The invention relates to a method, to a hazard warning center and to an evacuation system for evacuating a building divided into sections by means of a hazard warning center which is connected to at least one hazard warning unit which detects a hazard.
The term evacuation relates to the movement of people away from the location of a hazard, for example the clearing of an apartment, a house etc. The evacuation time is generally referred to as the evacuation duration.
EP 401038 A1 describes an emergency evacuation arrangement containing a plurality of sensors for monitoring a hazard, such as smoke, fire or a tremor, in a respective area of a building. The arrangement has a processor which receives the signals generated by the sensors. The processor generates alarm warning signals and the signals which indicate escape routes. The driving of optical and acoustic indication means by the processor signals is used to indicate a safe escape route.
US 2004/0036579 A1 describes an evacuation system, which can be adapted, for buildings to be evacuated. The system has controllers which determine the exits which ensure safe exit in the event of a hazardous situation. Signaling means which indicate the safe exits are also provided.
U.S. Pat. No. 6,317,042 B1 describes how an evacuation route is determined by an emergency server on the basis of the location and position of the sensor which determines the hazardous situation. The evacuation route is displayed on a display device, for instance a monitor, situated in each room. In the event of a change in the hazardous situation, a corresponding changed evacuation route is displayed on the monitors in the rooms.
Events, for example industrial accidents, fires, bomb threats, terrorist attacks, gas alarms etc., may make it possible for a building to have to be evacuated. The individual strategy when evacuating buildings was examined, inter alia, by John Abrahams in his book “Fire escape in difficult circumstances, chapter 6, in: Stollard, 1994, Design against fire”. In this case, the independent variables are formed by the complexity of the building and the mobility of the people (physical capacity, limp etc.) and the dependent variable is the strategy. With decreasing mobility and increasing complexity of the building, the strategy changes from “rapid departure”, via “slow departure” and “movement to a safe location” (for example a stairwell), to “stay at the location and wait for rescue”. This last strategy applies, in particular, to bedridden people (for example when evacuating hospitals) who have to be rescued by nursing staff or rescue workers. So-called evacuation plans are used for evacuation. Evacuation plans deal with the procedure, that is to say are part of the preventive, organizational (non-structural, operational) fire protection. Preventive fire protection is the umbrella term for all measures which prevent or restrict the occurrence, spreading and effect of fires in advance. Since a statement relating to the location of a possible hazard in a building can be made only with great difficulty in advance, such evacuation plans are suboptimal since they can ensure efficient clearing of a building only to a limited extent.
So-called hazard warning systems, for example warning systems for fire, gas, temperature etc., which usually comprise detectors which are connected to a center are used in buildings to detect hazards. Such hazard warning systems are used in public buildings, office buildings, hotels, industrial buildings, airports, train stations, workshops, schools etc. If an alarm or hazard is triggered at one of the detectors or hazard warning units, the hazard warning center is notified. The functions of the center can be freely parameterized and support an alarm organization adapted to the object to be monitored. Such centers usually have an integrated operating part having a graphical display, which can display text, characters etc., and interfaces to communication networks.
The object of the present invention can be seen to be that of proposing an efficient and cost-effective solution for dynamic evacuation from a building.
According to the invention, the object is respectively achieved by means of the subject matters of the independent patent claims.
Developments of the invention are specified in the subclaims.
A core idea of the invention can be seen in the fact that, in order to evacuate a building divided into sections, use is made of a hazard warning center which is connected to at least one hazard warning unit which detects a hazard. A section is to be understood as meaning a floor, part of a floor, a building, part of a building, a section of a building or building complex. According to the location of the hazard detected by the hazard warning unit, the received data relating to the hazard and at least one stored condition, the hazard warning center creates an evacuation plan for the sections of the building. An evacuation plan is understood as meaning, for example, the chronological sequence of an evacuation. A request to emit either a warning signal or an evacuation signal is then sent to at least one alarm signaling unit in a section on the basis of the evacuation plan. This request may be, for example, a signaling message of a communication network. This type of dynamic evacuation constitutes a functionality for the temporally staggered driving of alarm signaling units. The processing and evaluation of the data and the creation of the evacuation plan take place individually and thus result in optimum and safe clearing of the building. During signaling, use is made, in principle, of two successive phases or types of alarm, namely a warning signal and an evacuation signal. It goes without saying that, according to the invention, further signals, for example an indication of escape routes in the form of, for example, an announcement, a graphical display etc. and the combination thereof, could also be used. Different triggering conditions may be configured for both types of signaling. These conditions are generally stored in the hazard warning center in the form of a table, a database etc. The delay time, usually in minutes, for triggering the warning signal or the evacuation signal can be used, for example, as a condition. A further condition could be that the changeover from the warning signal to the evacuation signal in a section is defined. In this case, the delay time may be made dependent on the location of the hazard. The defined triggering conditions are respectively ORed (separately in each case for the warning signal and the evacuation signal), that is to say triggering takes place when at least one of the defined conditions has been satisfied. A priority may be assigned to both the evacuation signal and the warning signal. In this case, the evacuation signal is usually assigned a higher priority and is accordingly given priority over the warning signal when conditions for both signals are satisfied at the same time. Alarm signaling units which, depending on the type, are able to become active only in the case of a warning signal or an evacuation signal or when changing over to the runtime are connected to the hazard warning center. As a result, it is possible to use all conventional alarm devices, for example conventional horns with sound sequences which can be set on the horn, horns whose sound sequences can be changed using a computer program, horns with sound sequences which can be configured using software and with changeover to the runtime, announcement units, for instance loudspeakers etc., alarm bells, flash lamps, luminous strips etc. The communication network can also be used to drive computers and telephones in such a manner that they output a warning or evacuation signal. It goes without saying that door opener systems, monitoring cameras etc. could also be used for safe evacuation. An evacuation plan is created and controlled in a fully automatic manner in the event of a hazard. However, if necessary, a manual interruption may take place. The interruption may be effected in the hazard warning center directly or in a connected operating part.
A great advantage of the invention is that an optimum evacuation plan can be dynamically created on the basis of the location of the hazard. This means that a safe escape route which leads away from the location of the hazard can be signaled to the people in the building. In addition, the use of conditions makes it possible to largely avoid congestion, for example at doors, in stairwells etc., and panic of the people affected in the building.
The invention is explained in more detail using an exemplary embodiment which is illustrated in a figure, in which:
Number | Date | Country | Kind |
---|---|---|---|
06110555 | Mar 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/050978 | 2/1/2007 | WO | 00 | 9/2/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/099015 | 9/7/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6317042 | Engelhorn et al. | Nov 2001 | B1 |
6496110 | Peterson et al. | Dec 2002 | B2 |
6809642 | Brenner | Oct 2004 | B1 |
20040036579 | Megerle | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
2018125 | Dec 1990 | CA |
0401038 | Dec 1990 | EP |
Number | Date | Country | |
---|---|---|---|
20090040038 A1 | Feb 2009 | US |