This patent application is a 35 USC § 371 U.S. national stage of International Application No. PCT/JP2019/048430 filed on Dec. 11, 2019, which claims the benefit and priority of Japanese Application No. 2018-233647 filed on Dec. 13, 2018, the disclosures of which are incorporated in their entirety by reference herein.
The present invention relates to a method for estimating an operation voltage of a solar battery cell in a solar battery module and a solar battery cell operation voltage estimation system.
Priority is claimed on Japanese Patent Application No. 2018-233647, filed on Dec. 13, 2018, the content of which is incorporated herein by reference.
Conventionally, abnormality determination systems and methods for solar battery modules that can accurately determine which of a plurality of solar battery cells connected in series is in an abnormal state are known (for example, Patent Document 1).
The abnormality determination system for a solar battery module described in Patent Document 1 determines an abnormality of a solar battery module including a plurality of solar battery cells connected in series. Specifically, the abnormality determination system of the solar battery module includes a modulated light irradiation unit that irradiates one solar battery cell among a plurality of solar battery cells with modulated light, a phase detection unit that outputs a signal according to a state of one solar battery cell based on a signal indicating power generation output of the solar battery module and a reference signal indicating a phase (frequency) of the modulated light, and a determination unit that determines whether or not one solar battery cell is in an abnormal state based on an output signal from the phase detection unit.
The abnormality determination system for a solar battery module disclosed in Patent Document 1 can determine whether or not a solar battery cell in the solar battery module is in an abnormal state, but cannot estimate an operation voltage of solar battery cells connected in series in the solar battery module.
In consideration of the above-described problem, an object of the present invention is to provide a method for estimating an operation voltage of a solar battery cell in a solar battery module and a solar battery cell operation voltage estimation system, which can estimate the operation voltage of the solar battery cells connected in series in the solar battery module.
According to one aspect of the present invention, there is provided a method for estimating an operation voltage of each of m (m is an integer which is equal to or greater than 2) solar battery cells which constitute a solar battery module and are connected in series, the method including: a first step of setting a state in which a first solar battery cell, which is one solar battery cell among the m solar battery cells, is shielded from light; a second step of irradiating the first solar battery cell with modulated light and detecting a small change of an output current of the solar battery module in the state in which the first solar battery cell is shielded from light; a third step of irradiating each of the (m−1) solar battery cells excluding the first solar battery cell among the m solar battery cells with the modulated light and detecting the small change of the output current of the solar battery module in the state in which the first solar battery cell is shielded from light; a fourth step of detecting an operation voltage of the solar battery module in the state in which the first solar battery cell is shielded from light; a fifth step of generating a first calibration line by connecting a first point and a second point which are plotted on coordinate axes in which a first axis corresponding to one axis is set as a voltage and a second axis corresponding to the other axis is set as a relative ratio of a resistor; a sixth step of setting a state in which none of the m solar battery cells is shielded from light; a seventh step of irradiating a second solar battery cell, which is a solar battery cell the operation voltage of which is to be estimated among the m solar battery cells, with the modulated light and detecting the small change of the output current of the solar battery module in the state in which none of the m solar battery cells is shielded from light; an eighth step of irradiating a third solar battery cell, which is a solar battery cell other than the second solar battery cell among the m solar battery cells, with the modulated light and detecting the small change of the output current of the solar battery module in the state in which none of the m solar battery cells is shielded from light; a ninth step of detecting an operation voltage of the solar battery module in the state in which none of the m solar battery cells is shielded from light; a tenth step of generating a second calibration line by connecting a third point and the second point which are plotted on the coordinate axes; an eleventh step of calculating a value of the relative ratio of the resistor of the second solar battery cell; a twelfth step of calculating a fourth point, which is a point on the second calibration line at which a value of the second axis becomes a value of the relative ratio of the resistor of the second solar battery cell calculated in the tenth step; and a thirteenth step of calculating a value of the first axis of the fourth point as the operation voltage of the second solar battery cell, in which the first point shows a relationship between the value of the operation voltage of the first solar battery cell and the value of the relative ratio of the resistor in the state in which the first solar battery cell is shielded from light, a value of the first axis of the first point is obtained by subtracting a total value of an open circuit voltage of each of the (m−1) solar battery cells from the operation voltage of the solar battery module in the state in which the first solar battery cell is shielded from light, a value of the second axis of the first point is a maximum value of the relative ratio of the resistor, the second point shows a relationship between a value of the operation voltage of any of the (m−1) solar battery cells and the value of the relative ratio of the resistor in the state in which the first solar battery cell is shielded from light, a value of the first axis of the second point is the open circuit voltage of each of the (m−1) solar battery cells, a value of the second axis of the second point is a minimum value of the relative ratio of the resistor, a value of the first axis of the third point is obtained by subtracting a total value of the open circuit voltage of each of the (m−1) solar battery cells from the operation voltage of the solar battery module in the state in which none of the in solar battery cells is shielded from light, and a value of the second axis of the third point is the maximum value of the relative ratio of the resistor.
According to the aspect of the present invention, the relative ratio of the resistor may be obtained by dividing a value of a differential resistance of any of the (m−1) solar battery cells by a sum of a total value of all differential resistances of the m solar battery cells and a value of a load resistor connected in series to the solar battery module.
According to the aspect of the present invention, the small change of the output current of the solar battery module in the state in which the first solar battery cell is shielded from light and the small change of the output current of the solar battery module in the state in which none of the m solar battery cells is shielded from light may be detected by an output voltage of a phase detection unit or a lock-in amplifier, and the eleventh step may include calculating a value of a ratio of the output voltage of the phase detection unit or the lock-in amplifier as the value of the relative ratio of the resistor of the second solar battery cell.
According to the aspect of the present invention, the eleventh step may include calculating a standardized value as the value of the relative ratio of the resistor of the second solar battery cell, and the standardized value may be obtained by dividing a value of a differential resistance of any of the (m−1) solar battery cells by a maximum value of a differential resistance of the first solar battery cell in the light-shielded state.
According to the aspect of the present invention, the eleventh step may include calculating a standardized value as the value of the relative ratio of the resistor of the second solar battery cell, and the standardized value may be obtained by dividing a value of a differential resistance of any of the (m−1) solar battery cells by a sum of a maximum value of a differential resistance of the first solar battery cell in the light-shielded state and the value of the differential resistance of any of the (m−1) solar battery cells.
According to the aspect of the present invention, the state in which the first solar battery cell is shielded from light may be obtained by attaching a mask to the first solar battery cell. In order to irradiate the first solar battery cell in the light-shielded state with the modulated light, light may be shielded except for a part of a light receiving surface of the cell or the modulated light irradiation unit.
According to the aspect of the present invention, the state in which the first solar battery cell is shielded from light may be obtained by attaching a net to the first solar battery cell. In order to irradiate the first solar battery cell in the light-shielded state with the modulated light, light may be shielded using the net so that the light receiving surface of the cell has openings.
According to the aspect of the present invention, the state in which the first solar battery cell is shielded from light may be obtained by disposing a light-shielding object. In order to irradiate the first solar battery cell in the light-shielded state with the modulated light, light may be shielded except for a part of the light receiving surface of the cell or the modulated light irradiation unit.
According to the aspect of the present invention, an irradiation state of the modulated light may be adjusted so that values of a light generation current in equivalent circuits of the (m−1) solar battery cells are equal to each other.
According to another aspect of the present invention, there is provided a solar battery cell operation voltage estimation system which estimates an operation voltage of each of m (m is an integer which is equal to or greater than 2) solar battery cells which constitute a solar battery module and are connected in series, the system including: a modulated light irradiation unit configured to irradiate any of the m solar battery cells with modulated light; a light-shielded state setting unit configured to set a state in which a first solar battery cell, which is one solar battery cell of the m solar battery cells, is shielded from light; and an output current small change detection unit configured to irradiate the first solar battery cell with the modulated light and to detect a small change of an output current of the solar battery module in the state in which the first solar battery cell is shielded from light, wherein the modulated light irradiation unit irradiates each of the (m−1) solar battery cells excluding the first solar battery cell among the m solar battery cells with the modulated light and the output current small change detection unit detects the small change of the output current of the solar battery module in the state in which the first solar battery cell is shielded from light by the light-shielded state setting unit, the system includes: a solar battery module operation voltage detection unit configured to detect an operation voltage of the solar battery module in the state in which the first solar battery cell is shielded from light; and a calibration line generation unit configured to generate a first calibration line by connecting a first point and a second point which are plotted on coordinate axes in which a first axis corresponding to one axis is set as a voltage, and a second axis corresponding to the other axis is set as a relative ratio of a resistor, the light-shielded state setting unit sets a state in which none of the m solar battery cells is shielded from light, the modulated light irradiation unit irradiates a second solar battery cell, which is a solar battery cell the operation voltage of which is to be estimated among the m solar battery cells, with modulated light, the output current small change detection unit detects the small change of the output current of the solar battery module, the modulated light irradiation unit irradiates a third solar battery cell, which is a solar battery cell other than the second solar battery cell among the m solar battery cells, with the modulated light, the output current small change detection unit detects the small change of the output current of the solar battery module, and the solar battery module operation voltage detection unit detecting an operation voltage of the solar battery module in the state in which none of the m solar battery cells is shielded from light, the calibration line generation unit generates a second calibration line by connecting a third point and the second point which are plotted on the coordinate axes, the system includes: a resistor relative ratio calculation unit configured to calculate a value of the relative ratio of the resistor of the second solar battery cell; and a solar battery cell operation voltage calculation unit configured to calculate the operation voltage of the second solar battery cell, in which the solar battery cell operation voltage calculation unit calculates a fourth point, which is a point on the second calibration line at which a value of the second axis becomes a value of the relative ratio of the resistor of the second solar battery cell calculated by the resistor relative ratio calculation unit, and subsequently calculates a value of the first axis of the fourth point as the operation voltage of the second solar battery cell, the first point shows a relationship between the value of the operation voltage of the first solar battery cell and the value of the relative ratio of the resistor in the state in which the first solar battery cell is shielded from light, a value of the first axis of the first point is obtained by subtracting a total value of an open circuit voltage of each of the (m−1) solar battery cells from the operation voltage of the solar battery module in the state in which the first solar battery cell is shielded from light, a value of the second axis of the first point is a maximum value of the relative ratio of the resistor, the second point shows a relationship between a value of the operation voltage of any of the (m−1) solar battery cells and the value of the relative ratio of the resistor in the state in which the first solar battery cell is shielded from light, a value of the first axis of the second point is the open circuit voltage of each of the (m−1) solar battery cells, a value of the second axis of the second point is a minimum value of the relative ratio of the resistor, a value of the first axis of the third point is obtained by subtracting a total value of the open circuit voltage of each of the (m−1) solar battery cells from the operation voltage of the solar battery module in the state in which none of the m solar battery cells is shielded from light, and a value of the second axis of the third point is the maximum value of the relative ratio of the resistor.
According to the present invention, it is possible to provide a method for estimating an operation voltage of a solar battery cell in a solar battery module and a solar battery cell operation voltage estimation system, which can estimate the operation voltage of the solar battery cells connected in series in the solar battery module.
Before explaining embodiments of a method for estimating an operation voltage of a solar battery cell in a solar battery module and a solar battery cell operation voltage estimation system of the present invention, an operational principle and the like of the solar battery cell operation voltage estimation system of the present invention will be described.
In a system shown in
As shown in
The small change ΔI of the output current of the solar battery module M is represented by the following Equations (1) and (2). Specifically, the small change ΔI of the output current of the solar battery module M is represented in Equation (2) by using the light generation current derived from the modulated light (the amplitude of the modulated light) ΔIph, a reciprocal (differential resistance) Ri of the slope of the I-V curve in a cell voltage (operation voltage) Vi of a solar battery cell i (the solar battery cell i is the solar battery cell (in the example shown in
In Equations (1) and (2), n is a diode factor of the solar battery cell i, k is a Boltzmann constant, and T is an absolute temperature. q is an elementary charge, and I0 is a saturation current value of a diode of the solar battery cell i.
The differential resistance Ri of the solar battery cell i changes with a change of the voltage (operation voltage Vi) of the solar battery cell i. On the other hand, as shown in Equation (2), the small change ΔI of the output current of the solar battery module M is proportional to the amplitude ΔIph of the modulated light. Therefore, a value of the small change ΔI of the output current of the solar battery module M is affected by an incident condition of the modulated light.
Through earnest research, the present inventor found that the operation voltage of the solar battery cell C3 irradiated with the modulated light can be estimated quantitatively by using, for example, a measurement signal (small change of the output current of the solar battery module M) ΔI output from the lock-in amplifier shown in
For example, the solar battery module M in which m (in is an integer which is equal to or greater than 2) solar battery cells C1, C2, C3, C4, and C5 are connected in series as shown in
The operation voltage of the solar battery cells C2, C3, C4, and C5 other than the solar battery cell C1, which is shielded from light, among the m solar battery cells C1, C2, C3, C4, and C5 is approximately an open circuit voltage vOC (the maximum value of the operation voltages of the solar battery cells C1, C2, C3, C4, and C5). On the other hand, the operation voltage of the solar battery cell C1, which is shielded from light, is a value Vs−(m−1)vOC. The operation voltage of the solar battery module M, which is a total value of the operation voltages of the solar battery cells C1, C2, C3, C4, and C5, is represented by Equation (2A).
Σi≠Sm-1vOC+VS−(m−1)vOC=VS (2A)
A detailed description of the mechanism is disclosed in Non-Patent Document 1. That is, in the solar battery module M in the light-shielded state, the operation voltage Vs−(m−1)vOC of the solar battery cell C1, which is shielded from light, need not be directly measured and can be estimated from the operation voltage Vs of the solar battery module M in the light-shielded state and the open circuit voltage vOC of each of the solar battery cells C2, C3, C4, and C5.
Further, in a case where Equation (2) is modified, a value ΔI/Δlph which is a ratio of the small change ΔI of the output current of the solar battery module M to the light generation current (amplitude of the modulated light) ΔIph derived from the modulated light can be represented as a relative ratio r of the resistor, which is acquired by dividing the differential resistance Ri of the solar battery cell i the operation voltage of which is estimated by a sum (ΣRj+R) of a total value ΣRj of the differential resistances of all the solar battery cells C1, C2, C3, C4, and C5 of the solar battery module M and the resistance value R of the load resistor RL. That is, even in a case where the operation voltages of the solar battery cells C1, C2, C3, C4, and C5 and the operation voltage of the solar battery module M change, the value ΔI/ΔIph does not change as long as a value of the relative ratio r does not change.
From Equation (1), in the light-shielded state, the differential resistance Ri of the solar battery cell C1 (light-shielded cell s), which is shielded from light, is maximized as represented in the following Equation (2B).
Further, the differential resistance Ri of the solar battery cells C2, C3, C4, and C5 other than the solar battery cell C1 (light-shielded cell s) is minimized as represented in the following Equation (2C).
Therefore, in the light-shielded state, the value of the solar battery cell C1 (light-shielded cell s), which is shielded from light, becomes ΔI/ΔIph=rmax, and the value of the solar battery cells C2, C3, C4, and C5 other than the solar battery cell C1 (light-shielded cell s) becomes ΔI/ΔIph=rmin.
In summary, in the solar battery module M in the light-shielded state, a relationship between the operation voltage v of the solar battery cell C1 (light-shielded cell s), which is shielded from light, and the value ΔI/ΔIph becomes (v, ΔI/ΔIph)=(Vs−(m−1)vOC, rmax). Further, a relationship between the operation voltage v of the solar battery cells C2, C3, C4, and C5 other than the solar battery cell C1 (light-shielded cell s) and the value ΔI/ΔIph becomes (v, ΔI/ΔIph)=(vOC, rmin).
The value VS of the operation voltage of the solar battery module M in the light-shielded state is arbitrary. Therefore, the relationship between the operation voltage v of the solar battery cell C1 (light-shielded cell s), which is shielded from light, and the value ΔI/ΔIph and the relationship between the operation voltage v of the solar battery cells C2, C3, C4, and C5 other than the solar battery cell C1 (light-shielded cell s) and the value ΔI/ΔIph in the light-shielded state of various operation voltages V of the solar battery module M are represented by a line segment, in which two points of the following Equation (3) are used as both ends, in a graph of (v, ΔI/ΔIph).
In a case where the solar battery module M is not in the light-shielded state, the value ΔI/ΔIph becomes a value in a range of rmin to rmax.
In a case where the operation voltage of the solar battery module M is a value V, it is assumed that a point (v, ΔI/ΔIph) which indicates the relationship between the operation voltage v of the solar battery cells (for example, the solar battery cell C1 (light-shielded cell s), which is shielded from light, the solar battery cells C2, C3, C4, and C5 other than the solar battery cell C1 (light-shielded cell s), and the like) in various states in the solar battery module M, and the value ΔI/ΔIph, is on the line segment in which the two points of Equation (3) are used as both ends.
Further, in a case where the operation voltage of the solar battery module M is a value V′ which is different from the value V, it is assumed that the point (v, ΔI/ΔIph) which indicates the relationship between the operation voltage v of the solar battery cells in the various states in the solar battery module M and the value ΔI/ΔIph is on a line segment in which a point (V′−(m−1)vOC, rmax) and a point (vOC, rmin) are used as both ends.
The present inventor has experimentally verified validity of the assumptions through earnest research. In the experiment, the operation voltage of each of the solar battery cells C1, C2, C3, C4, and C5 in the solar battery module M is directly measured by another method while performing the measurement using the system shown in
In the verification experiment, from measurement data indicated by “●”, a line segment (a line segment on a left side in
In addition, the present inventor has verified the validity of the above-described assumptions through earnest research using a simple equivalent circuit model of the solar battery cell. As a result, in a case where the value of the lock-in amplifier ratio rΔI is not close to 1 or 0, it can be confirmed that a curve of the lock-in amplifier ratio rΔI can be approximated as the line segment for the operation voltage vi of the solar battery cell.
In the verification, the solar battery module M in which m (m is an integer which is equal to or greater than 2) solar battery cells C1, C2, C3, C4, and C5 are connected in series (the operation voltage of the solar battery module M is a value Vm) is considered. I-V characteristics of one solar battery cell are approximated in the following Equation (7), and I-V characteristics of a composite of the remaining (m−1) solar battery cells are approximated in the following Equation (8).
In the verification, it is assumed that the light generation current (amplitude of the modulated light) ΔIph and the diode factor n are equal in each solar battery cell. In Equations (7) and (8), I0 is a saturation current value of the diode of one solar battery cell, and I′0 is the saturation current value of the diode of the composite solar battery cell.
In a case where one solar battery cell is in an open state (I=0), the open circuit voltage vOC of the solar battery cell is represented by the following Equation (9).
Since the open circuit voltage of the composite of the remaining (m−1) solar battery cells is approximately a value (m−1)vOC, the saturation current value I′0 of the diode of the composite solar battery cell in Equation (8) is represented by the following Equation (10).
A differential resistance Ri of one certain solar battery cell (the operation voltage of the solar battery cell is a value vi) is represented by the following Equation (11).
A differential resistance Rm-1 of the composite of the remaining (m−1) solar battery cells (operation voltage of the composite is a value Vm−vi) is represented by the following Equation (12).
Using Equations (9) to (12), a ratio rΔI of a differential resistance of the one certain solar battery cell is represented by the following Equation (13) (for simplicity, the resistance value R of the load resistor RL in a denominator is ignored).
Since the operation voltage vi of the one certain solar battery cell is in a range of vi=Vm−(m−1)vOC to vOC, a range of a value of the ratio rΔI of the differential resistance of the solar battery cell represented in Equation (13) is represented by the following Equation (14).
Equation (13) represents a sigmoid curve.
The range of the value of the ratio rot of the differential resistance of the solar battery cell represented by Equation (14) exists symmetrically with respect to an intersection of the sigmoid curve shown in
Therefore, as long as a range in which |Vm−mvOC| is small, that is, a range corresponding to the vertical axis of
Hereinafter, embodiments of a method for estimating the operation voltage of the solar battery cell in the solar battery module and the solar battery cell operation voltage estimation system of the present invention will be described.
In the example shown in
In the example shown in
In the example shown in
In the example shown in
In the example shown in
In the example shown in
In the example shown in
In the example shown in
The output current small change detection unit 12 detects a small change (change of a magnitude of a weak signal relevant to the operation voltage of the solar battery cells C1, C2, C3, C4, and C5) of the output current of the solar battery module M through the alternating current clamp sensor 18 and the lock-in amplifier 12a. Specifically, the small change of the output current of the solar battery module M is detected by the output voltage of the lock-in amplifier 12a.
The reference signal RS output from the chopper control unit 113 is input to the lock-in amplifier 12a. That is, the reference signal RS input to the lock-in amplifier 12a indicates the phase (frequency) of the modulated light ML irradiated from the modulated light irradiation unit 11 to the solar battery cell C3.
In the example shown in
The solar battery module operation voltage detection unit 14 detects the operation voltage VS of the solar battery module M, for example, in the state in which the solar battery cell C1 is shielded from light.
The calibration line generation unit 15 generates a calibration line by plotting two points on coordinate axes (see
The resistor relative ratio calculation unit 16 calculates the relative ratio of the resistor of the solar battery cell (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5.
The solar battery cell operation voltage calculation unit 17 calculates the operation voltage of a solar battery cell Ck (for example, the solar battery cell C3) which is to be estimated.
In the example shown in
In an example of the solar battery cell operation voltage estimation system 1, the light-shielded state setting unit 13 attaches a mask (not shown) to the solar battery cell C1, so that the state of the solar battery module M is set as the state in which the solar battery cell C1 is shielded from light.
In another example of the solar battery cell operation voltage estimation system 1, the light-shielded state setting unit 13 attaches a net (not shown) to the solar battery cell C1, so that the state of the solar battery module M is set as the state in which the solar battery cell C1 is shielded from light.
In a still another example of the solar battery cell operation voltage estimation system 1, the light-shielded state setting unit 13 disposes a light-shielding object (not shown), so that the state of the solar battery module M is set as the state in which the solar battery cell C1 is shielded from light.
In the example shown in
Further, in the state in which the solar battery cell C1 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell C1 with the modulated light ML, the output current small change detection unit 12 detects the small change ΔIs of the output current of the solar battery module M.
In the example shown in
The small change ΔI of the output current of the solar battery module M is also proportional to the light generation current (amplitude of the modulated light) ΔIph derived from the modulated light. The light generation current (amplitude of the modulated light) ΔIph derived from the modulated light changes according to the irradiation state of the modulated light ML. Therefore, unless the light generation current (amplitude of the modulated light) ΔIph derived from the modulated light is constant, it is difficult to perform comparison of the small change ΔI of the output current of the solar battery module M. Therefore, in a case where the fact that the operation voltage of the solar battery cells C2, C3, C4, and C5, which are not shielded from light, in the solar battery module M in the light-shielded state, is the same open circuit voltage vOC is used and one solar battery cell whose irradiation state of the modulated light ML is shielded from light is sequentially replaced and adjusted so that the small change ΔI of the output current of the solar battery module M is equal at the same open circuit voltage vOC, the light generation current (amplitude of the modulated light) ΔIph derived from the modulated light can be equivalent in the adjusted solar battery cells C1, C2, C3, C4, and C5.
Further, in the example shown in
Specifically, in the state in which the solar battery cell C1 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell C2 with the modulated light ML, the output current small change detection unit 12 detects the small change ΔIi of the output current of the solar battery module M. Further, in the state in which the solar battery cell C1 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell C3 with the modulated light ML, the output current small change detection unit 12 detects the small change ΔIi of the output current of the solar battery module M. Further, in the state in which the solar battery cell C1 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell C4 with the modulated light ML, the output current small change detection unit 12 detects the small change ΔIi of the output current of the solar battery module M. Further, in the state in which the solar battery cell C1 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell C5 with the modulated light ML, the output current small change detection unit 12 detects the small change ΔIi of the output current of the solar battery module M.
Further, in the example shown in
Next, the calibration line generation unit 15 estimates the operation voltage of the solar battery cells C1, C2, C3, C4, and C5 based on the above-described principle. Further, the calibration line generation unit 15 plots a first point P1 and a second point P2 on, for example, the coordinate axes in which the horizontal axis is set as the voltage and the vertical axis is set as the relative ratio of the resistor.
In
The value VS−(m−1)vOC of the horizontal axis of the first point P1 is obtained by subtracting a total value (m−1)vOC of the open circuit voltage vOC of each of the solar battery cells C2, C3, C4, and C5 from the operation voltage VS of the solar battery module M in the state in which the solar battery cell C1 is shielded from light.
The value rΔIs of the vertical axis of the first point P1 is the maximum value rmax of the relative ratio rΔI of the resistor of the solar battery cells C1, C2, C3, C4, C5.
The second point P2 shows a relationship between a value vOC of the operation voltage v (cell voltage vi) of the solar battery cell (for example, the solar battery cell C3) which is not shielded from light in the light-shielded state of the solar battery module M and a value rmin(rΔIi) of the relative ratio rΔI of the resistor. That is, the coordinates of the second point P2 are (vOC, rmin).
The value vOC of the horizontal axis of the second point P2 is the open circuit voltage vOC of each of the solar battery cells C2, C3, C4, and C5.
The value rΔIi of the vertical axis of the second point P2 is a minimum value rmin of the relative ratio rΔI of the resistor of the solar battery cells C1, C2, C3, C4, C5.
In the example shown in
In the example shown in
Next, in the state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light, the modulated light irradiation unit 11 irradiates the solar battery cell Ck (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5 with the modulated light ML.
Further, in the state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell Ck (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5 with the modulated light ML, the output current small change detection unit 12 detects a small change ΔIk of the output current of the solar battery module M.
Further, in the state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light, the modulated light irradiation unit 11 irradiates the solar battery cell Cj≠k (for example, any of the solar battery cells C1, C2, C4, and C5) other than the solar battery cell Ck (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5 with the modulated light ML.
Further, in the state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light and the modulated light irradiation unit 11 irradiates the solar battery cell Cj≠k (for example, any of the solar battery cells C1, C2, C4, and C5) other than the solar battery cell Ck (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5 with the modulated light ML, the output current small change detection unit 12 detects a small change ΔIj≠k of the output current of the solar battery module M.
Further, in the example shown in
Next, the calibration line generation unit 15 plots a third point P3 on the coordinate axes shown in
As shown in
The value rΔIs of the vertical axis of the third point P3 is the maximum value rmax of the relative ratio rΔI of the resistor of the solar battery cells C1, C2, C3, C4, C5. That is, the value rΔIs of the vertical axis of the third point P3 is equal to the value rΔIs of the vertical axis of the first point P1.
In the example shown in
Next, the resistor relative ratio calculation unit 16 calculates a value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated.
In a first example of the solar battery cell operation voltage estimation system 1 of the first embodiment, the resistor relative ratio calculation unit 16 calculates as the value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated, (Rk/ΣRj+R) obtained by dividing the value Rk of the differential resistance of the solar battery cell Ck (any of the solar battery cells C2, C3, C4, and C5) the operation voltage of which is to be estimated by a sum (ΣRj+R) of the total value ΣRi of the differential resistances of all the solar battery cells C1, C2, C3, C4, and C5 and the resistance value R of the load resistor RL connected in series to the solar battery module M.
In a second example of the solar battery cell operation voltage estimation system 1 of the first embodiment, the lock-in amplifier 12a of the output current small change detection unit 12 detects a small change ΔIi of the output current of the solar battery module M in the state in which the solar battery cell C1 is shielded from light and the small change ΔIk of the output current of the solar battery module M in the state in which none of the solar battery cells C1 C2, C3, C4, C5 is shielded from light.
Further, the resistor relative ratio calculation unit 16 calculates, as the value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated, a value (ΔIk/(ΔIk+Σj≠kΔIj)) of the lock-in amplifier ratio rΔI (specifically, the lock-in amplifier ratio rΔI for the small change ΔI of the output current of the solar battery module M in the solar battery cell Ck).
Specifically, the calibration line generation unit 15 calculates a value (ΔIs/(ΔIs+Σi≠sΔIi)) as the value of the vertical axis of the first point P1 (see
Further, the calibration line generation unit 15 calculates a value (ΔIi/(ΔIs+Σi≠sΔIi) as the value of the vertical axis of the second point P2 (see
The resistor relative ratio calculation unit 16 calculates a value (ΔIk/(ΔIk+Σj≠k ΔIj) as a value that becomes a value of the vertical axis of a fourth point P4 (see
In the second example of the solar battery cell operation voltage estimation system 1 of the first embodiment, the total value ΣRj of the differential resistances of all the solar battery cells C1, C2, C3, C4, and C5 need not be obtained in advance. In a case where the operation voltage of the solar battery cells C1, C2, C3, C4, C5 is not near the open circuit voltage vOC, because the total value ΣRj of the differential resistances of all the solar battery cells C1, C2, C3, C4, and C5 is larger than the resistance value R of the load resistor RL, there is no problem.
In a third example of the solar battery cell operation voltage estimation system 1 of the first embodiment, the resistor relative ratio calculation unit 16 calculates a standardized value as the value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated.
The standardized value is a value (ΔI/the maximum of ΔI indicated by the light-shielded cell) obtained by dividing a value Ri(ΔI) of the differential resistance of any of the solar battery cells C2, C3, C4, and C5 by the maximum value (the maximum of ΔI indicated by the light-shielded cell) of the differential resistance of the solar battery cell C1 in the light-shielded state.
In a fourth example of the solar battery cell operation voltage estimation system 1 of the first embodiment, the resistor relative ratio calculation unit 16 calculates a standardized value (specifically, an improved standardized value) as the value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated.
The improved standardized value is a value (ΔI/(the maximum of ΔI indicated by the light-shielded cell+(m−1))×ΔI indicated by one cell having the open circuit voltage vOC)) obtained by dividing a value Ri(ΔI) of the differential resistance of any of the solar battery cells C2, C3, C4, and C5 by the sum of the maximum value (the maximum ΔI indicated by the light-shielded cell) of the solar battery cell C1 in the light-shielded state and the value of the differential resistance of any of the solar battery cell C2, C3, C4, and C5.
In the example shown in
Next, the solar battery cell operation voltage calculation unit 17 calculates a value of the horizontal axis of the fourth point P4 as an operation voltage vk of the solar battery cell Ck which is to be estimated.
In the example shown in
Next, in step S2, in the state in which the solar battery cell C1 is shielded from light, the modulated light irradiation unit 11 irradiates the solar battery cell C1 with the modulated light ML, and the output current small change detection unit 12 detects the small change ΔIs of the output current of the solar battery module M.
Next, in step S3, in the state in which the solar battery cell C1 is shielded from light, the modulated light irradiation unit 11 irradiates any of the solar battery cells C2, C3, C4, and C5 with the modulated light ML, and the output current small change detection unit 12 detects the small change ΔIi of the output current of the solar battery module M.
Next, in step S4, in the state in which the solar battery cell C1 is shielded from light, the solar battery module operation voltage detection unit 14 detects the operation voltage VS of the solar battery module M.
Next, in step S5, the calibration line generation unit 15 plots, for example, the first point P1 and the second point P2 on the coordinate axes in which the horizontal axis is set as the voltage and the vertical axis is set as the relative ratio of the resistor, and generates the first calibration line L1 by connecting the first point P1 and the second point P2.
Next, in step S6, the light-shielded state setting unit 13 sets the state of the solar battery module M as a state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light (normal state).
Next, in step S7, in the state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light, the modulated light irradiation unit 11 irradiates the solar battery cell Ck (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5 with the modulated light ML, and the output current small change detection unit 12 detects the small change ΔIk of the output current of the solar battery module M.
Next, in step S8, in the state in which none of the solar battery cells C1, C2, C3, C4, and C5 is shielded from light, the modulated light irradiation unit 11 irradiates the solar battery cell Cj≠k (for example, any of the solar battery cells C1, C2, C4, and C5) other than the solar battery cell Ck (for example, the solar battery cell C3) the operation voltage of which is to be estimated among the solar battery cells C1, C2, C3, C4, and C5 with the modulated light ML, and the output current small change detection unit 12 detects a small change ΔIk of the output current of the solar battery module M.
Next, in step S9, in the state in which none of the solar battery cells C1, C2, C3, C4, C5 is shielded from light, the solar battery module operation voltage detection unit 14 detects the operation voltage VN of the solar battery module M.
Next, in step S10, the calibration line generation unit 15 plots the third point P3 on the coordinate axes and generates the second calibration line L2 by connecting the third point P3 and the second point P2.
Next, in step S11, the resistor relative ratio calculation unit 16 calculates a value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated.
Next, in step S12, the solar battery cell operation voltage calculation unit 17 calculates the fourth point P4 that is the point whose value of the vertical axis is the value rΔIk of the relative ratio r of the resistor of the solar battery cell Ck the operation voltage of which is to be estimated on the second calibration line L2.
Next, in step S13, the solar battery cell operation voltage calculation unit 17 calculates the value of the horizontal axis of the fourth point P4 as the operation voltage vk of the solar battery cell Ck which is to be estimated.
As described above, according to the solar battery cell operation voltage estimation system 1 of the first embodiment, it is possible to estimate the operation voltage vk, which cannot be found in the related art, of the solar battery cells C1, C2, C3, C4, and C5 connected in series in the solar battery module M.
Hereinafter, a second embodiment of a method for estimating an operation voltage of a solar battery cell in a solar battery module and a solar battery cell operation voltage estimation system of the present invention will be described.
The solar battery cell operation voltage estimation system 1 of the second embodiment is configured in the same manner as the solar battery cell operation voltage estimation system 1 of the first embodiment described above, except for points which will be described later. Therefore, according to the solar battery cell operation voltage estimation system 1 of the second embodiment, it is possible to obtain the same effect as that of the solar battery cell operation voltage estimation system 1 of the first embodiment described above except for the points which will be described later.
In the solar battery cell operation voltage estimation system 1 of the first embodiment, the solar battery cells C1, C2, C3, C4, and C5 are irradiated with the modulated light ML reflected by the reflector 114 of the modulated light irradiation unit 11. That is, in the solar battery cell operation voltage estimation system 1 of the first embodiment, an irradiation direction of the modulated light ML is controlled by the reflector 114. Further, in an application example (example shown in
On the other hand, in the solar battery cell operation voltage estimation system 1 of the second embodiment, the modulated light irradiation unit 11 includes a three-dimensional (3D) laser scanner (not shown). That is, in the solar battery cell operation voltage estimation system 1 of the second embodiment, the irradiation direction (emission direction) of the modulated light ML is controlled by the 3D laser scanner. Further, in an application example of the solar battery cell operation voltage estimation system 1 of the second embodiment, the plurality of solar battery cells connected in series are arranged in an array shape (grid shape).
The 3D laser scanner measures a distance using a time of flight (TOF) method for measuring a time taken for a laser pulse to reciprocate between a measurement target point and a sensor, and at the same time, measures the emission direction of a laser beam, thereby obtaining 3D coordinates of the measurement target point. A large number of data points can be obtained in one scan. Recently, 3D laser scanners have been applied to 3D measurement of various terrains and buildings.
In the application example of the solar battery cell operation voltage estimation system 1 of the second embodiment, a solar battery module group includes a plurality of solar battery modules M. The solar battery module group includes a plurality of solar battery cells (solar battery cell group) arranged in the array shape. For example, the 3D laser scanner using the TOF method is applied to irradiate the plurality of solar battery cells (solar battery cell group) with modulated light ML.
In the application example of the solar battery cell operation voltage estimation system 1 of the second embodiment, the 3D laser scanner using the TOF method performs measurement (an example of a pulse repetition rate: 100 kHz to 1 MHz) by repeatedly irradiating the plurality of solar battery cells (solar battery cell group) with pulses.
In the application example of the solar battery cell operation voltage estimation system 1 of the second embodiment, a database, which records the irradiation direction and an irradiation time of the pulse, is combined with a database which records an output of the lock-in amplifier 12a to which the signal of the alternating current clamp sensor 18 connected to an output wiring from the solar battery cell array (solar battery cell group) is input. That is, a position of the solar battery cell scanned by the 3D laser scanner is associated with the output of the lock-in amplifier 12a. As a result, the operation voltage of each solar battery cell included in the solar battery cell group can be found (measured).
Specifically, in the application example of the solar battery cell operation voltage estimation system 1 of the second embodiment, the laser light that can be absorbed by the solar battery cell is irradiated by the 3D laser scanner. In a case where the solar battery cell operation voltage estimation system 1 is applied to the solar battery module group in which a silicon solar battery cell is used as the solar battery cell, a silicon bandgap (approximately, 1.2 eV) included in the silicon solar battery cell is taken into consideration, so that laser light having a wavelength approximately equal to or less than 1030 nm that can be absorbed by silicon is irradiated from the 3D laser scanner. Further, since a part of the laser light irradiated from the 3D laser scanner is absorbed by the silicon solar battery cell, an intensity of the laser light irradiated from the 3D laser scanner is set to a large value to secure an intensity of the reflected light from the silicon solar battery cell to the 3D laser scanner.
As described above, according to the solar battery cell operation voltage estimation system 1 of the first and second embodiments, the operation voltage of the solar battery cells C1, C2, C3, C4, and C5 which are sealed inside the solar battery module M in operation can be estimated quantitatively.
Although the present invention will be described in detail below with reference to examples, the present invention is not limited to the examples, and the present invention can be appropriately modified and realized without departing from the scope thereof.
In the examples, the following experimental materials are used in common.
Example 1, Example 2, Example 3: a sensitivity of 1 mV, a time constant of 1.25 s, an input of the current clamp sensor clamped in a contactless manner to a 32-turn coil connected in series to the load resistor
Example 4: a sensitivity of 10 mV, a time constant of 1.25 s, the voltage (module voltage) of the load resistor is directly input to the lock-in amplifier
Approximately 140 W/m2 in Example 1, Example 2, and Example 3
Approximately 100 W/m2 in Example 4
An average cell voltage of each cell and a lock-in amplifier ratio rΔI are measured at module voltages Vm=0.05, 0.08 to 0.09, and 1.29 V.
In a case where the module voltage Vm=0.05 V, a sufficient light-shielding mask is applied to create the calibration line. In a case where the module voltage Vm=0.08 to 0.09 V, the voltage of each cell is changed with an insufficient light-shielding mask or without the light-shielding mask. Further, in the case of the module voltage Vm=1.29 V, the module voltage is increased by increasing the load resistor without the light-shielding mask.
As shown in
Furthermore, in a case where the calibration line is estimated at an arbitrary module voltage using the lock-in amplifier ratio rΔI at the module voltage of 0.05 V and the open circuit voltage vOC=0.50 V of the cell, an estimation voltage corresponding to the lock-in amplifier ratio rΔI of actual measurement data “∘” (module voltage 1.29 V) and “▴” (module voltage 0.08 to 0.09 V) is close to a voltage of the actual measurement data. This is considered to indicate validity of the present invention.
In Example 2, using the data of Example 1, the average cell voltage of each cell at the voltages Vm=0.05, 0.08 to 0.09, and 1.29 V of the module, to which the light-shielding mask is attached, and the lock-in amplifier value ΔI are summarized in
For the data of the voltage Vm=0.05 V of the module in which the calibration line is created, the predicted value of the cell voltage (Vm−4 vOC, vOC)=(−1.95 V, 0.50 V) is close to the maximum and minimum voltages (−1.89 V, 0.49 V) of the actual measurement data.
In a case where the calibration line is estimated by the value ΔI (standardized value ΔI) standardized by the maximum value of the lock-in amplifier value ΔI at a module voltage of 0.05 V, a deviation is shown in the estimated calibration line of both the actual measurement data “▴” (module voltage 0.08 to 0.09 V) and the actual measurement data “∘” (module voltage 1.29 V), compared to Example 1.
Although the calibration line according to the standardized value ΔI is inferior to the calibration line according to the lock-in amplifier ratio rΔI, it is considered that a calibration line based on the standardized value ΔI can be used as an alternative of a case where the lock-in amplifier value ΔI of all the cells cannot be measured. In the following Example 3, since estimation is possible with the calibration line based on the standardized value ΔI, it is necessary to further examine a condition under which the calibration line of the standardized value ΔI can be used well.
In Example 3, the average cell voltage of each cell at the voltages Vm=0.56, 1.09 V of the module and the lock-in amplifier value ΔI are summarized in
In a case where the module voltage Vm=0.56 V, the sufficient light-shielding mask is applied to create the calibration line. However, in a case where the module voltage Vm=1.09 V, the voltage of each cell is changed without the light-shielding mask.
For the data of the voltage Vm=0.56 V of the module in which the calibration line is created, the predicted value of the cell voltage (Vm−4 vOC, vOC)=(−1.44 V, 0.50 V) is close to the minimum and maximum voltages (−1.38 V, 0.47 V) of the actual measurement data.
In a case where the calibration line is estimated by the value ΔI (standardized value ΔI) standardized by the maximum value of the lock-in amplifier value ΔI at a module voltage of 0.56 V, an estimation value “x”, which is close to the actual measurement data “o” (module voltage 1.09 V), is output.
However, since the estimation cannot be performed well in Example 2, it is necessary to further examine a condition under which the calibration line of the standardized value ΔI can be used well.
In Example 4, a ratio rΔI of the average cell voltage of each cell to the lock-in amplifier is measured at the voltages of 1.21, 1.42 V of the module.
In a case where the module voltage Vm=1.21 V, the light-shielding mask is sufficiently applied to create the calibration line. However, in a case where the module voltage Vm=1.42 V, the voltage of each cell is changed without the light-shielding mask.
For the data of the voltage Vm=1.21 V of the module in which the calibration line is created, the predicted value of the cell voltage (Vm−4 vOC, vOC)=(−0.79 V, 0.50 V) becomes both-end voltage (−0.42 V, 0.42 V) of the actual measurement data, and a deviation is shown.
Therefore, in a case where the actual open circuit voltage vOC=0.42 V, the predicted value of the cell voltage (Vm−4 vOC, vOC)=(−0.47 V, 0.42 V) is close to the both-end voltage (−0.42 V, 0.42 V) of the actual measurement data.
A result of estimation of the calibration line obtained by assuming the open circuit voltage vOC=0.42 V is as shown in
That is, in a result of estimation using the calibration line obtained by assuming the predicted value (Vm−4 vOC, vOC)=(−0.79 V, 0.50 V) of the cell voltage at the open circuit voltage vOC=0.50 V, the estimated calibration line is deviated significantly from the actual measurement data, as shown in
Although the embodiments of the present invention have been described above in detail with reference to the drawings, a specific configuration is not limited to the embodiments and can be appropriately modified without departing from the gist of the present invention. The configurations described in each of the embodiments and each of the examples described above may be combined.
Note that all or a part of the solar battery cell operation voltage estimation system 1 in the above-described embodiment may be realized by dedicated hardware, or may be realized by a memory and a microprocessor.
Note that all or a part of the solar battery cell operation voltage estimation system 1 may include a memory and a central processing unit (CPU), and functions thereof may be realized by loading and executing a program for realizing the functions of the units included in each system in the memory.
Note that processing of each unit may be performed by recording a program for realizing all or some of the functions of the solar battery cell operation voltage estimation system 1 on a computer-readable recording medium, and reading and executing the program recorded on the recording medium in the computer system. Note that, here, the “computer system” includes an OS and hardware such as a peripheral device. Further, the “computer system” includes a homepage providing environment (or a display environment) in a case where a WWW system is used.
In addition, “computer-readable recording medium” refers to a portable medium, such as a flexible disk, a magneto-optical disc, a ROM, or a CD-ROM, or a storage device such as a hard disk built in the computer system. Further, “computer-readable recording medium” includes a medium which dynamically holds a program for a short time like a communication line in a case of transmitting the program through a network such as the Internet or a communication line such as a telephone line, and a medium which holds a program for a certain period of time like a volatile memory in the computer system serving as a server or a client in that case. In addition, the above-described program may be provided to realize some of the above-described functions, or may be realized by combining the above-described functions with a program already recorded in the computer system.
Number | Date | Country | Kind |
---|---|---|---|
2018-233647 | Dec 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/048430 | 12/11/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/122105 | 6/18/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20100191383 | Gaul | Jul 2010 | A1 |
20130311121 | Kohno, et al. | Nov 2013 | A1 |
20150028682 | Jean et al. | Jan 2015 | A1 |
20150330601 | Jungwirth | Nov 2015 | A1 |
20160294189 | Uno et al. | Oct 2016 | A1 |
20170163213 | Colli et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
101603988 | Dec 2009 | CN |
10238847 | Feb 2012 | CN |
104160619 | Nov 2014 | CN |
104769838 | Jul 2015 | CN |
105074604 | Nov 2015 | CN |
106130475 | Nov 2016 | CN |
3573230 | Nov 2019 | EP |
2013070045 | Apr 2013 | JP |
2013131678 | Jul 2013 | JP |
2014165277 | Sep 2014 | JP |
2018123123 | Jul 2018 | WO |
2018135123 | Jul 2018 | WO |
Entry |
---|
Extended European Search Report for related Application No. 19896406.6; reported on Aug. 25, 2022. |
Guanjun Bao, et al: “An ultra-short-term power prediction model based on machine vision for distributed photovoltaic system”, 2015. IEEE International Conference on Information and Automation, IEEE, 8 Aug. 8, 2015, pp. 1148-1152. |
International Search Report related to Application No. PCT/JP2019/048430; reported on Feb. 10, 2020. |
K. Taba et al., Study on heat generation of cell in PV module, Proceedings of JSES/JWEA Joint Conference, 2016, pp. 315-318. |
Y. Kobayashi et al., Contactless estimation of a solar cell voltage in a module using modulated light and a phase detector, IEEJ Transactions on Power and Energy, vol. 138, No. 1, pp. 45-52, 2018. |
Y. Kobayashi et al., Contactless estimation of a solar cell voltage in a module using modulated light and a phase detector, Electric Engineering in Japan, vol. 204, No. 2, 2018, pp. 3-12. |
Chinese Search Report for related Application No. 201980082095.7; dated Jan. 5, 2024. |
Number | Date | Country | |
---|---|---|---|
20220038053 A1 | Feb 2022 | US |