by a second computer, lead the latter to implement the steps by calculation means on board the satellite of the method according to the invention.
Another object of the invention relates to an information storage medium storing a computer program comprising a first set of instructions for implementing, by a first processor, the ground steps of the method according to the invention, when said program is read and executed by said first processor and comprising a second set of instructions for implementing, by a second processor, the steps on board the satellite of the method according to the invention, when said program is read and executed by said first processor.
A first advantage of the invention is to allow taking into account the orbit measured in real time by a navigation device of the satellite for the estimation of the risk of collision.
Another advantage is to simplify all the calculations that can thus be performed by calculation means on board the satellite.
Another advantage is that the calculation means on board the satellite can autonomously anticipate a correction of its trajectory. Several corrections can be anticipated by the calculation means on board the satellite. Corrections can also be made by the calculation means on board the satellite for one or more pieces of debris.
An advantage is also that the calculation means on board the satellite for the implementation of the invention are limited compared to the processing means on the ground, but allow increased precision in the estimation of the risk of collision and in anticipation of evasive manoeuvres.
Another advantage is that the collision risk estimates, as well as the calculations of possible avoidance manoeuvres can be ordered as close as possible to the time of closest approach. Indeed, it is not necessary, via a ground loop, to transmit the manoeuvre plan on board the satellite when it is visible by the ground station. This allows on the one hand to further improve the precision and on the other hand to avoid the implementation of unnecessary avoidance manoeuvres. Indeed, the passage via the ground loop requires calculations to be made further in advance, which increases the uncertainties and generally results in avoidance manoeuvres which were not necessarily required.
Other advantages, purposes and features of the present invention emerge from the description which follows given, for the purpose of explanation and in a non-limiting manner, with reference to the appended drawings, wherein:
According to
According to
The piece of space debris d1 has its own orbit Xd1 corresponding to its own orbital trajectory. The satellite control centre 18 on the ground collaborates in particular with agencies for monitoring the pieces of space debris such as, for example, the American organisation CSOC (Combined Space Operations Centre), or the international organisation SDA (The Space Data Association). From the data representative of the orbit of the piece of space debris Xd1 and its covariance COVd1, as well as from the reference orbit Xref of the satellite 10 and its covariance COVsat, the control centre on the ground is able to determine a reference time of closest approach TCAref of the piece of space debris with the satellite 10. The reference time of closest approach TCAref corresponds to the time on which the distance between the mean reference orbital position and the mean orbital position of the piece of debris is the smallest.
It should be noted, according to
The satellite 10 is configured to estimate a probability of collision P1 between the piece of space debris d1 and the satellite 10 at a time of closest approach TCA according to its true orbit. The satellite is thus able to calculate the probability of collision at the real time of closest approach TCAreal as it could also do so at the reference time of closest approach TCAref. In this respect, the satellite 10 comprises calculation means which can, for example and in a non-limiting manner, comprise a microcontroller. In order to estimate a probability of collision P1 between the piece of space debris d1 and the satellite 10 at a time of closest approach TCA, it is necessary to know the orbit of the satellite 10 and its covariance COVsat at this time of closest approach TCA, as well as the orbital position of the piece of space debris d1 and its covariance COVd1 at this time of closest approach TCA. For this purpose, it is necessary to determine, a data ephemeris allowing to propagate a state difference, also called ephemeris of state transition data or state transition matrix, allowing a propagation of the true orbit Xreal(t) of the satellite and its covariance Coy on this reference time of closest approach TCA.
More particularly, the true orbit of the satellite can be propagated using a state transition matrix φ. At least one state transition matrix φ is determined by the control centre 18 of the satellites. The state transition matrix φ allows for example a propagation, at the reference time of closest approach TCAref, of the true orbit Xreal of the satellite and of its covariance Covsat measured at an instant to.
To this end, with the aim of making the satellite 10 autonomous in terms of its ability to more accurately estimate a probability of collision with a piece of space debris d1, it is possible to calculate, by the information processing means on the ground, the state transition matrix φ and communicate this state transition matrix φ (t0-<TCAref) to the satellite 10. The satellite 10 will thus be able to determine its orbit at to then its orbit at the reference time of closest approach TCAref. The propagation of the difference in orbit between the true orbit Xreal of the satellite 10 and the reference orbit Xref of the satellite 10 is determined by the calculation means on board the satellite. It will be noted that the propagation over time of the true orbit Xreal of the satellite 10 can be calculated according to the following equation:
X
real(t)=Xref(t)+ΔX(t) (1)
or again, considering the state transition matrix φ:
X
real(t)=Xref(t)+φ(t0→t)ΔX(t0) (2)
Equation (2) is for example used to determine the true orbit Xreal at the reference time of closest approach TCAref, with a state transition matrix φ (t0->TCAref) previously provided by the control centre on the ground. Several state transition matrices between two instants of interest, corresponding for example to considered predictable avoidance manoeuvres, can be provided to the satellite. The satellite 10 can also receive from the satellite control centre 18 information including in particular the orbit and the covariance related to the piece of space debris d1, the reference time of closest approach TCAref and the reference orbit Xref of the satellite 10 in at least two instants of interest corresponding to the instant of triggering the probability calculation and to the reference time of closest approach.
The satellite orbit corresponds to a set of six-dimensional elements. An example of an orbit will be detailed later.
In order to limit the volume of data that the calculation means of the satellite 10 will have to process, the data transmitted by the control centre 18 of the satellites allowing the on-board calculation means to calculate the probability of collision P1 with the piece of space debris d1 can be limited to:
at least one activation time tcur for calculating the collision probability P1;
at least one state transition matrix φ between the activation time tcur and the reference time of closest approach TCAref;
the reference orbit of the satellite at least at the activation time tcur and at the reference time of closest approach TCAref;
the orbit of the piece of space debris d1 and its covariance at least at the reference time of closest approach TCAref.
To this end, the reference orbit Xref can be determined in particular from the control centre 18 of the satellites using a complex model from the orbital parameters, also including the upper harmonics of the gravitational potential of the Earth. The state transition matrix φ can be calculated from a limited development around the reference orbit of the satellite and will be sent to the satellite together with the information relating to the orbit of the piece of space debris and its covariance. The propagation used during the calculation using the state transition matrix φ can thus take into account complex models necessary for high precision. An advantage of calculating the state transition matrix φ from the control centre 18 of the satellites is in particular to be able to take advantage of a much greater calculation power than that which can be on board the satellite 10.
The propagation of the reference orbit Xref of the satellite 10 can be determined, by information processing means on the ground, according to a free drift propagation of the reference orbit Xref of the satellite 10, that is to say without manoeuvre of the satellite 10, from the activation time tcur until the reference time of closest approach TCAref. In this respect, the information processing means on the ground determine the reference orbit Xref of the satellite 10 and the state transition matrix φ(tcur→TCAref) between the activation time and the reference time of closest approach.
More particularly, it involves reconstructing the reference orbit Xref at the activation time tcur and propagating this reference orbit Xref(tcur) at the reference time of closest approach TCAref. This allows to have:
the reference orbit Xref(tcur) at the activation time tcur;
the reference orbit Xref(TCAref) propagated at the reference time of closest approach TCAref;
the state transition matrix φ(tcur→TCAref) between the activation time tcur and the reference time of closest approach TCAref.
According to
X
real(TCAref)=Xref(TCAref)+ΔX(TCAref) (3)
In this respect, the satellite 10, knowing its true orbit Xreal(tcur) at the activation time tcur thanks in particular to its navigation device, is capable of calculating the orbital difference ΔX(tcur) between its true orbit Xreal(tcur) at the activation time tcur and the reference orbit of the satellite Xref(tcur) at the activation time tcur, according to the following equation:
ΔX(tcur)=Xreal(tcur)−Xref(tcur) (4)
Knowing the state transition matrix φ(tcur→TCAref) between the activation time and the reference time of closest approach, from the equation (4), the equation (3) can also be written:
X
real(TCAref)=Xref(TCAref)+φ(tcur→TCAref)×ΔX(tcur) (5)
The state transition matrix φ(tcur→TCAref) between the activation time and the time of closest approach is applied to the orbital difference, determined at the activation time, to deduce therefrom an orbital difference at the time of closest approach.
The calculation means on board the satellite 10 also allow to calculate the covariance COVsat(TCAref) of the satellite 10 at the time of closest approach TCAref knowing the covariance COVsat(tcur) of the orbit of the satellite 10 at the activation time tcur, according to the following equation:
COVsat(TCAref)=φ(tcur→TCAref)×COVsat(tcur)×φ(tcur→TCAref)t (6)
In the example of
X
real(TCAref)=Xref(TCAref)+ΔX(TCAref)+ΔXman(TCAref) (7)
The orbital difference ΔXman(TCAref) due to the manoeuvre represents the effect of the manoeuvre at the reference time of closest approach TCAref. In the event that in particular the state transition matrices taking into account the manoeuvre time are not provided, the determination of the orbital difference ΔXman(TCAref), also called orbital correction, at the reference time of closest approach TCAref, can be carried out according to the following steps:
propagating the true orbit Xreal from the activation time tcur until the manoeuvre time tman for which a secular effect J2 is added so as to obtain an orbit Xreal_b(tman) before the manoeuvre;
evaluating the effect of the manoeuvre ΔXman(tman) according to the Gauss equation applied to the orbit Xreal_b(tman) before the manoeuvre, so that
ΔX(tman)=G(Xreal_b(tman)){right arrow over (ΔV)}
where G is a matrix relating to the thrust of the manoeuvre, determined from Gauss equations
where {right arrow over (ΔV)} represents the speed variation of the manoeuvre in the local orbital frame of the satellite TNW (T vector according to the current speed {right arrow over (V)}, W vector according to the normal to the orbit that is to say to the vector product {right arrow over (P)}×{right arrow over (V)} where {right arrow over (P)} is the position of the satellite,
and where N completes the orthogonal coordinate system;
evaluating the true orbit Xreal_a(tman) after manoeuvre according to the following equation:
X
real_a(tman)=Xreal_b(tman)+ΔXman(tman) (8)
propagating the effect of the manoeuvre ΔXman(tman) on the argument of the latitude of the satellite 10 and the right ascension of the ascending node of the orbital plane of the satellite 10. To this end, two propagations with a secular effect ‘J2’ are determined, that is to say a first propagation of the true orbit after a manoeuvre Xreal a from the manoeuvre time tman until the reference time of closest approach TCAref, and a second propagation of the true orbit before a manoeuvre Xreal_b from the manoeuvre time tman until the reference time of closest approach TCAref. To this end, two orbits are obtained. A first orbit Xreal_a(TCAref) of the satellite 10 taking into account the effect of the manoeuvre and a second orbital position Xreal_b(TCAref) of the satellite 10 not taking into account the effect of the manoeuvre;
determining the orbital position difference ΔXman(TCAref) according to the following equation:
ΔXman(TCAref)=ΔXman(tman)+Xreal_a(TCAref)−Xreal_b(TCAref) (9)
The advantage of formulating the orbital position difference ΔXman(TCAref) according to equation (9) is that the effects of the manoeuvre are separated with the time-integrated effects on the true orbit at the reference time of closest approach TCAref with manoeuvre Xreal_a(TCAref) and without manoeuvre Xreal_b(TCAref). The direct effect of a manoeuvre concerns the parameters of the orbit of the satellite 10, namely: the semi-major axis ‘a’, the eccentricity vector [ex, ey], the inclination ‘I’, and sometimes the right ascension ‘Ω’ of the ascending node of the orbital plane of the satellite 10. The time-integrated effect only concerns the right ascension ‘Ω’ of the ascending node of the orbital plane of the satellite 10 and the latitude argument ‘α’ of the satellite 10. This means that the secular effect ‘J2’ can only be considered for the propagation of these two parameters. The propagation with the secular effect ‘J2’ can be described according to the following formulations:
According to an initial time t0 and a final time t1 of propagation, that is to say from an initial orbital position X(t0)=[a0, ex0, ey0, i0, Ω0, α0], the final orbital position X(t1)=[a1, ex1, ey1, i1, Ω1, α1] is evaluated according to the following equations:
for which,
are the angular rates corresponding respectively to the right ascension ‘Ω’ of the ascending node of the orbital plane of the satellite 10 and the argument of the latitude ‘α’ of the satellite 10, including the secular effect
It is also advantageous to calculate the probability of collision P1 of the satellite 10 according to its true orbit Xreal with the piece of space debris d1, at a real time of closest approach TCAreal. To this end, in order to optimise the calculation of the probability P1 of collision, the calculation means of the satellite 10 are configured to determine the real time of closest approach TCAreal taking into account the true orbit Xreal of the satellite 10.
To this end, according to
{right arrow over (ΔX)}real·ΔV≈0 (16)
according to which ΔXreal represents the orbital position difference between the satellite 10 and the piece of space debris d1 at the real time of closest approach TCAreal, e represents the orbital position difference between the satellite 10 and the piece of space debris d1 at the real time of closest approach TCAreal, and ΔV represents the difference in orbital speed between the satellite 10 and the piece of space debris d1 at the real time of closest approach TCAreal.
In order to determine the real time of closest approach TCAreal satisfying the equation (16), the calculation means of the satellite 10 are configured to determine the time shift ΔTCA between two real times of closest approach TCAreal calculated successively. The first time shift ΔTCA corresponds to the difference between the reference time of closest approach TCAref and the first estimate of TCAreal. An iteration is then carried out by calculating a new real time of closest approach, until obtaining a time shift ΔTCA less than a predetermined threshold, such as for example less than one microsecond. The iteration is carried out by replacing each time the value of the time of closest approach TCAreal_N−1 by a new time of closest approach TCAreal_N such that: TCAreal_N=TCAreal_N−1+ΔTCAN until the time shift ΔTCA is less than one microsecond.
The time shift ΔTCA can be calculated according to the following equation:
according to which ΔXreal(TCAreal_N−1) represents the difference between the true orbital position of the satellite 10 and the orbital position of the piece of space debris d1 at the time of closest approach, according to the iteration considered at the time of closest approach, and KV(TCAreal_N−1) represents the difference in orbital speed between the speed of the satellite 10 and the speed of the piece of space debris d1 at the time of closest approach, according to the iteration considered at the time of closest approach. When the iteration is finished, we have the real time of closest approach TCAreal which corresponds to the new time of closest approach having allowed to determine a time shift ΔTCA less than a predetermined threshold, for example of one microsecond.
The satellite 10 can advantageously determine its true orbit and the orbit of the piece of debris d1, as well as their covariance associated with the reference time of closest approach TCAref or with the real time of closest approach TCAreal. For this purpose, the calculation means of the satellite 10 have allowed to determine, as described previously, in particular according to a state transition matrix φ, the orbits and the associated covariances of the pieces of space debris d1 and of the satellite 10 at the reference time of closest approach TCAref. The calculation means of the satellite 10 also allow to calculate the true orbit Xreal of the satellite 10 and the orbit Xd1 of the piece of space debris d1 at the real time of closest approach TCAreal, by simplified propagation, that is to say only Keplerian. The calculation means of the satellite 10 allow to propagate the true orbit Xreal of the satellite 10 and the orbit of the piece of space debris d1 from the reference time of closest approach TCAref until the real time of closest approach TCAreal. The calculation means of the satellite 10 are configured to calculate the probability of collision P1 between the satellite 10 on its true orbital trajectory Xreal and the piece of space debris d1.
According to
The projected covariance COVpdr of the relative distance can be expressed in any basis B according to the diagonal matrix:
According to which σx and σy represent the positron dispersions. A set Cr(x,y) is defined as a set of points x, y in the circle of cumulative radius Rcu representative of the sum of the radius Rio of the modelled satellite 10 and of the radius Rai of the modelled piece of space debris d1. For this purpose, the set Cr(x,y) of points x,y meets the criterion according to which:
x
2
+y
2
<R
2
cu (19)
The collision probability P1 corresponds to the probability for which the difference in distance between the satellite 10 and the piece of space debris d1 may be less than the cumulative radius Rcu. The probability of collision P1 can therefore be calculated by integrating the probability density function of the difference in distance on the circle of cumulated radius Rcu. With density laws taken with a normal distribution, with average values z and y corresponding to the coordinates of the relative distance projected in the plane of the orbit of the satellite 10, and dispersions dx and as, the probability P1 of collision can be written in the following numerical form:
It is advantageous to minimise the calculation power of the calculation means on board the satellite as much as possible. To this end, it is preferable for the calculation means on board the satellite to evaluate the probability of collision P1 according to a semi-analytical, or even preferably analytical, expression.
It will be noted in particular that the probability of collision P1 between the satellite 10 and the piece of space debris d1 can be evaluated according to the following semi-analytical equation:
This expression allows faster evaluation than the numerical formulation because it requires a single integration and the evaluation of an error function erf.
It will also be noted, preferably, that the probability of collision P1 between the satellite 10 and the piece of space debris d1 can also be evaluated according to the analytical equation in the form of a convergent series with positive terms, according to the following formulation:
The analytical formulation allows the best speed of calculation of the probability of collision P1 between the satellite 10 and the piece of space debris d1.
It should be noted that the determination of the true orbit Xreal of the satellite 10 and of the orbit Xd1 of the piece of space debris d1 induces an uncertainty on the estimated covariances COVsat, COVd1 related to the determined orbits. Preferably, in order to take into account such an uncertainty in the calculation of the probability of collision P1 between the satellite 10 and the piece of space debris d1, it is possible to maximise the probability of collision P1 by shifting both the covariance COVsat of the true orbit Xreal of the satellite and the covariance COVd1 of the orbit Xd1 of the piece of space debris d1. The technique used to shift both the covariance COVsat of the true orbit Xreal of the satellite and the covariance COVd1 of the orbit Xd1 of the piece of space debris d1 is a technique called covariance dilution technique. For this purpose, preferably, a coefficient Ksat linked to the covariance COVsat of the satellite 10 and a coefficient Kai linked to the covariance COVd1 of the piece of space debris d1 are added relative to the calculation of the probability P1 of collision. The determination of the coefficients linked to the covariances comprises the determination of the pair (Ks, Kd) of coefficients which maximise the probability P1 of collision, in particular requiring knowledge of the cumulative covariance COVdr determined according to the following equation:
COVdr=Ks×COVsat+Kd×COVd1 (23)
Such an optimum can, for example and in a non-limiting manner, be determined according to a gradient method referred to as the golden ratio method. For example and in a non-limiting manner, the pair (Ks, Kd) of coefficients where each coefficient is comprised in an interval ranging from 0.2 to 5.
The method for estimating the collision between the piece of space debris d1 and the satellite 10 in orbit around the Earth 12 comprises estimating the probability of collision P1 for which the collision could occur at the considered time of closest approach TCA, that is to say either the reference time of closest approach TCAref or the real time of closest approach TCAreal.
As represented according to the example of
According to
For this purpose, according to a first step M1, preferably, a first avoidance manoeuvre ΔV·{right arrow over (d)}_1 must be determined by the calculation means on board the satellite 10. For this purpose, the calculation means are configured to estimate the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 allowing the radial separation between the satellite 10 and the piece of space debris d1 at the considered time of closest approach TCA. This first avoidance manoeuvre ΔV·{right arrow over (d)}_1 must preferably be executed for an orbital position of the satellite 10 opposite to that which the satellite 10 will have at the considered time of closest approach TCA in order to maximise the radial separation between the satellite 10 and the piece of space debris at the considered time of closest approach TCA.
This first avoidance manoeuvre ΔV·{right arrow over (d)}_1 must also be sufficiently distant in time so that it can be executed before the probable collision. The orbital position of the satellite 10 for which the execution of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 could be effective, could be chosen, for example and in a non-limiting manner, at an orbital position of the satellite 10 corresponding to an argument of the latitude αman1 of a first avoidance manoeuvre ΔV·{right arrow over (d)}_1 according to the following equation:
αman1=αcol−π (24)
Following this first avoidance manoeuvre ΔV·{right arrow over (d)}_1 the calculation means on board the satellite 10 are configured to estimate a new trajectory of the true orbit Xreal of the satellite 10 as explained according to
To this end, according to a second step M2, preferably, a second avoidance manoeuvre ΔV·{right arrow over (d)}_2 is determined by the calculation means on board the satellite 10. In order to maximise the radial separation between the satellite 10 and the piece of space debris d1 at the considered time of closest approach TCA, the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 must preferably be executed according to an orbital position of the satellite 10 during an orbit before the first avoidance manoeuvre ΔV·{right arrow over (d)}_1. More specifically, the orbital position of the satellite 10 for which the execution of the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 could be effective, could be chosen, for example and in a non-limiting manner, at an orbital position of the satellite 10 corresponding to an argument of the latitude αman2 of a first avoidance manoeuvre ΔV·{right arrow over (d)}_2 according to the following equation:
αman2=αcol−3π (25)
Following this second avoidance manoeuvre ΔV·{right arrow over (d)}_2 the calculation means on board the satellite 10 are configured to estimate a new orbital trajectory of the satellite 10 as explained according to
In general, depending on the value of the probability of collision P1 after the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 the calculation means on board the satellite 10 can either evaluate other avoidance manoeuvres in addition to the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 and the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 according to the same principle as that explained for the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 and for the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 or consider that the accumulation of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 and the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 is sufficient to limit the risk of collision between the satellite 10 and the piece of space debris d1.
According to the invention, an avoidance manoeuvre ΔV·{right arrow over (d)} can comprise a maximum variation ΔVmax of speed which can be linked, for example and in a non-limiting manner, to the maximum energy consumption available from the propulsion device of the satellite 10 authorised for an avoidance manoeuvre ΔV·{right arrow over (d)}. A minimum variation ΔVmin of the speed of the satellite 10 is for example defined. This minimum variation is linked to the minimum thrust energy necessary for the satellite 10 to perform a change of orbit of the satellite 10.
As represented in
According to the example of
In the event that the first avoidance manoeuvre ΔV·{right arrow over (d)}_11 and the second avoidance manoeuvre ΔV·{right arrow over (d)}_21 generate a risk of collision with a second piece of space debris d2, this must be avoided. According to the same principle as that exposed in
According to
To this end, one solution consists in shifting the avoidance manoeuvres ΔV·{right arrow over (d)} associated with a piece of debris by as much orbit as necessary until there is no longer any overlap between the avoidance manoeuvres ΔV·{right arrow over (d)} provided for the avoidance of the first piece of space debris d1 with the manoeuvres ΔV·{right arrow over (d)} of avoiding the second piece of space debris d2. According to the example of
According to
According to the example of
Five lines represent five successive stages M0, M1, M2, M3, MF of determining free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 and avoidance manoeuvres ΔV·{right arrow over (d)} allowing to reduce the probability of collision P1 of the satellite 10 with the piece of space debris d1. More particularly, the first line represents a preliminary step M0 of determining the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 allowing the execution of manoeuvres ΔV·{right arrow over (d)} of avoiding and classifying the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 determined according to a rating representative of the maximum possible radial separation on each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 between the satellite 10 and the piece of debris d1 at the considered time of closest approach TCA. The second line, the third line and the fourth line respectively represent a first step M1 of determining a first avoidance manoeuvre ΔV·{right arrow over (d)}_1 a second step M2 of determining a second avoidance manoeuvre ΔV·{right arrow over (d)}_2 and a third step M3 of determining a third avoidance manoeuvre ΔV·{right arrow over (d)}_3 the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 being determined on the free manoeuvre slot Sl3 having obtained the best rating, the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 being determined on the free manoeuvre slot Sl5 having obtained the second best rating, the third avoidance manoeuvre ΔV·{right arrow over (d)}_3 being determined on the free manoeuvre slot Sl2 having obtained the third best rating. The fifth line represents a final step MF according to which the third avoidance manoeuvre ΔV·{right arrow over (d)}_3 is optimised so as, for example, to limit the energy necessary for this third avoidance manoeuvre ΔV·{right arrow over (d)}_3 allowing to obtain for example a collision probability P1 equal or even closest to the predefined threshold of probability Pth of collision.
The preliminary step M0 consists in determining the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 allowing the execution of avoidance manoeuvres ΔV·{right arrow over (d)} according to a duration of manoeuvre, a minimum time and a maximum time of avoidance manoeuvre ΔV·{right arrow over (d)}, which are defined as follows: the minimum time corresponds to the time on which manoeuvres can really begin. In general, said minimum time corresponds to the time of activation of the calculation of the manoeuvre to which a margin can be added corresponding, for example, to the minimum duration of preheating the nozzles of the thrust systems of the satellite 10.
The maximum time is the considered time of closest approach TCA, only the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 which last longer than a minimum duration thus allowing a minimum thrust necessary for the change of orbit of the satellite 10 are kept such as, for example and in a non-limiting manner, a predefined minimum duration of five minutes.
The duration separating two consecutive free manoeuvre slots Sl1, Sl2 can also be taken into account during the determination of a plurality of avoidance manoeuvres ΔV·{right arrow over (d)}, a minimum duration between two avoidance manoeuvres ΔV·{right arrow over (d)}, that is to say between two thrusts that may be necessary. Consequently, only the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 which allow a minimum duration between the thrusts already provided are kept, such as for example and in a non-limiting manner, a predefined duration of twenty minutes.
In a non-limiting manner, when an avoidance manoeuvre ΔV·{right arrow over (d)} is determined on a free slot Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 and another free adjacent slot Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 is spaced by a duration less than the minimum duration previously defined, it is possible to trim it. Thus only the duration over a part of this other free slot Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 is taken into account, keeping only the part where an avoidance manoeuvre can be placed by avoiding the part which would not meet the minimum duration constraint. In this particular case, it will be necessary to re-evaluate the rating of said other trimmed free manoeuvre slot Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 in so far as its duration has changed.
Preferably, the preliminary step M0 also consists of classifying the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 according to a rating representative of the maximum possible radial separation on each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 between the satellite 10 and the piece of space debris d1 at the considered time of closest approach TCA. For this purpose, as mentioned above, the purpose of an avoidance manoeuvre ΔV·{right arrow over (d)} is to create a radial separation at the considered time of closest approach TCA. Consequently, the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 which allow maximum radial separation must be used as a priority. This is why it is essential to calculate the radial separation Δr at the considered time of closest approach TCA associated with each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6.
The determination of the radial separation Δr at the considered time of closest approach TCA associated with each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 firstly includes a step of determining the maximum duration d_max_sl of the avoidance manoeuvre ΔV·{right arrow over (d)} relating to each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6. The maximum duration d_max_sl of the avoidance manoeuvre ΔV·{right arrow over (d)} is for example the duration of the considered free manoeuvre slot if said duration is less than the maximum authorised duration d_max_aut of manoeuvre ΔV·{right arrow over (d)} which can be linked for example and in non-limiting manner to the maximum available energy consumption of the propulsion device of the satellite 10 authorised for an avoidance manoeuvre ΔV·{right arrow over (d)}. According to another example, the maximum duration d_max_sl of the avoidance manoeuvre ΔV·{right arrow over (d)} is the maximum duration d_max_aut of manoeuvre ΔV·{right arrow over (d)} authorised when the duration of the free manoeuvre slot is greater than said maximum duration of manoeuvre ΔV·{right arrow over (d)}.
The determination of the radial separation Δr at the considered time of closest approach TCA associated with each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 also includes a calculation of the speed difference ΔV of the avoidance manoeuvre ΔV·{right arrow over (d)} desired on each free manoeuvre slot Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 according to the thrust PS desired to be applied to the satellite 10, the mass m of the satellite 10, and the maximum duration d_max_sl of the avoidance manoeuvre ΔV·{right arrow over (d)} determined above, using the following equation:
ΔV=(PS/M)×d_max_sl (26)
Determining the maximum radial separation Δr for each of the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 amounts to finding a direction of thrust {right arrow over (d)} in the plane of the orbit, that is to say to determining the azimuth az, that is to say the angle between the speed V of the satellite and the direction of thrust {right arrow over (d)} relating to the avoidance manoeuvre ΔV·{right arrow over (d)} which maximises the radial separation Δr. There are two optimal attitudes, or azimuth az, to maximise the radial separation Δr: an azimuth (az) which increases the semi-major axis ‘a’ of the orbit of the satellite 10, that is to say a radial separation called positive radial separation and an azimuth (az+π) which decreases the semi-major axis ‘a’ of the orbit of the satellite 10, that is to say a radial separation called negative radial separation. This radial separation Or can be given by the following equation:
according to which, ‘r’ represents the radial position of the satellite, ‘a’ the semi-major axis of the orbit of the satellite, ‘ex’ and ‘ey’, orbital elements in a representation called circular representation, Vr the radial component of the increment of the speed of manoeuvre ΔV·{right arrow over (d)}, Vt the tangential component of the increment of the speed of manoeuvre ΔV·{right arrow over (d)}.
Consequently, the extremes of this function of the azimuth az can be found by finding the two solutions of the following equation:
according to which the partial derivatives of the radial position or of the satellite 10 can be determined by differentiation of the following equation:
according to which, ‘rcol’ represents the radial position of the satellite at the considered time of closest approach TCA, and αcol represents the argument of the latitude of collision.
Equation (29) allows to establish the following mathematical relationships to determine the parameters of the equation (28):
The partial derivatives of the orbital elements of the equation (28) are given by the following Gaussian equations:
according to which, Vman represents the speed of the satellite 10 at the moment of the avoidance manoeuvre ΔV·{right arrow over (d)}, rman represents the radial position of the satellite 10 at the moment of the avoidance manoeuvre ΔV·{right arrow over (d)}, αman represents the argument of the latitude of the satellite 10 at the moment of the avoidance manoeuvre ΔV·{right arrow over (d)} more precisely at the middle time of the considered free manoeuvre slot.
According to the preliminary step M0, rating all the free manoeuvre slots Sl1, Sl2, Sl3, Sl4, Sl5, Sl6 can be carried out according to the determination of the maximum radial separation Δr, according to a positive radial separation or according to a negative radial separation. According to the example of
Following the preliminary step M0, in step M1, the determination of the probability of collision P1 of the satellite 10 with the piece of debris d1 is carried out according to a first avoidance manoeuvre ΔV·{right arrow over (d)} placed on the third free manoeuvre slot Sl3. The speed difference ΔV_1 associated with the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 is the maximum authorised speed difference relative to the third free manoeuvre slot Sl3 according to the equation (26). The direction {right arrow over (d)}_1 associated with the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 corresponds to the attitude determined to optimise the radial separation Δr, that is to say a direction {right arrow over (d)}_1 corresponding to the azimuth az determined according to the equation (28), either for a positive radial separation Δr, or for a negative radial separation Δr.
From the determination of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 and the choice of the third free manoeuvre slot Sl3, according to the equation (7) and the equation (9) relating to
To this end, in step M2, the determination of the probability of collision P1 of the satellite 10 with the piece of debris d1 is carried out according to a second avoidance manoeuvre ΔV·{right arrow over (d)}_2 placed on the fifth free manoeuvre slot Sl5, the calculation of the probability of collision P1 of the satellite 10 taking into account the combination of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 with the second avoidance manoeuvre ΔV·{right arrow over (d)}_2. The speed difference ΔV_2 associated with the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 is the maximum authorised speed difference relative to the fifth free manoeuvre slot Sl5 according to the equation (26). The direction d_2 associated with the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 corresponds to the attitude determined to optimise the radial separation Δr, that is to say a direction d_2 corresponding to the azimuth az determined according to the equation (28), and according to a radial separation Δr of the same type as the radial separation Δr associated with the first avoidance manoeuvre ΔV·{right arrow over (d)}_1, that is to say either positive or negative.
From the determination of the second avoidance manoeuvre ΔV·{right arrow over (d)}_2, the choice of the fifth free manoeuvre slot Sl5, according to the equation (7) and the equation (9) relating to
To this end, in step M3, the determination of the probability of collision P1 of the satellite 10 with the piece of debris d1 is carried out according to a third avoidance manoeuvre ΔV·{right arrow over (d)}_3 placed on the second free manoeuvre slot Sl2, the calculation of the probability of collision P1 of the satellite 10 taking into account the combination of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 with the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 and also with the third avoidance manoeuvre ΔV·{right arrow over (d)}_3. The speed difference ΔV_3 associated with the third avoidance manoeuvre ΔV·{right arrow over (d)}_3 is the maximum authorised speed difference relative to the second free manoeuvre slot Sl2 according to the equation (26). The direction {right arrow over (d)}_3 associated with the third avoidance manoeuvre ΔV·{right arrow over (d)}_3 corresponds to the attitude determined to optimise the radial separation Δr, that is to say a direction {right arrow over (d)}_3 corresponding to the azimuth az determined according to the equation (28), and according to a radial separation Δr of the same type as the radial separation Δr associated with the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 and the second avoidance manoeuvre ΔV·{right arrow over (d)}_2, that is to say either positive or negative.
From the determination of the third avoidance manoeuvre ΔV·{right arrow over (d)}_3, the choice of the second free manoeuvre slot Sl2, according to the equation (7) and the equation (9) relating to
According to
According to
According to the hypothesis that a second piece of space debris d2 must be avoided by the satellite 10, according to the same principle as that set out in
In the same way as in
In a similar manner to the first piece of space debris d1, manoeuvres to avoid the second piece of space debris d2 are determined on the available free manoeuvre slots so as to obtain a probability of collision P2 between the satellite 10 and the second piece of space debris d2 less than or even equal to the predefined threshold of probability Pth of collision. More particularly and in a non-limiting manner, a first manoeuvre ΔV·{right arrow over (d)}_12 of avoiding the second piece of space debris d2 is determined on the seventh free manoeuvre slot Sl7, a second avoidance manoeuvre ΔV·{right arrow over (d)}_22 having to be carried out during the sixth free manoeuvre slot Sl6 is also identified so as to obtain a probability of collision P2 between the satellite 10 and the second piece of space debris d2 less than or even equal to the predefined threshold of probability Pth of collision.
A non-limiting example of a flowchart relating to the method 100 for estimating collision between the satellite 10 in orbit around the Earth 12 and a piece of space debris d1 is illustrated in
Preferably, more particularly, in order to limit the volume of data transmitted to the satellite 10, the communication step 130 can comprise the transmission from the satellite control centre 18 of an activation time tcur for the calculation of the collision probability P1; a state transition matrix φ(tcur→TCAref) between the activation time tcur and the reference time of closest approach TCAref; the reference orbital position of the satellite at the activation time tcur and the reference time of closest approach TCAref; and the orbital position and the covariance of the piece of space debris d1 at the reference time of closest approach TCAref.
The following steps are carried out on board the satellite 10. Since the satellite embeds its own geolocation means, a first step on board the satellite 10 consists in determining 140 the true orbital position Xreal of the satellite 10. In order to be able to calculate a probability P1 of collision with the at least one piece of space debris d1, the method 100 includes a step 150 of propagating the true orbit Xreal(t) of the satellite 10, the orbit Xd1 of the piece of space debris d1, and their associated covariance COVsat, COVd1, up to the time of closest approach TCA according to the ephemeris of state transition data φ(t, t0) and the reference orbit Xref of the satellite 10. It should be noted according to
Steps 170 to 200 relate more particularly to steps linked to the determination of the probability of collisions after a first collision avoidance manoeuvre ΔV·{right arrow over (d)}_1 allowing to reduce the probability of collision if said probability is for example and in a non-limiting manner greater than a predefined threshold of probability Pth of collision. According to this hypothesis, the method comprises a step 170 of determining a first avoidance manoeuvre ΔV·{right arrow over (d)}_1 of the at least one piece of space debris d1 on a predetermined time of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 according to a thrust of the satellite 10 optimising the radial separation from the true orbit Xreal(t) of the satellite 10. The first avoidance manoeuvre having a direct effect on the true orbit Xreal of the satellite, the method 100 comprises a step 180 of correcting the true orbital position Xreal(t) of the satellite 10 at the time of the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 according to a first orbital correction ΔXman dependent on the thrust vector of the satellite 10 relating to the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 in accordance with the description of
The method 100 includes, after the determination of the first corrected true orbit of the satellite 10, a step 200 of calculating the first new probability of collision P1 between the satellite 10 and the at least one piece of space debris d1 at the considered time of closest approach TCA according to the first corrected true Xreal(t) orbit of the satellite 10.
Steps 210 to 240 relate more particularly to steps linked to the determination of the probability of collisions after a second collision avoidance manoeuvre ΔV·{right arrow over (d)}_2 allowing to reduce the new probability of collision after the first avoidance manoeuvre ΔV·{right arrow over (d)}_1 if said probability is for example and in a non-limiting way always higher than the predefined threshold of probability Pth of collision. To this end, the method 100 may comprise a step 210 of determining a second avoidance manoeuvre ΔV·{right arrow over (d)}_2 of the at least one piece of space debris d1 at a time of the second predetermined avoidance manoeuvre ΔV·{right arrow over (d)}_2 according to a thrust of the satellite 10 optimising the radial separation from the first corrected true orbit Xreal of the satellite 10 determined in step 190. The second avoidance manoeuvre ΔV·{right arrow over (d)}_2 having a direct effect on the first corrected true orbit of the satellite 10, the method 100 comprises a step 220 of correcting the orbital position of the satellite 10 on the first corrected true orbit, at the time of the second avoidance manoeuvre ΔV·{right arrow over (d)}_2 according to a second orbital correction dependent on the thrust vector of the satellite 10 relating to the second avoidance manoeuvre ΔV·{right arrow over (d)}_2. For the purpose of calculating the probability P1 of collision taking into account this second avoidance manoeuvre ΔV·{right arrow over (d)}_2, the method 100 comprises a step 230 of propagating a second corrected true orbit of the satellite 10 from the corrected orbital position of the satellite 10 in the previous step 220 and its covariance COVsat until the considered time of closest approach TCA according to the ephemeris of state transition data φ(t, t0) and the reference orbit Xref of the satellite 10 or more particularly according to the state transition matrix φ between the activation time tcur of the calculation of a second new probability of collision P1 and the reference time of closest approach TCAref.
The method 100 includes, after the determination of the second corrected true orbit of the satellite 10, a step 240 of calculating the second new probability P1 of collision between the satellite 10 and the at least one piece of space debris d1 at the considered time of closest approach TCA according to the second corrected true orbit of the satellite 10.
If after steps 170 to 240, the second new probability P1 of collision was still too high, that is to say for example still higher than the predefined threshold of probability Pth of collision, other steps similar to steps 170 to 200 and 210 to 240 can be added so as to determine other avoidance manoeuvres allowing to reduce the probability of collision between the satellite 10 and the at least one piece of space debris.
As described in
In particular and as described with reference to
The method according to the invention can for example be implemented by devices of the device 400 type as shown in
The computer program, comprising instructions implementing the method 100 for adjusting the orbital trajectory of the satellite 10 can also be implemented in hardware form by a machine or by an integrated circuit specific to an application or else by an electronic circuit of programmable logic network type.
It should be understood that the detailed description of the object of the invention, given only by way of illustration, does not in any way constitute a limitation, the technical equivalents also being comprised in the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2005477 | May 2020 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/063905 | 5/25/2021 | WO |