Method for evaluating blush in myocardial tissue

Information

  • Patent Grant
  • 9610021
  • Patent Number
    9,610,021
  • Date Filed
    Friday, January 16, 2015
    10 years ago
  • Date Issued
    Tuesday, April 4, 2017
    7 years ago
Abstract
Vessel perfusion and myocardial blush are determined by analyzing fluorescence signals obtained in a static region-of-interest (ROI) in a collection of fluorescence images of myocardial tissue. The blush value is determined from the total intensity of the intensity values of image elements located within the smallest contiguous range of image intensity values containing a predefined fraction of a total measured image intensity of all image elements within the ROI. Vessel (arterial) peak intensity is determined from image elements located within the ROI that have the smallest contiguous range of highest measured image intensity values and contain a predefined fraction of a total measured image intensity of all image elements within the ROI. Cardiac function can be established by comparing the time differential between the time of peak intensity in a blood vessel and that in a region of neighboring myocardial tissue both pre and post procedure.
Description
BACKGROUND OF THE INVENTION

The invention relates to a method for evaluating myocardial blush in tissue from images recorded following injection of fluorescent dyes.


TIMI (Thrombolysis In Myocardial Infarction) studies initially suggested that successful restoration of flow in an infarcted artery was the major goal of reperfusion. However, substantial evidence has grown over the years showing that distortion of microvasculature and myocardial perfusion is often present despite epicardial artery patency. This might be the result of a combination of distal embolization and reperfusion injury with cellular and extracellular edema, neutrophil accumulation and release of detrimental oxygen free radicals.


Myocardial blush was first defined by van't Hof et al. as a qualitative visual assessment of the amount of contrast medium filling a region supplied by an epicardial coronary artery. It is graded as Myocardial Blush Grade: 0 (=no myocardial blush or contrast density), 1 (=minimal myocardial blush or contrast density), 2 (=myocardial blush or contrast density which exists to lesser extent and its clearance is diminished compared to non-infarct-related coronary artery), and 3 (=normal myocardial blush or contrast density comparable with that obtained during angiography of a contralateral or ipsilateral non-infarct-related coronary artery). When myocardial blush persists (long “wash-out rate” or “staining”), it suggests leakage of the contrast medium into the extravascular space or impaired venous clearance and is graded 0.


The consequences of microvascular damage are extremely serious. In patients treated with thrombolytics for acute myocardial infarction, impaired myocardial perfusion as measured by the myocardial blush score corresponds to a higher mortality, independent of epicardial flow. Myocardial blush grade correlates significantly with ST segment resolution on ECGs, enzymatic infarct size, LVEF, and is an independent predictor of long-term mortality. Myocardial blush grade may be the best invasive predictor of follow-up left ventricular function. Determining the myocardial blush has emerged as a valuable tool for assessing coronary microvasculature and myocardial perfusion in patients undergoing coronary angiography and angioplasty.


The degree of blush that appears during imaging (e.g., imaging with a fluorescent dye, such as ICG) is directly related to the underlying tissue perfusion. Conventionally, to quantitatively characterize kinetics of dye entering the myocardium using the angiogram, digital subtraction angiography (DSA) has been utilized to estimate the rate of brightness (gray/sec) and the rate of growth of blush (cm/sec). DSA is performed at end diastole by aligning cine frame images before the dye fills the myocardium with those at the peak of a myocardial filling to subtract spine, ribs, diaphragm, and epicardial artery. A representative region of myocardium is sampled that is free of overlap by epicardial arterial branches to determine the increase in the grayscale brightness of the myocardium at peak intensity. The circumference of the myocardial blush is then measured using a handheld planimeter. The number of frames required for the myocardium to reach peak brightness is converted into time by dividing the frame count by the frame rate. This approach is quite time-consuming and is difficult to perform on a beating heart and to conclude within a reasonable time.


Generally, conventional techniques gathering statistical information about a ROI rely on algorithms that track the ROI during movement of the underlying anatomy and attempt to keep the ROI localized in the same tissue portion. For example, the user can draw an initial ROI in the image, ignoring any blood vessels not to be included in the calculation, with the initial ROI then adjusted to the moving anatomy through linear translation, rotation, and distortion. However, this approach is computationally intensive and not reliable with low contrast images.


Accordingly, there is a need for a method to determine blush of myocardial tissue while the heart is beating, to eliminate effects from features other than myocardial tissue that may migrate into the region of interest (blood vessels, clips, the surgeon's hands, etc. . . . ), and to produce useful information for the surgeon during a medical procedure within a “reasonable time,” if not within “real time.”


There is also a need for measuring improvement in cardiac function by measuring the time differential between when contrast in a blood vessel reaches its peak intensity and when the contrast in a neighboring region in the myocardial tissue reaches its corresponding peak. If this time differential decreases after a medical procedure as compared to before the procedure, under uniform hemodynamic conditions cardiac function can be said to have improved. A method for tracking blood vessels during image acquisition improves our ability to locate the time at which the contrast in a blood vessel achieves its peak intensity.


SUMMARY OF THE INVENTION

The present invention is directed to a method for evaluating myocardial blush in tissue from images recorded following injection of fluorescent dyes using a static ROI (Region-of-Interest) that is fixed in position on the image while the heart (or other tissue of interest) moves under it in the image sequence. The static ROI uses a statistical technique to eliminate intensity outliers and to evaluate only those pixels that have less inter-pixel intensity variance. The technique is highly robust, and the results depend only insignificantly on changes to the ROI size and position, providing the ROI is placed in the same general region of the anatomy.


According to one aspect of the invention, a method for determining perfusion in myocardial tissue using fluorescence imaging, includes the steps of defining a static region of interest (ROI) in an image of the myocardial tissue, measuring fluorescence intensity values of image elements (pixels) located within the ROI, and determining a blush value from an average of the intensity values of image elements located within a smallest contiguous range of image intensity values containing a first predefined fraction of a total measured image intensity of all image elements within the ROI.


Advantageous embodiments may include one or more of the following features. The smallest range of contiguous image intensity values may be determined from a histogram of a frequency of occurrence of the measured image intensity values, wherein the first predefined fraction may be between 70% and 30%, preferably between 60% and 40%, and most preferably at about 50%. Blush values are determined, optionally continuously, over a predefined period of time. At least one of the blush rate and the washout rate may be determined from the slope of the time-dependent blush values.


Alternatively or in addition, the blush and associated perfusion may be determined by defining a second static ROI in the image of the myocardial tissue, with the second ROI including an arterial blood vessel, and determining a measure of the peak intensity of the arterial blood vessel from a total intensity of the intensity values of image elements located within a smallest contiguous range of high image intensity values containing a second predefined fraction, for example 20%, of a total measured image intensity of brightest image elements within the ROI. This measurement can then be used to determine an outcome of a procedure by comparing an elapsed time between a maximum blush value and maximum measure of perfusion before the procedure and an elapsed time between a maximum blush value and maximum measure of perfusion after the procedure.


According to another aspect of the invention, a method for tracking a blood vessel in an image includes the steps of (a) acquiring a fluorescence image of tissue containing a blood vessel, (b) delimiting a segment of the blood vessel with boundaries oriented substantially perpendicular to a longitudinal direction of the blood vessel, (c) constructing at least one curve extending between the delimiting boundaries and located within lateral vessel walls of the blood vessel, wherein the at least one curve terminates at the delimiting boundaries substantially perpendicular to the boundaries, and (d) determining a fluorescence signal intensity in the fluorescence image along the at least one curve, with the signal intensity being representative of vessel perfusion.


In one exemplary embodiment, the at least one curve may be defined by a spline function. For example, more than one curve may be constructed and the fluorescence signal intensity may be determined by averaging the signal intensity from points on the curves having a substantially identical distance from one of the delimiting boundaries.


Advantageously, the position of the lateral vessel walls in the fluorescence image may be determined using an edge-detection algorithm, such as a Laplacian-of-a-Gaussian operator.


In another exemplary embodiment, time-sequential fluorescence images of the tissue containing the blood vessel may be acquired. Characteristic dimensions of the delimited segment may then be determined from the location of the lateral vessel walls in the first image, and positions of lateral vessel walls may be determined in at least one second image. The characteristic dimensions from the first image may then be matched to the positions of lateral vessel walls in the second image to find a location of the lateral vessel walls of the first image in the at least one second image. The steps (c) and (d) above are then repeated for the second image or images.


Advantageously, an average fluorescence signal intensity of all points may be computed along the curve and a change in perfusion of the blood vessel may be determined from a change in the average fluorescence signal intensity between the time-sequential images.


These and other features and advantages of the present invention will become more readily appreciated from the detailed description of the invention that follows and from the appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows schematically a camera system for observing ICG fluorescence;



FIG. 2 shows an ICG fluorescent cardiac image, with the rectangle delineating a static ROI on the imaged area;



FIG. 3 shows a histogram of the number of pixels (vertical axis) as a function of the measured brightness value (horizontal axis);



FIG. 4 shows the location of pixels within the static ROI that contain at least 50% of the intensity counts over the smallest set of adjacent histogram bins in FIG. 3;



FIG. 5 shows the static ROI of FIG. 2 (top image) and a smaller static ROI (bottom image) located within the ROI of the top image;



FIG. 6 shows the time dependence of the computed average intensity for the pixels highlighted in FIG. 4 (top image) and for the smaller static ROI of FIG. 5 (bottom image) taken over a 28 second time period;



FIG. 7 shows an ICG fluorescent cardiac image with a static ROI before a surgical procedure (top image), and after the procedure (bottom image);



FIG. 8 shows the time evolution of the average blush intensity for the pixels within the ROI of FIG. 7 before the procedure (top image) and after the procedure (bottom image) taken over a 28 second time period;



FIG. 9 shows delineation of a segment of a blood vessel for analysis with the method of the invention;



FIG. 10 shows the delineated segment of FIG. 9 with lines terminating at the vessel walls and line normals at the longitudinal end points;



FIG. 11 shows the vessel walls and line normals at the longitudinal end points of FIG. 10 with proper orientation;



FIG. 12 shows splines connecting the longitudinal end points of FIG. 11 and a longitudinal intensity profile (upper left corner) taken before a procedure;



FIG. 13 shows splines connecting the longitudinal end points together with a longitudinal intensity profile (upper left corner) and the time dependence of the intensity profile (upper right corner) taken after a procedure.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS


FIG. 1 shows schematically a device for non-invasively determining blush of myocardial tissue by ICG fluorescence imaging. An infrared light source, for example, one or more diode lasers or LEDs, with a peak emission of about 780-800 nm for exciting fluorescence in ICG is located inside housing 1. The fluorescence signal is detected by a CCD camera 2 having adequate near-IR sensitivity; such cameras are commercially available from several vendors (Hitachi, Hamamatsu, etc.). The CCD camera 2 may have a viewfinder 8, but the image may also be viewed during the operation on an external monitor which may be part of an electronic image processing and evaluation system 11.


A light beam 3, which may be a divergent or a scanned beam, emerges from the housing 1 to illuminate an area of interest 4, i.e. the area where the blush of myocardial tissue is to be measured. The area of interest may be about 10 cm×10 cm, but may vary based on surgical requirements and the available illumination intensity and camera sensitivity.


A filter 6 is typically placed in front of the camera lens 7 to block excitation light from reaching the camera sensor, while allowing fluorescence light to pass through. The filter 6 may be an NIR long-wave pass filter (cut filter), which is only transparent to wavelengths greater than about 815 nm, or preferably a bandpass filter transmitting at peak wavelengths of between about 830 and about 845 nm and having a full width at half maximum (FWHM) transmission window of between about 10 nm and 25 nm in order to block the excitation wavelength band. The camera 2 may also be designed to acquire a color image of the area of interest to allow real-time correlation between the fluorescence image and the color image.


In general, the surgeon is interested in how well the blood is perfusing the tissue in the area within a region of interest (ROI). Blood vessels visible in the image typically include major blood vessels, e.g., arteries; however, arterial blood flow may not be of interest to the surgeon when considering perfusion of the surrounding myocardial tissue. Because these blood vessels may have either a higher or a lower brightness in the image, depending on the phase of the cardiac cycle, contributions from blood vessels to the measured image brightness may alter the myocardial blush grade by skewing the average image brightness upward or downward. In order to obtain a correct value for the myocardial blush, the contributions from the blood vessels must be eliminated before the blush grade is computed.



FIG. 2 shows a typical ICG fluorescent image of a heart showing blood vessels and myocardial tissue, with a rectangle delineating a static ROI on the imaged area. The ROI is static, meaning that it does not track tissue movement when the heart is beating. This simplifies the computation, while the results computed with the method of the invention are robust and largely insensitive to tissue movement.


To compute meaningful average blush intensity within the delineated static ROI, the following needs to be taken into consideration:

    • 1 The selected area of the anatomy within the ROI should consist primarily of myocardial tissue, while minimizing the effects from blood vessels, clips, etc. that appear in the ROI and may move in and out of the ROI when the heart is beating.
    • 2 The measured myocardial blush value should be substantially independent of the size of the ROI in the selected area of the anatomy.


According to one embodiment illustrated in FIG. 3, a histogram of the grayscale intensity values in the ROI of FIG. 2 is generated. The horizontal axis of the histogram represents the full range of intensity values arranged in bins (e.g., 28=256 bins for an 8-bit image representing pixel intensities 0 to 255), whereas the vertical axis indicates the number of pixels for each intensity value in a bin. In comparison, a histogram of a 12-bit image would have 212=4,096 intensity bins.


A sliding window W is applied across the abscissa, and the smallest set of adjacent histogram bins containing in excess of a predetermined percentage of the total intensity is determined. In the illustrated example, a percentage value of 50% is selected as criterion for the bins to be included, although other values can be selected as long as these selected values exclude outliers and provide a reliable assessment of the blush. For the histogram depicted in FIG. 3, the smallest set of adjacent histogram bins containing at least 50% of the intensity counts results in a window W which is 12 bins wide and includes the intensity values between 120 and 131.


The average intensity for the static ROI is then computed using only the values inside the window determined above, i.e., the number of pixels in a bin multiplied with the intensity in that bin and summed over all bins within the window W.


This approach excludes the intensity outliers (both low and high intensity values) from the computation of the average intensity representing the myocardial blush value in the ROI. In other words, only intensity values between 120 and 131 within the ROI are included in the subsequent calculation.



FIG. 4 shows the location of pixels within the static ROI with intensity values within the window W (according to the selection criterion that about 50% of the intensity values are located within the window W). The bright areas indicate the pixels included. As can be seen, the area with the included pixels need not be contiguous.



FIG. 5 shows the static ROI of FIG. 2 (top image) and a smaller static ROI (bottom image) located within the ROI of the top image. The smaller ROI includes less arterial blood vessels.



FIG. 6 shows schematically the computed average intensity for both the static ROIs of FIG. 5 taken over a 28 second time interval. The elapsed time (from the point an increase in the intensity was detected, in seconds) is plotted on the abscissa, and the average intensity for the static ROI (in arbitrary units) is plotted on the ordinate. The two curves match within about 1-3 percent.


The maximum blush is approximately 112 [arb. units], the blush rate measured over about 6.1 sec from about zero blush to about the maximum value is in linear approximation about 16.2 [arb. units]/sec, and the washout rate measured over about 6.1 sec from about the maximum blush value to about 15-20% blush is in linear approximation about 10.5 [arb. units]/sec. Blush appears to increase and decrease (washout) exponentially, so the linear curve fitting described above should be considered only as an approximation, Other characteristic values of the curves of FIG. 6, such as a maximum slope or a curve fit with an exponential rise and decay time may also be used.


The average blush and the blush and washout rates obtained with this technique agree with the blush values perceived by the naked eye.


The static ROI algorithm described above does not rely on image tracking and is generally insensitive to the motion artifacts because of the exclusion of outliers. It is computationally fast and works well with both low and high contrast images.



FIG. 7 shows pictures of the heart before and after a surgical procedure has been performed on the heart. A comparison of the blush determined with the aforedescribed method of the invention before and after the procedure can be used to determine whether perfusion has improved as a result of the procedure.


For obtaining reliable and meaningful results, the ICG dosage, illumination level and camera sensitivity settings should be adjusted so that the detector in the camera does not saturate when areas in the image, such as arteries, reach their maximum intensity. If the camera nevertheless does saturate, the user needs to decide whether the computed blush rate and washout rate are likely to represent the actual rates, had the detector not saturated.


Two approaches are proposed for comparing image data obtained before and after the procedure: (1) comparing the blush and washout rates before and after the procedure; and (2) comparing the elapsed time from blood vessel peak intensity to maximum blush on images taken before and after the procedure.


With the first approach, a time series of fluorescence images of the anatomy is acquired before (top image of FIG. 7) and after the surgical procedure (bottom image of FIG. 7) by, for example, injecting a bolus of ICG dye. Only one of the time series of images is shown. A ROI is delineated in each of the images in approximately the same area of the anatomy. The average intensity of the blush is then determined in each of, or in a subset of, the fluorescence images in the time series with the method of the invention described above with reference to the histogram of FIG. 3, which excludes outliers, such as arteries. The average ROI intensity from each image in the time series is normalized to the baseline average intensity of the ROI in the first frame to correct for residual ICG that may have remained in the system.



FIG. 8 shows schematically the computed average intensities (about 50% of the intensity values are located within the window W of a histogram corresponding to the histogram of FIG. 3) for the static ROIs of FIG. 7 taken over a 28 second time interval. The top graph represents values before the procedure and the bottom graph values after the procedure. The elapsed time (from the point an increase in the intensity was detected, in seconds) is plotted on the abscissa, and the average intensity for the static ROI (in arbitrary units) is plotted on the ordinate. The broken line through the data represents a smoothed curve of the raw data. This helps to mask variation in the measurement due to motion caused by the cardiac cycle or respiration and serves as a visual guide for assessing the blush rate and washout rate. As mentioned above, saturation of the sensor should be avoided, because saturation would make an absolute determination of the slope impractical.


The blush and washout rates are determined from the corresponding slopes of straight lines connecting the 5% and 95% points in the average intensity curves, i.e., the start of blush is taken as the time at which the intensity rises above the baseline by 5% of its maximum value, and the 95% point is the time at which the intensity reaches 95% of its maximum value. The same applies to the determination of the washout rate, with the 5% point at the end of washout determined with reference to the final values, which may be higher than the initial 5% point due to residual IeG remaining in the myocardial tissue. The 5% and 95% thresholds are heuristic thresholds used to discount for any noise that may appear in the image both before the blush appears, and as it nears its maximum value.


It will be understood that the slope of the straight lines represents an average rate, and that the rate can also be determined from a least-square curve fit or by selecting points other than 5% and 95%, as described in the illustrated example.


As indicated in FIG. 8, the blush rate following the procedure is about 43 units/sec, compared to about 18 units/sec before the procedure, representing an improvement of about 140%. Likewise, the washout rate following the procedure is about 21 units/sec, compared to about 10 units/sec before the procedure, representing an improvement of more than 100%. Greater perfusion (blush) and washout rates suggest faster movement of blood and greater maximum blush suggests a greater volume of ICG-bound blood in the tissue and are hence clear indicators of improved perfusion through the tissue.


With the second approach, perfusion is determined from the time of maximum blood vessel (artery) intensity to maximum myocardial blush. For example, for cardiac surgery, the surgeon would draw two regions of interest (ROI), a first region covering the coronary artery feeding blood to the heart and a second region covering myocardial tissue receiving blood from that artery. The maximum myocardial blush is determined from the histogram of the first region, as described above (FIG. 8). Peak intensity of the blood vessel may advantageously be determined from an area in the first region showing pixel intensity greater than that of the surrounding tissue. For example, a histogram of the grayscale intensity values may be constructed for the first region and a sliding window W applied across the abscissa, wherein the smallest set of adjacent histogram bins containing a predetermined percentage, for example about 20%, of the pixels with the highest intensity. The lower percentage of pixels included in the computation of the average blood vessel intensity than for myocardial tissue gives the user some flexibility in drawing a larger ROI over the vessel to make the result less sensitive to lateral movement in the vessel during image acquisition.


It will be understood that the first and second regions need not be separate, but may 20 overlap or even be identical, as long as the fluorescence signals from the blood vessels and the myocardial tissue can be clearly separated in the histogram.


It has been observed that before the procedure, the myocardial area may reach maximum blush two seconds after the coronary artery reaches maximum fluorescence intensity. After the procedure, it may only take one second for the myocardial blush to reach maximum blush after the coronary artery reaches maximum fluorescence intensity following the vessel reaching maximum. This finding would lead to the conclusion that cardiac function has improved.


As mentioned above, a blood vessel may move laterally during image acquisition which may make it more difficult to reliably determine the fluorescence intensity, for example during ICG imaging, of a coronary artery. The proposed method provides a means for tracking the movement of the vessel by determining several, typically three, lines which follow the contour of a segment of interest of the blood vessel and approximately span the width of the vessel.


According to the method, features or edges in the image are determined by filtering using a convolution with the Laplacian-of-a-Gaussian kernel. The detected edges may be enhanced (thickened) by defining the edge by a width of at least two pixels. Both the original and the edge-enhanced images are stored.


Referring now to FIGS. 9 and 10, an operator delimits the segment of the vessel of interest by drawing two lines across the vessel, for example with a computer mouse (FIG. 9). The system then uses the previously determined edge information to detect the segment of each line located between the vessel edges and the mid-point of that segment, which is necessarily also the mid-point of the vessel, and constructs a line normal to each line segment (FIG. 10). Thereafter, the system aligns two line normals with the major longitudinal axis of the vessel (FIG. 11).


Next, the system constructs a series of 3 parallel lines, for example cubic spline, of approximately equal length joining the two ends of the segment of interest. However, a greater or lesser number of lines can be used. The lines have at their respective end points the same slope as the respective line normals. Three exemplary lines which approximately span the width of the vessel are shown in FIG. 12. The pixel intensity is sampled at points of each line along the longitudinal axis of the vessel. Preferably, intensities are averaged across the three lines at each location along the longitudinal axis to produce an average vessel intensity at each location in the vessel. As indicated in the insert at the top left corner of FIG. 12, the average intensity in the vessel segment is approximately 55, substantially independent of the longitudinal location in the vessel.


The process is then repeated for the time series of images frame-by-frame, while making sure that the positions match from one frame to the next.



FIG. 13 illustrates a final frame in the image sequence processed in this manner. The insert at the top left corner of FIG. 13 shows, as in FIG. 12, the averaged pixel intensity along the three lines. The segment now fluoresces noticeably stronger with an average intensity in the vessel segment of approximately 179. The insert at the top right corner of FIG. 13 shows the change in the average intensity for all of the processed time-ordered frame sequence of images. The “fill time” of the blood vessel can be calculated from the slope of the latter curve (pixel intensity vs. time).


The preceding concepts can be extended to develop quantitative indices useful for intraoperative assessment of blood flow in surgical flaps and for identifying vascular compromise.


Assuming that there is a peak having maximum fluorescence, the following metrics can be computed from the image sequence. If there is no peak, there is likely total arterial occlusion in the flap.


I′In is a measure for the rate of change of increasing perfusion with time as evidenced by the rate of ICG ingress or wash-in.


I′Out is a measure for the rate of change of decreasing perfusion with time after reaching maximum fluorescence intensity as evidenced by the rate of ICG egress or wash-out.


Each of the measures may be taken on a flap either pre- and post-operatively or, once the flap is in place, the measures may be taken from the flap and from adjacent native tissue.


With


I′in-Pre being the rate of ICG ingress measured on either adjacent native tissue or on the flap pre-operatively,


I′in-Post being the rate of ICG ingress measured on the flap post-operatively, Similarly,


I′Out-Pre being the rate of ICG egress measured on either adjacent native tissue or on the flap pre-operatively, and


I′Out-Post being the rate of ICG egress measured on the flap post-operatively,


the Wash-in Ratio WRIn can be defined as:

WRin=I′in-Post/I′in-Pre


and the Wash-out Ratio WROut can be defined as:

WRout=I′Out-Post/I′Out-Pre.


WRIn and WROut will be close to 1.0 in cases with normal vascular conditions.


WRIn will be significantly less than 1.0 in cases of arterial spasm or partial arterial occlusion. This metric will vary inversely to the degree of arterial spasm or partial arterial occlusion; the amount by which this metric is less than 1.0 will correlate with increased arterial spasm or arterial occlusion.


WROut will be significantly less than 1.0 in cases of venous congestion. This metric will vary inversely to the degree of venous congestion; the amount by which this metric is less than 1.0 will correlate with increased venous congestion.


While the invention is receptive to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not limited to the particular forms or methods disclosed, but to the contrary, the invention is meant to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the appended claims.

Claims
  • 1. A method for tracking a blood vessel in an image, comprising the steps of: (a) acquiring a fluorescence image of tissue containing a blood vessel;(b) delimiting a segment of the blood vessel with boundaries oriented substantially perpendicular to a longitudinal direction of the blood vessel;(c) constructing at least one curve extending between the delimiting boundaries and located within lateral vessel walls of the blood vessel, wherein the at least one curve terminates at the delimiting boundaries substantially perpendicular to the boundaries; and(d) determining a fluorescence signal intensity in the fluorescence image along the at least one curve, with the signal intensity being representative of vessel perfusion.
  • 2. The method of claim 1, wherein the at least one curve is defined by a spline function.
  • 3. The method of claim 1, wherein constructing at least one curve includes constructing a plurality of curves and determining the fluorescence signal intensity includes averaging the signal intensity from points on the plurality of curves having a substantially identical distance from one of the delimiting boundaries.
  • 4. The method of claim 1, wherein a position of the lateral vessel walls in the fluorescence image is detected by an edge-detection algorithm.
  • 5. The method of claim 4, wherein the edge-detection algorithm is implemented with a Laplacian-of-a-Gaussian operator.
  • 6. The method of claim 4, further comprising the steps of: acquiring time-sequential fluorescence images of the tissue containing the blood vessel;determining characteristic dimensions of the delimited segment from the location of the lateral vessel walls in a first image;determining positions of lateral vessel walls in at least one second image;matching the characteristic dimensions from the first image to the positions of lateral vessel walls in the second image to find a location of the lateral vessel walls of the first image in the at least one second image; andrepeating steps (c) and (d) for the at least one second image.
  • 7. The method of claim 6, further comprising: computing an average fluorescence signal intensity of all points along the curve, anddetermining a change in perfusion of the blood vessel from a change in the average fluorescence signal intensity between the time-sequential images.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 13/850,063, filed Mar. 25, 2013, now U.S. Pat. No. 8,965,488, which is a divisional of U.S. application Ser. No. 12/841,659, now U.S. Pat. No. 8,406,860, which is a continuation-in-part of PCT International Application No. PCT/CA2009/00073, filed Jan. 23, 2009, which claims the benefit of U.S. Provisional Application No. 61/023,818, filed Jan. 25, 2008, the entire contents of which are incorporated herein by reference. This application also claims the benefit of prior filed U.S. Provisional Application No. 61/243,688, filed Sep. 18, 2009, the entire contents of which are incorporated herein by reference.

US Referenced Citations (273)
Number Name Date Kind
4109647 Stern et al. Aug 1978 A
4162405 Chance et al. Jul 1979 A
4200801 Schuresko Apr 1980 A
4394199 Barnhard, IV et al. Jul 1983 A
4473841 Murakoshi et al. Sep 1984 A
4532918 Wheeler Aug 1985 A
4541438 Parker et al. Sep 1985 A
4556057 Hiruma et al. Dec 1985 A
4619249 Landry Oct 1986 A
4718417 Kittrell et al. Jan 1988 A
4719508 Sasaki et al. Jan 1988 A
4768513 Suzuki Sep 1988 A
4773097 Suzaki et al. Sep 1988 A
4774568 Matsuo Sep 1988 A
4786813 Svanberg et al. Nov 1988 A
4805597 Iwakoshi Feb 1989 A
4815848 Hadeishi Mar 1989 A
4821117 Sekiguchi Apr 1989 A
4827908 Matsuo May 1989 A
4852579 Gilstad et al. Aug 1989 A
4858001 Milbank et al. Aug 1989 A
4860731 Matsuura Aug 1989 A
4867137 Takahashi Sep 1989 A
4868647 Uehara et al. Sep 1989 A
4900934 Peeters et al. Feb 1990 A
4930516 Alfano et al. Jun 1990 A
4938205 Nudelman Jul 1990 A
4957114 Zeng et al. Sep 1990 A
4993404 Lane Feb 1991 A
4995396 Inaba et al. Feb 1991 A
4995398 Turnidge Feb 1991 A
4998972 Chin et al. Mar 1991 A
5003977 Suzuki et al. Apr 1991 A
5042494 Alfano Aug 1991 A
5071417 Sinofsky Dec 1991 A
5078150 Hara et al. Jan 1992 A
5090400 Saito Feb 1992 A
5091652 Mathies et al. Feb 1992 A
5115137 Andersson-Engels et al. May 1992 A
5117466 Buican et al. May 1992 A
5125404 Kittrell et al. Jun 1992 A
5131398 Alfano et al. Jul 1992 A
5134662 Bacus et al. Jul 1992 A
5165079 Schulz-Hennig Nov 1992 A
5178616 Uemiya et al. Jan 1993 A
5196928 Karasawa et al. Mar 1993 A
5214503 Chiu et al. May 1993 A
5225883 Carter et al. Jul 1993 A
5255087 Nakamura et al. Oct 1993 A
5279298 Flower Jan 1994 A
5318023 Vari et al. Jun 1994 A
5318024 Kittrell et al. Jun 1994 A
5318869 Hashimoto et al. Jun 1994 A
5340592 Goodrich, Jr. et al. Aug 1994 A
5361769 Nilsson Nov 1994 A
5365057 Morley et al. Nov 1994 A
5371355 Wodecki Dec 1994 A
5375603 Feiler Dec 1994 A
5377676 Vari et al. Jan 1995 A
5377686 O'Rourke et al. Jan 1995 A
5394199 Flower Feb 1995 A
5419323 Kittrell et al. May 1995 A
5420628 Poulsen et al. May 1995 A
5421337 Richards-Kortum et al. Jun 1995 A
5421339 Ramanujam et al. Jun 1995 A
5424841 Van Gelder et al. Jun 1995 A
5430476 Häfele et al. Jul 1995 A
5437274 Khoobehi et al. Aug 1995 A
5438989 Hochman et al. Aug 1995 A
5453448 Narciso, Jr. Sep 1995 A
5465718 Hochman et al. Nov 1995 A
5496369 Howard, III Mar 1996 A
5507287 Palcic et al. Apr 1996 A
5514127 Shanks May 1996 A
5519534 Smith et al. May 1996 A
5576013 Williams et al. Nov 1996 A
5590660 MacAulay et al. Jan 1997 A
5623930 Wright et al. Apr 1997 A
5627907 Gur et al. May 1997 A
5647368 Zeng et al. Jul 1997 A
5656498 Iijima et al. Aug 1997 A
5662644 Swor Sep 1997 A
5664574 Chance Sep 1997 A
5673701 Chance Oct 1997 A
5689241 Clarke, Sr. et al. Nov 1997 A
5699798 Hochman et al. Dec 1997 A
5707986 Miller et al. Jan 1998 A
5732707 Widder et al. Mar 1998 A
5743266 Levene et al. Apr 1998 A
5756541 Strong et al. May 1998 A
5785965 Pratt et al. Jul 1998 A
5803914 Ryals et al. Sep 1998 A
5827190 Palcic et al. Oct 1998 A
5845639 Hochman et al. Dec 1998 A
5851181 Talmor Dec 1998 A
5865754 Sevick-Muraca et al. Feb 1999 A
5910510 Strong et al. Jun 1999 A
5919616 Aurelian et al. Jul 1999 A
5927284 Borst et al. Jul 1999 A
5935942 Zeimer Aug 1999 A
5951980 Collen Sep 1999 A
5956435 Buzug et al. Sep 1999 A
5965356 Aurelian et al. Oct 1999 A
5999841 Aoyagi et al. Dec 1999 A
6008889 Zeng et al. Dec 1999 A
6013265 Aurelian Jan 2000 A
6021344 Lui et al. Feb 2000 A
6032070 Flock et al. Feb 2000 A
6054131 Aurelian Apr 2000 A
6069689 Zeng et al. May 2000 A
6074627 Dean et al. Jun 2000 A
6081612 Gutkowicz-Krusin et al. Jun 2000 A
6093149 Guracar et al. Jul 2000 A
6122042 Wunderman et al. Sep 2000 A
6140314 Zeimer Oct 2000 A
6148227 Wagnières et al. Nov 2000 A
6149671 Nordquist et al. Nov 2000 A
6162242 Peyman Dec 2000 A
6179421 Pang Jan 2001 B1
6186628 Van de Velde Feb 2001 B1
6196226 Hochman et al. Mar 2001 B1
6207168 Aurelian Mar 2001 B1
6211953 Niino et al. Apr 2001 B1
6223069 Pfeiffer et al. Apr 2001 B1
6233480 Hochman et al. May 2001 B1
6241672 Hochman et al. Jun 2001 B1
6246901 Benaron Jun 2001 B1
6248727 Zeimer Jun 2001 B1
6263227 Boggett et al. Jul 2001 B1
6272374 Flock et al. Aug 2001 B1
6280386 Alfano et al. Aug 2001 B1
6293911 Imasizumi et al. Sep 2001 B1
6319273 Cheen et al. Nov 2001 B1
6331703 Yarnall et al. Dec 2001 B1
6335429 Cai et al. Jan 2002 B1
6351663 Flower et al. Feb 2002 B1
6351667 Godie Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6399354 Knipe et al. Jun 2002 B1
6440950 Zeimer Aug 2002 B1
6443976 Flower et al. Sep 2002 B1
6447443 Keogh et al. Sep 2002 B1
6485413 Boppart et al. Nov 2002 B1
6498945 Alfheim et al. Dec 2002 B1
6544183 Leeson et al. Apr 2003 B2
6566641 Suda May 2003 B1
6603552 Cline et al. Aug 2003 B1
6621917 Vilser Sep 2003 B1
6631286 Pfeiffer et al. Oct 2003 B2
6671540 Hochman Dec 2003 B1
6757554 Rubinstein et al. Jun 2004 B2
6804549 Hayashi Oct 2004 B2
6821946 Goldspink et al. Nov 2004 B2
6840933 Pang et al. Jan 2005 B1
6853857 Pfeiffer et al. Feb 2005 B2
6882366 Kijima et al. Apr 2005 B1
6899675 Cline et al. May 2005 B2
6915154 Docherty et al. Jul 2005 B1
6936043 Peyman Aug 2005 B2
6944493 Alam et al. Sep 2005 B2
7113817 Winchester, Jr. et al. Sep 2006 B1
7236815 Richards-Kortum et al. Jun 2007 B2
7364574 Flower Apr 2008 B2
7381400 Woltering Jun 2008 B2
7400753 Seino et al. Jul 2008 B2
7400755 West et al. Jul 2008 B2
7482318 Aurelian et al. Jan 2009 B2
7581191 Rice et al. Aug 2009 B2
7881777 Docherty et al. Feb 2011 B2
7885438 Uppaluri et al. Feb 2011 B2
8036437 Arditi et al. Oct 2011 B2
8073224 Strobel et al. Dec 2011 B2
8144958 Nahm et al. Mar 2012 B2
8185176 Mangat et al. May 2012 B2
8285353 Choi et al. Oct 2012 B2
8361775 Flower Jan 2013 B2
8406860 Dvorsky et al. Mar 2013 B2
8480579 Serov et al. Jul 2013 B2
8521260 Grinvald et al. Aug 2013 B2
8538107 Röttger Sep 2013 B2
8647605 Mangat et al. Feb 2014 B2
8892190 Docherty et al. Nov 2014 B2
8929974 Hauger et al. Jan 2015 B2
8965488 Dvorsky et al. Feb 2015 B2
9129366 Nahm et al. Sep 2015 B2
9351644 Nahm et al. May 2016 B2
9357931 Nahm et al. Jun 2016 B2
9421280 Mangat et al. Aug 2016 B2
20020025541 Nelson et al. Feb 2002 A1
20020038120 Duhaylongsod et al. Mar 2002 A1
20020099279 Pfeiffer et al. Jul 2002 A1
20020099295 Gil et al. Jul 2002 A1
20020146369 Goldenberg Oct 2002 A1
20020181752 Wallo et al. Dec 2002 A1
20020183621 Pfeiffer et al. Dec 2002 A1
20030032885 Rubinstein et al. Feb 2003 A1
20030050543 Hartmann Mar 2003 A1
20030060718 Alam et al. Mar 2003 A1
20030060722 Pfeiffer et al. Mar 2003 A1
20030064025 Yang et al. Apr 2003 A1
20030093064 Peyman May 2003 A1
20030093065 Peyman May 2003 A1
20030156252 Morris et al. Aug 2003 A1
20030187349 Kaneko et al. Oct 2003 A1
20030232016 Heinrich Dec 2003 A1
20030236458 Hochman Dec 2003 A1
20040066961 Spreeuwers et al. Apr 2004 A1
20040077952 Rafter et al. Apr 2004 A1
20040109231 Haisch et al. Jun 2004 A1
20040156782 Alam et al. Aug 2004 A1
20040162489 Richards-Kortum et al. Aug 2004 A1
20040171827 Peng et al. Sep 2004 A1
20040174495 Levine Sep 2004 A1
20050019744 Bertuglia Jan 2005 A1
20050020891 Rubinstein et al. Jan 2005 A1
20050033145 Graham et al. Feb 2005 A1
20050069525 Mikael Mar 2005 A1
20050089866 Hinuma et al. Apr 2005 A1
20050107380 Nimmo et al. May 2005 A1
20050182321 Frangioni Aug 2005 A1
20050182327 Petty et al. Aug 2005 A1
20050182431 Hausen et al. Aug 2005 A1
20050182434 Docherty et al. Aug 2005 A1
20050187477 Serov et al. Aug 2005 A1
20050197583 Chance Sep 2005 A1
20050254008 Ferguson et al. Nov 2005 A1
20060013768 Woltering Jan 2006 A1
20060079750 Fauci et al. Apr 2006 A1
20060108509 Frangioni et al. May 2006 A1
20060147897 Grinvald et al. Jul 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060241499 Irion et al. Oct 2006 A1
20070122344 Golijanin May 2007 A1
20070122345 Golijanin May 2007 A1
20070203413 Frangioni Aug 2007 A1
20070254276 Deutsch et al. Nov 2007 A1
20080007733 Marks et al. Jan 2008 A1
20080015446 Mahmood et al. Jan 2008 A1
20080071176 Docherty et al. Mar 2008 A1
20080161744 Golijanin et al. Jul 2008 A1
20080221421 Choi et al. Sep 2008 A1
20080221648 Flower Sep 2008 A1
20080239070 Westwick et al. Oct 2008 A1
20080319309 Bredno et al. Dec 2008 A1
20090005693 Brauner et al. Jan 2009 A1
20090048516 Yoshikawa et al. Feb 2009 A1
20090054788 Hauger et al. Feb 2009 A1
20090118623 Serov et al. May 2009 A1
20090137902 Frangioni et al. May 2009 A1
20090297004 Baumgart Dec 2009 A1
20100022898 Rubinstein et al. Jan 2010 A1
20100036217 Choi et al. Feb 2010 A1
20100061604 Nahm et al. Mar 2010 A1
20100222673 Mangat et al. Sep 2010 A1
20100286529 Carroll et al. Nov 2010 A1
20110013002 Thompson et al. Jan 2011 A1
20110063427 Fengler et al. Mar 2011 A1
20110098685 Flower Apr 2011 A1
20110306877 Dvorsky et al. Dec 2011 A1
20120078093 Flower Mar 2012 A1
20120165662 Nahm et al. Jun 2012 A1
20130245456 Ferguson, Jr. et al. Sep 2013 A1
20130286176 Westwick et al. Oct 2013 A1
20130296715 Lasser et al. Nov 2013 A1
20130345560 Ferguson, Jr. et al. Dec 2013 A1
20140308656 Flower Oct 2014 A1
20140316262 Havens Oct 2014 A1
20150112192 Docherty et al. Apr 2015 A1
20150112193 Docherty et al. Apr 2015 A1
20150230710 Nahm et al. Aug 2015 A1
20150230715 Nahm et al. Aug 2015 A1
20160038027 Brzozowski et al. Feb 2016 A1
20160110870 Moriyama et al. Apr 2016 A1
Foreign Referenced Citations (129)
Number Date Country
409451 Aug 2002 AT
2212257 Aug 1996 CA
2413033 Mar 2000 CA
1049781 Mar 1991 CN
1200174 Nov 1998 CN
1399528 Feb 2003 CN
39 06 860 Sep 1989 DE
19608027 Sep 1996 DE
101 20 980 Nov 2002 DE
69727220 Dec 2004 DE
0091805 Oct 1983 EP
0215772 Mar 1987 EP
0512965 Nov 1992 EP
0792618 Sep 1997 EP
0826335 Mar 1998 EP
1 761 171 Mar 2007 EP
1874181 Jan 2008 EP
2203831 Oct 1988 GB
S58-222331 Dec 1983 JP
S59-069721 Apr 1984 JP
S59-070903 Apr 1984 JP
02-200237 Aug 1990 JP
H03-115958 May 1991 JP
04-297236 Oct 1992 JP
H05-264232 Oct 1993 JP
H06-007353 Jan 1994 JP
06-335451 Dec 1994 JP
07-065154 Mar 1995 JP
07-079955 Mar 1995 JP
H07-155285 Jun 1995 JP
H07-155286 Jun 1995 JP
H07-155290 Jun 1995 JP
H07-155291 Jun 1995 JP
H07-155292 Jun 1995 JP
07-222712 Aug 1995 JP
H07-204156 Aug 1995 JP
H07-222723 Aug 1995 JP
H07-250804 Oct 1995 JP
H07-250812 Oct 1995 JP
08-024227 Jan 1996 JP
H08-224208 Sep 1996 JP
H08-224209 Sep 1996 JP
H08-224240 Sep 1996 JP
H09-120033 May 1997 JP
H09-305845 Nov 1997 JP
A-H09-308609 Dec 1997 JP
H09-309845 Dec 1997 JP
H10-503480 Mar 1998 JP
H10-085222 Apr 1998 JP
H10-104070 Apr 1998 JP
H10-151104 Jun 1998 JP
H10-506440 Jun 1998 JP
H10-506550 Jun 1998 JP
H10-201700 Aug 1998 JP
H10-201707 Aug 1998 JP
H11-137517 May 1999 JP
H11-155812 Jun 1999 JP
H11-509748 Aug 1999 JP
2002-219129 Aug 2002 JP
A-2003-510121 Mar 2003 JP
2003-144401 May 2003 JP
A-2004-528917 Sep 2004 JP
2006-503620 Feb 2006 JP
A-2006-192280 Jul 2006 JP
A-2007-21006 Feb 2007 JP
3896176 Mar 2007 JP
A-2008-525126 Jul 2008 JP
2008-535600 Sep 2008 JP
A-2008-231113 Oct 2008 JP
2010-505582 Feb 2010 JP
2011-509768 Mar 2011 JP
59-18532 May 2016 JP
90-0005434 Jul 1990 KR
2002-0064287 Aug 2002 KR
2288633 Dec 2006 RU
WO-8602730 May 1986 WO
WO-9010219 Sep 1990 WO
WO-9012536 Nov 1990 WO
WO-9325141 Dec 1993 WO
WO-9412092 Jun 1994 WO
WO-9500171 Jan 1995 WO
WO-9526673 Oct 1995 WO
WO-9609435 Mar 1996 WO
WO-9609792 Apr 1996 WO
WO-9618415 Jun 1996 WO
WO-9623524 Aug 1996 WO
WO-9639925 Dec 1996 WO
WO-9708538 Mar 1997 WO
WO-9824360 Jun 1998 WO
WO-9830144 Jul 1998 WO
WO-9846122 Oct 1998 WO
WO-9900053 Jan 1999 WO
WO-9947940 Sep 1999 WO
WO-9953832 Oct 1999 WO
WO-0042910 Jul 2000 WO
WO-0047107 Aug 2000 WO
WO 0108552 Feb 2001 WO
WO-0117561 Mar 2001 WO
WO-0122870 Apr 2001 WO
WO 0122870 Apr 2001 WO
WO-0139764 Jun 2001 WO
WO-0169244 Sep 2001 WO
WO 0180734 Nov 2001 WO
WO 0182786 Nov 2001 WO
WO-02061390 Aug 2002 WO
WO-03006658 Jan 2003 WO
WO-2004006963 Jan 2004 WO
WO 2004052195 Jun 2004 WO
WO-2005026319 Mar 2005 WO
WO-2005034747 Apr 2005 WO
WO 2005079238 Sep 2005 WO
WO-2006111836 Oct 2006 WO
WO-2006111909 Oct 2006 WO
WO-2006116634 Nov 2006 WO
WO-2006119349 Nov 2006 WO
WO-2006121631 Nov 2006 WO
WO-2006121631 Nov 2006 WO
WO 2006123742 Nov 2006 WO
WO-2007028032 Mar 2007 WO
WO-2008044822 Apr 2008 WO
WO-2008070269 Jun 2008 WO
WO-2008070269 Jun 2008 WO
WO-2009046985 Apr 2009 WO
WO-2009046985 Apr 2009 WO
WO 2009048660 Apr 2009 WO
WO 2009092162 Jul 2009 WO
WO 2009127972 Oct 2009 WO
WO-2012038824 Mar 2012 WO
WO-2012096878 Jul 2012 WO
Non-Patent Literature Citations (384)
Entry
Azuma et al. “Detection of Skin Perforators by Indocyanine Green Fluorescence Nearly Infrared Angiography.” Oct. 2008, pp. 1062-1067.
Detter, C. et al. “Fluorescent Cardiac Imaging: A Novel Intraoperative Method for Quantitative Assessment of Myocardial Perfusion During Graded Coronary Artery Stenosis.” Circulation, Aug. 1, 2007, pp. 1007-1014, vol. 116, No. 9.
Detter, C. et al. “Near-Infrared Fluorescence Coronary Angiography: A New Noninvasive Technology for Intraoperative Graft Patency Control.” The Heart Surgery Forum, Jun. 2011, pp. 364-369, vol. 5, Issue 4.
Forrester et al. “Comparison of Laser Speckle and Laser Doppler Perfusion Imaging: Measurement in Human Skin and Rabbit Articular Tissue.” Medical and Biological Engineering and Computing, Nov. 1, 2002, pp. 687-697, vol. 40, No. 6.
Frenzel H. et al. “In vivo perfusion analysis of normal and dysplastic ears and its implication on total auricular reconstruction.” Journal of Plastic, Reconstructive and Aesthetic Surgery, Apr. 18, 2008, pp. S21-S28, vol. 61.
Holm, et al. “Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green.” British Journal of Plastice Surgery, Dec. 1, 2002, pp. 635-644, vol. 55, No. 8.
Holm et al. “Laser-Induced Fluorescence of Indocyanine Green: Plastic Surgical Applications.” European Journal of Plastic Surgery, Feb. 25, 2003, pp. 19-25, vol. 26.
Holm et al. “Monitoring Free Flaps Using Laser-Indeuced Fluorescence of Indocyanine Green: A Preliminary Experience.” Wiley Interscience, 2002, pp. 278-287.
Jolion, J. et al. “Robust Clustering with Applications in Computer Vision.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Aug. 1991, pp. 791-802, vol. 13, No. 8.
Krishnan K. G. et al. “The role of near-infrared angiography in the assessment of postoperative veneous congestion in random pattern, pedicled island and free flaps.” British Journal of Plastic Surgery, Apr. 1, 2005, pp. 330-338, vol. 58, No. 3.
Martinez-Perez, M. et al. “Unsupervised Segmentation Based on Robust Estimation and Cooccurrence Data.” Proceedings of the International Conference on Miage Processing (ICIP) Lausanne, Sep. 19, 1996, pp. 943-945, vol. 3.
“Novadaq Imaging System Receives FDA Clearance for use During Plastic Reconstructive Surgery.” PR Newswire, Jan. 29, 2007, 3 pages.
Newman et al. “Update on the Application of Laser-Assisted Indocyanine Green Fluorescent Dye Angiography in Microsurgical Breast Reconstruction.” Oct. 31, 2009, 2 pages.
Pandharipande et al. “Perfusion Imaging of the Liver: Current Challenges and Future Goals.” Radiology, 2005, pp. 661-673.
Sezgin, M. et al. “Survey over image thresholding techniques and quantitative performance evaluation.” Journal of Electronic Imaging, Jan. 2004, pp. 146-165, vol. 13(1).
Verbeek, X. “High-Resolution Functional Imaging With Ultrasound Contrast Agents Based on RF Processing in an Un Vivo Kidney Experiment.” Ultrasound in Med. & Biol., 2001, pp. 223-233, vol. 27, No. 2.
Yamaguchi et al. “Evaluation of Skin Perfusion After Nipple-Sparing Mastectomy by Indocyanine Green Dye.” (With English Abstract) Journal of Saitama Medical University, Japan, Apr. 2005, pp. 45-50, vol. 32, No. 2.
Jan. 25, 2012 International Search Report issued in Application No. PCT/IB11/002381.
Jul. 3, 2012 Translation of Chinese Office Action issued in Chinese Application No. 200980123414.0.
Mar. 29, 2013 Translation of Russian Office Action issued in Russian Application No. 2011111078/14.
May 23, 2013 Translation of Chinese Office Action issued in Chinese Application No. 200980123414.0.
May 30, 2013 Mexican Office Action issued in Mexican Application No. MX/a/2010/011249.
Jul. 29, 2013 Translation of Russian Decision on Grant issued in Russian Application No. 2011111078/14.
Jul. 30, 2013 Translation of Japanese Office Action dated Jul. 30, 2013 issued in Japanese Application No. 2011-504574.
May 15, 2014 Supplemental European Search Report and Written Opinion issued in European Application No. 09 732 993.2.
Chinese Office Action mailed on Nov. 12, 2015, for Chinese Patent Application No. 201180057244.8, filed on Sep. 20, 2010, five pages.
European Office Action mailed on Mar. 27, 2015, for EP Application No. 09 732 993.2, filed on Apr. 14, 2008, six pages.
Extended European Search Report mailed on Feb. 22, 2012, for EP Application No. 09 704 642.9, filed on Jan. 25, 2008, fifteen pages.
Extended European Search Report mailed on Apr. 28, 2014, for EP Application No. 09 732 993.2, filed on Apr. 14, 2008, eight pages.
Extended European Search Report mailed on Jan. 28, 2014, for EP Application No. 11 826 475.3, filed on Sep. 20, 2010, six pages.
Final Office Action mailed on May 29, 2013, for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, twelve pages.
Final Office Action mailed on Jun. 25, 2014, for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, fifteen pages.
Final Office Action mailed on Sep. 17, 2015, for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, six pages.
International Search Report mailed on Jun. 8, 2009, for PCT Patent Application No. PCT/CA2009/000073, filed on Jan. 23, 2009, three pages.
International Search Report mailed on Dec. 3, 2009, for PCT Patent Application No. PCT/1B2009/005700, filed on Apr. 14, 2009, three pages.
Japanese Office Action mailed on Sep. 14, 2015, for Japanese Patent Application No. 2011-504574, filed on Apr. 14, 2009, five pages.
Korean Office Action mailed on Nov. 30, 2015, for Korean Patent Application No. 10-2010-7024977, filed on Apr. 14, 2009, two pages.
Non-Final Office Action mailed on Sep. 5, 2012, for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, seven pages.
Non-Final Office Action mailed on Dec. 20, 2013, for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, thirteen pages.
Non-Final Office Action mailed on Apr. 1, 2015, for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, fourteen pages.
Notice of Allowance mailed on Oct. 18, 2012, for U.S. Appl. No. 12/841,659, filed Jul. 22, 2010, seven pages.
Notice of Allowance mailed on Aug. 7, 2014, for U.S. Appl. No. 13/850,063, filed Mar. 25, 2013, nine pages.
Notice of Allowance mailed on Oct. 16, 2014, for U.S. Appl. No. 13/850,063, filed Mar. 25, 2013, eight pages.
Notice of Allowance mailed on Oct. 29, 2015, for EP Application No. 09 704 642.9, filed on Jan. 25, 2008, two pages.
Notice of Allowance mailed on Oct. 21, 2015, for EP Application No. 11 826 475.3, filed on Sep. 20, 2010, eight pages.
Written Opinion of the International Searching Authority mailed on Jun. 8, 2009, for PCT Patent Application No. PCT/CA2009/000073, filed on Jan. 23, 2009, four pages.
Written Opinion of the International Searching Authority mailed on Dec. 3, 2009, for PCT Patent Application No. PCT/IB2009/005700, filed on Apr. 14, 2009, six pages.
Written Opinion of the International Searching Authority mailed on Feb. 1, 2012, for PCT Patent Application No. PCT/IB2011/002381, filed on Sep. 20, 2011, four pages.
Canadian Office Action dated Sep. 30, 2015, for CA Application No. 2,811,847, filed on Sep. 20, 2011, four pages.
Canadian Office Action dated Mar. 16, 2016, for CA Application No. 2,750,760 filed on Jan. 23, 2009, five pages.
Japanese Office Action mailed on Mar. 29, 2016, for Japanese Patent Application No. 2013-529729, filed on Mar. 21, 2013, and an English translation of the same, seven pages.
Korean Notice of Allowance mailed on Apr. 29, 2016, for Korean Patent Application No. 10-2010-7024977, filed on Apr. 14, 2009, and an English translation of the same, three pages.
Summons to attend Oral Proceedings pursuant to Rule 115(1) EPC issued on Apr. 25, 2016, for European patent application No. 09732993.2, filed on Apr. 14, 2009, five pages.
Japanese Notice of Allowance mailed Sep. 16, 2016, for Japanese Patent Application No. 2015-517876 filed on Jun. 20, 2013, six pages.
Akintunde, A. et al. (Oct.-Nov. 1992). “Quadruple Labeling of Brain-Stem Neurons: A Multiple Retrograde Fluorescent Tracer Study of Axonal Collateralization,” Journal of Neuroscience Methods 45(1-2):15-22.
Alander, J.T. et al. (Jan. 1, 2012). “A Review of Indocyanine Green Fluorescent Imaging in Surgery,” International Journal of Biomedical Imaging 2012:1-26, article ID 940585.
Alfano et al. (Oct. 1987). “Fluorescence Spectra from Cancerous and Normal Human Breast and Lung Tissues,” IEEE Journal of Quantum Electronics QE-23(10):1806-1811.
Alm, A. et al. (Jan. 1, 1973). “Ocular and Optic Nerve Blood Flow at Normal and Increased Intraocular Pressures in Monkeys (Macaca irus): A Study with Radioactively Labelled Microspheres Including Flow Determinations in Brain and Some Other Tissues,” Experimental Eye Research 15(1):15-29.
Alonso-Burgos, A. et al. (2006). “Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multi-slice-CT angiography: imaging findings and initial experience,” Journal of Plastic, Reconstructive & Aesthetic Surgery 59:585-593.
Alvarez, F. J. et al. (Apr. 1996). “Behaviour of Isolated Rat and Human Red Blood Cells Upon Hypotonic-Dialysis Encapsulation of Carbonic Anhydrase And Dextran,” Biotechnology and Applied Biochemistry 23(2):173-179.
Ancalmo, N. et al. (1997). “Minimally invasive coronary artery bypass surgery: really minimal?” Ann. Thorac. Surg. 64:928-929.
Andersson-Engels, S. et al. (1991). “Fluorescence Characteristics of Atherosclorotic Plaque and Malignant Tumors,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty (Ed.), The Society of Photo-optical Instrumentation Engineers (SPIE) 1426:31-43, fourteen pages.
Andersson-Engels, S. et al. (Mar. 1989). “Tissue Diagnostics Using Laser-Induced Fluorescence,” Berichte der Bunsengesellschaft für physikalische Chemie 93(3):335-342.
Angelov, D.N. et al. (Apr. 1999). “Contralateral Trigeminal Nerve Lesion Reduces Polyneuronal Muscle Innervation after Facial Nerve Repair in Rats,” European Journal of Neuroscience 11(4):1369-1378.
Annese, V. et al. (2005). “Erthrocytes-Mediated Delivery of Dexamethasone in Steroid-Dependent IBD Patients—a Pilot Uncontrolled Study,” American Journal of Gastroenterology 100:1370-1375.
Argus-50/CA, Inter cellular CA2+ (calcium ion) Image Analysis system, Observation and 2-dimensional analysis of Ca2+ concentration distribution. Fura-2 and Indo-1 compatible. Ca2+ concentrations are calculated from the fluorescence ratio, Feb. 1992, pp. 1-10.
Author Unknown, “Invitrogen,” Material Safety Data Sheet, Jun. 4, 2008, p. 1-4.
Awano, T. et al. (Jun. 2010). “Intraoperative EC-IC Bypass Blood Flow Assessment with Indocyanine Green Angiography in Moyamoya and Non-moyamoya Ischemic Stroke,” World Neurosurg. 73(6):668-674.
Balacumarswami, L. et al. (Aug. 2004). “Does Off-Pump Total Arterial Grafting Increase the Incidence of Intraoperative Graft Failure?,” The Journal of Thoracic and Cardiovascular Surgery 128(2):238-244.
Barton, J.K. et al. (1999) “Simultaneous irradiation and imaging of blood vessels during pulsed laser delivery,” Lasers in Surgery and Medicine 24(3):236-243.
Bassingthwaighte, J.B. et al. (Apr. 1974). “Organ Blood Flow, Wash-in, Washout, and Clearance of Nutrients and Metabolites,” Mayo Clin. Proc. 49(4):248-255.
Batliwala, H. et al. (Apr. 15, 1995). “Methane-Induced Haemolysis of Human Erythrocytes,” Biochemical J. 307(2):433-438.
Bek, T. (1999). “Diabetic Maculopathy Caused by Disturbances in Retinal Vasomotion: A New Hypothesis,” Acta Ophthalmologica Scandinavica 77:376-380.
Benson, R.C. et al. (1978). “Fluorescence Properties of Indocyanine Green as Related to Angiography,” Phys. Med. Biol. 23(1):159-163.
Black's Medical Dictionary, “Perfusion,” 42nd Edition (2009), two pages.
Boer, F. et al. (1994). “Effect of Ventilation on First-Pass Pulmonary Retention of Alfentaril and Sufentanil in Patients Undergoing Coronary Artery Surgery,” British Journal Anesthesia 73:458-463.
Boldt, .J. et al. (Feb. 1990). “Lung management during cardiopulmonary bypass: influence on extravascular lung water,” Journal of Cardiothoracic Anesthesia 4(1):73-79.
Boldt, J. et al. (1991). “Does the technique of cardiopulmonary bypass affect lung water content?” European Journal of Cardio-Thoracic Surgery 5:22-26.
Bütter, A. et al. (May 2005). “Melanoma in Children and the Use of Sentinel Lymph Node Biopsy,” Journal of Pediatric Surgery 40(5):797-800.
C2741, Compact High Performance video camera for industrial applications with Built-in contrast enhancement circuit, Jun. 1998.
Canada Health. (1997). “Coronary Bypass Surgery and Angioplasty, 1982-1995, Heart Disease and Stroke in Canada,” Canada Health, located at <http:/www.hc-sc.gc.ca/hpb>, eighty two pages.
Coffey, J.H. et al. (1984). “Evaluation of Visual Acuity During Laser Photoradiation Therapy of Cancer,” Lasers in Surgery and Medicine 4(1):65-71.
Conley, M.P. et al. (Oct. 2004). “Anterograde Transport of Peptide-Conjugated Fluorescent Beads in the Squid Giant Axom Identifies a Zip-Code for Synapse,” Biological Bulletin 207(2):164, one page.
Costa, R.A. et al. (Oct. 2001). “Photodynamic Therapy with Indocyanine Green for Occult Subfoveal Choroidal Neovascularization Caused by Age-Related Macular Degeneration,” Curr. Eye Res. 23(4):274-275.
Cothren, R.M. et al. (Mar. 1990). “Gastrointestinal Tissue Diagnosis by Laser-Induced Fluorescence Spectroscopy at Endoscopy,” Gastrointestinal Endoscopy 36(2):105-111.
Dail, W.G. et al. (Oct. 1999). “Multiple Vasodilator Pathways from the Pelvic Plexus to the Penis of the Rat,” International Journal of Impotence Research 11(5):277-285.
Dan, A.G. et al. (Nov. 2004). “1% Lymphazurin vs 10% Fluorescein for Sentinel Node Mapping in Colorectal Tumors,” Arch Surg. 139(11):1180-1184.
Daniels, G. et al. (Apr. 2007). “Towards Universal Red Blood Cell,” Nature Biotechnology 25(4):427-428.
De Flora, A. (Sep. 1986). “Encapsulation of Adriamycin in human erythrocytes,” Proc. Natl. Acad. Sci., USA 83(18):7029-7033.
De-Grand, A.M. et al. (Dec. 2003). “An Operational Near Infrared Fluorescence Imaging System Prototype for Large Animal Surgery,” Technology in Cancer Research & Treatment 2(6):1-10.
Deloach, J.R. (ed.) et al. (1985). Red Blood Cells as Carriers for Drugs. A Method for Disseminating Chemotherapeutics, Hormones, Enzymes and Other Therapeutic Agents via the Circulatory System, Karger, Basel, CH, pp. v-vii, (Table of Contents).
Deloach, J.R. (Jun. 1983). “Encapsulation of Exogenous Agents in Erythrocytes and the Circulating Survival of Carrier Erythrocytes,” Journal of Applied Biochemistry 5(3):149-157.
Demos (May/Jun. 2004). “Near-Infrared Autofluorescence Imaging for Detection of Cancer,” Journal of Biomedical Optics 9(3):587-592.
Desai, N.D. et al. (Oct. 18, 2005, e-published on Sep. 28, 2005) “Improving the Quality of Coronary Bypass Surgery with Untraoperative Angiography,” Journal of the American College of Cardiology 46(8):1521-1525.
Dietz, F.B. et al. (Feb. 2003). “Indocyanine Green: Evidence of Neurotoxicity in Spinal Root Axons,” Anesthesiology 98(2):516-520.
Digital CCD Microscopy (date unknown). Chapter 14, pp. 259-282,.
Dougherty, T.J. et al. (1990). “Cutaneous Phototoxic Occurrences in Patients Receiving Photofrin,” Lasers in Surgery and Medicine 10(5):485-488.
Draijer, M.J. et al. (Jun. 17-19, 2007). “Laser Doppler Perfusion Imaging with a High-Speed CMOS-Camera,” in Novel Optical Instrumentation for Biomedical Applications III, C. Deperursinge, ed., Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2007), SPIE-OSA, 6631:0N1-0N7, nine pages.
Dünne, A. et al. (Nov. 2001).“Value of Sentinel lymphonodectomy in Head and Neck Cancer Patients without Evidence of Lymphogenic Metastatic Disease,” Auris Nasus Larynx 28(4):339-344.
Ekstrand, M.I. et al. (Feb. 14, 2008). “The Alpha-Herpesviruses: Molecular Pathfinders in Nervous System Circuits,” Trends in Molecular Medicine, Elsevier Current Trends 14(3):134-140.
Emery R.W. et al. (Aug. 1996). “Revascularization Using Angioplasty and Minimally Invasive Techniques Documented by Thermal Imaging,” The Annals of Thoracic Surgery 62(2):591-593.
Eren, S. et al. (Dec. 1995). “Assessment of Microcirculation of an Axial Skin Flap Using Indocyanine Green Fluorescence Angiography,” Plast. Reconstr. Surg. 96(7):1636-1649.
Flower, R. et al. (Apr.-Jun. 1999). “Effects of Free and Liposome-Encapsulated Hemoglobin on Choroidal Vascular Plexus Blood Flow, Using the Rabbit Eye as a Model System,” European Journal of Ophthalmology 9(2):103-114.
Flower, R.W. (1992). “Choroidal Angiography Today and Tomorrow,” Retina 12(3):189-190.
Flower, R.W. (Apr. 2000). “Experimental Studies of Indocyanine Green Dye-Enhanced Photocoagulation of Choroidal Neovascularization Feeder Vessels,” American Journal of Ophthalmology 129(4):501-512.
Flower, R.W. (Aug. 2002). “Optimizing Treatment of Choroidal Neovascularization Feeder Vessels Associated with Age-Related Macular Degeneration,” American Journal of Ophthalmology 134(2):228-239.
Flower, R.W. (Dec. 1973). “Injection Technique for Indocyanine Green and Sodium Fluorescein Dye Angiography of the Eye,” Investigative Opthamology 12(12):881-895.
Flower, R.W. (Sep. 1, 1994). “Does Preinjection Binding of Indocyanine Green to Serum Actually Improve Angiograms?,” Arch Ophthalmol. 112(9):1137-1139.
Flower, R.W. et al. (Aug. 1977). “Quantification of Indicator Dye Concentration in Ocular Blood Vessels,” Exp. Eye Res. 25(2):103-111.
Flower, R.W. et al. (Dec. 1, 2008, e-published Aug. 15, 2008). “Observation of Erythrocyte Dynamics in the Retinal Capillaries and Choriocapillaris Using ICG-Loaded Erythrocyte Ghost Cells,” Investigative Ophthalmology, & Visual Science 49(12):5510-5516.
Flower, R.W. et al. (Mar. 26, 2008-Mar. 29, 2008). “Observation of Erythrocyte Dynamics in the Retinal Capillaries and Choriocapillaris Using ICG-Loaded Erythrocyte Ghost Cells,” Annual Meeting of the Macula Society, Abstract No. XP002535355, Palm Beach, FL, USA, fourteen pages, (Schedule of the Meeting only).
Frangioni, J.V. (Oct. 2003). “In Vivo Near-Infrared Fluorescence Imaging,” Current Opinion in Chemical Biology 7(5):626-634.
Fritzsch, B. et al. (Aug. 1991). “Sequential Double Labeling With Different Fluorescent Dyes Coupled to Dextran Amines as a Tool to Estimate the Accuracy of Tracer Application and of Regeneration,” Journal of Neuroscience Methods 39(1):9-17.
Gagnon, A.R. et al. (2006). “Deep and superficial inferior epigastric artery perforator flaps,” Cirugia Plástica Ibero-Latinoamericana 32(4):7-13.
Gardner, T.J. (1993). “Coronary artery disease and Ventricular Aneurysms,” in Surgery, Scientific Principles and Practice, Greenfield, L.J. (ed.) et al., J.B. Lippincott Co., Philadelphia, PA, pp. 1391-1411, twenty three pages.
Garrett, W.T. et al. (Jul. 8, 1991). “Fluoro-Gold's Toxicity makes it Inferior to True Blue for Long-Term Studies of Dorsal Root Ganglion Neurons and Motoneurons,” Neuroscience Letters 128(1):137-139.
Geddes, C. D. et al. (2003, e-published on Mar. 20, 2003). “Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging,” Journal Of Physical Chemistry A 107(18):3443-3449.
Gipponi, M. et al. (Mar. 1, 2004). “New Fields of Application of the Sentinel Lymph Node Biopsy in the Pathologic Staging of Solid Neoplasms: Review of Literature and Surgical Perspectives,” Journal of Surgical Oncology 85(3):171-179.
Giunta, R.E. et al. (Jul. 2005). “Prediction of Flap Necrosis with Laser Induced Indocyanine Green Fluorescence in a Rat Model,” British Journal of Plastic Surgery 58(5):695-701.
Giunta, R.E. et al. (Jun. 2000). “The Value of Preoperative Doppler Sonography for Planning Free Perforator Flaps,” Plastic and Reconstructive Surgery 105(7):2381-2386.
Glossary, Nature, downloaded from the internet <http://www.nature.com/nrg/journal/v4/nl0/glossary/nrgl 183—glossary.html>> HTML on Jun. 30, 2014.
Glover, J.C. et al. (Nov. 1986). “Fluorescent Dextran-Amines Used as Axonal Tracers in the Nervous System of the Chicken Embryo,” Journal of Neuroscience Methods 18(3):243-254.
Goldstein, J.A. et al. (Dec. 1998). “Intraoperative Angiography to Assess Graft Patency After Minimally Invasive Coronary Bypass,” Ann. Thorac. Surg. 66(6):1978-1982.
Gothoskar A.V. (Mar. 2004). “Resealed Erythrocytes: A Review,” Pharmaceutical Technology pp. 140, 142, 144, 146, 148, 150, 152 and 154-158, twelve pages.
Granzow, J.W. et al. (Jul. 2007).“Breast Reconstruction with Perforator Flaps” Plastic and Reconstructive Surgery 120(1):1-12.
Green, H.A. et al. (Jan. 1992). “Burn Depth Estimation Using Indocyanine Green Fluorescence,” Arch Dermatol 128(1):43-49.
Haglund, M. et al. (Feb. 1996). “Enhanced Optical Imaging of Human Gliomas and Tumor Margins,” Neurosurgery 38(2):308-317.
Haglund, M.M. et al. (Nov. 1994). “Enhanced Optical Imaging of Rat Gliomas and Tumor Margins,” Neurosurgery 35(5):930-941.
Hallock, G.G. (Jul. 2003). “Doppler sonography and color duplex imaging for planning a perforator flap,” Clinics in Plastic Surgery 30(3):347-357.
Hamamatsu Brochure. (May 1997). Specifications for Real-time Microscope Image Processing System: ARGUS-20 with C2400-75i.
Hayashi, J. et al. (Nov. 1993). “Transadventitial Localization of Atheromatous Plaques by Fluorescence Emission Spectrum Analysis of Mono-L Aspartyl-Chlorin e6,” Cardiovascular Research 27(11):1943-1947.
Hayata, Y. et al. (Jul. 1982). “Fiberoptic Bronchoscopic Laser Photoradiation for Tumor Localization in Lung Cancer,” Chest 82(1):10-14.
He, Z. (Feb. 2009). “Fluorogold Induces Persistent Neurological Deficits and Circling Behavior in Mice Over-Expressing Human Mutant Tau,” Current Neurovascular Research 6(1):54-61.
Herts, B.R. (May 2003). “Imaging for Renal Tumors,” Current Opin. Urol. 13(3):181-186.
Hirano et al. (1989). “Photodynamic Cancer Diagnosis and Treatment System Consisting of Pulse Lasers and an Endoscopic Spectro-Image Analyzer,” Laser in Life Sciences 3(2):99-116.
Humblet, V. et al. (Oct. 2005). “High-Affinity Near-Infrared Fluorescent Small-Molecule Contrast Agents for In Vivo Imaging of Prostate-Specific Membrane Antigen,” Molecular Imaging 4(4):448-462.
Hung, J. et al. (1991). “Autofluorescence of Normal and Malignant Bronchial Tissue,” Lasers in Surgery and Medicine 11(2):99-105.
Ikeda, S. (Jul. 1989). “Bronichial Telivision Endoscopy,” Chest 96(1):41S-42S.
Jaber, S.F. et al. (Sep. 1998). “Role of Graft Flow Measurement Technique in Anastomotic Quality Assessment in Minimally Invasive CABG,” Ann. Thorac. Surg. 66(3):1087-1092.
Jagoe, J.R. et al. (1989). “Quantification of retinal damage during cardiopulmonary bypass,” Third International Conference on Image Processing and its Applications (Conf. Publ. No. 307), IEE, 1989, pp. 319-323.
Jamis-Dow, C.A. et al. (Mar. 1996). “Small (< or = 3-cm) Renal Masses: Detection with CT versus us and Pathologic Correlation,” Radiology 198(3):785-788.
Kamolz, L.-P. et al. (Dec. 2003). “Indocyanine Green Video Angiographies Help to Identify Burns Requiring Operation,” Burns 29(8):785-791.
Kapadia, C.R. et al. (Jul. 1990). “Laser-Induced Fluorescence Spectroscopy of Human Colonic Mucosa. Detection of Adenomatous Transformation,” Gastroenterology 99(1):150-157.
Kato, H. et al. (Jun. 1985). “Early Detection of Lung Cancer by Means of Hematoporphyrin Derivative Fluorescence and Laser Photoradiation,” Clinics in Chest Medicine 6(2):237-253.
Kato, H. et al. (Jun. 1990). “Photodynamic Diagnosis in Respiratory Tract Malignancy Using an Excimer Dye Laser System,” Journal of Photochemistry and Photobiology, B. Biology 6(1-2):189-196.
Keon, W.J. et al. (Dec. 1979). “Coronary Endarterectomy: An Adjunct to Coronary Artery Bypass Grafting,” Surgery 86(6):859-867.
Kim, S. et al. (2004, e-published Dec. 7, 2003). “Near-Infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping,” Nature Biotechnology 22(1):93-97.
Kim, S.G. et al. (Jun. 15, 1988). “Quantitative Determination of Tumor Blood Flow and Perfusion Via Deuterium Nuclear Magnetic Resonance Spectroscopy in Mice,” Cancer Res. 48(12):3449-3453.
Kiryu, J. et al. (Sep. 1994). “Noninvasive Visualization of the Choriocapillaris and its Dynamic Filling,” Investigative Ophthalmology & Visual Science 35(10):3724-3731.
Kitai, T. et al. (Jul. 2005). “Fluorescence Navigation with Indocyanine Green for Detecting Sentinel Lymph Nodes in Breast Cancer,” Breast Cancer 12(3):211-215.
Kleszcyńska, H. et al. (Mar. 2005). “Hemolysis of Erythrocytes and Erythrocyte Membrane Fluidity Changes by New Lysosomotropic Compounds,” Journal of Fluorescence 15(2):137-141.
Köbbert, C. et al. (Nov. 2000). “Current Concepts in Neuroanatomical Tracing,” Progress in Neurobiology 62(4):327-351.
Kokaji, K. et al. (Date Unkown). “Intraoperative Quality Assessment by Using Fluorescent Imaging in Off-pump Coronary Artery Bypass Grafting,” The Department of Cardiovascular Surgery, University of Keio, Tokyo, Japan. (Abstract only).
Kömürcü, F. et al. (Feb. 2005). “Management Strategies for Peripheral Iatrogenic Nerve Lesions,” Annals of Plastic Surgery 54(2):135-139.
Kuipers, J.A. et al. (1999). “Recirculatory and Compartmental Pharmacokinetic Modeling of Alfentanil Pigs, the Influence of Cardiac Output,” Anesthesiology 90(4):1146-1157.
Kupriyanov, V.V. et al. (Nov. 2004). “Mapping Regional Oxygenation and Flow in Pig Hearts In Vivo Using Near-infrared Spectroscopic Imaging,” Journal of Molecular and Cellular Cardiology 37(5):947-957.
Kurihara, K. et al. (Jun. 1984). “Nerve Staining with Leucomethylene Blue: An Experimental Study,” Plastic and Reconstruction Surgery 73(6):960-964.
Kyo, S. “Use of Ultrasound Cardiology during Coronary Artery Bypass Surgery,” Heart and Blood Vessel Imaging II.
Lam, S. et al. (1991). “Mechanism of Detection of Early Lung Cancer by Ratio Fluorometry,” Lasers in Life Sciences 4(2):67-73.
Lam, S. et al. (Feb. 1990). “Detection of Early Lung Cancer Using Low Dose Photofrin II,” Chest 97(2):333-337.
Lam, S. et al. (Jul. 1, 1990). “Detection of Lung Cancer by Ratio Fluorometry With and Without Photofrin II,” Proc. SPIE—Optical Fibers in Medicine V 1201:561-568.
Lam, S. et al. (Nov. 1-4, 1990). “Fluorescence Imaging of Early Lung Cancer,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12(3):1142-1143.
Lam, S.C. et al. (1993). “Fluorescence Detection,” Chapter 20 in Lung Cancer, Roth, J.A. (ed.), et al., Blackwell Scientific Publications Inc., 238 Main Street, Cambridge, Massachusetts, 02142, pp. 325-338, sixteen pages.
Lanciego, J.L. et al. (Jun. 1998). “Multiple Neuroanatomical Tracing in Primates,” Brain Research Protocols 2(4):323-332.
Lanciego, J.L. et al. (Oct. 1998). “Multiple Axonal Tracing: Simultaneous Detection of Three Tracers in the Same Section,” Histochemistry and Cell Biology 110(5):509-515.
Laub, G.W. et al. (Nov./Dec. 1989). “Experimental Use of Fluorescein for Visualization of Coronary Arteries,” Vascular and Endovascular Surgery 23(6):454-457.
Lee, E.T. et al. (Mar. 1997). “A New Method for Assessment of Changes in Retinal Blood Flow,” Mecial Engineering & Physics 19(2):125-130.
Leissner, J. et al. (Jan. 2004). “Extended Radical Lymphadenectomy in Patients with Urothelial Bladder Cancer: Results of a Prospective Multicenter Study,” The Journal of Urology 171(1):139-144.
Leithner, “Untersuchung der Sauerstoffkonzentrationsveranderungen in der Mikrozirkulation des Hirnkortex von Ratten bei funktioneller Stimulation mittels Phosphorescence Quenching,” [dissertation], Jul. 14, 2003; located at http://edoc.hu-berlin.de/d issertationen/leith ner-christoph-2003-07-14/, [English Abstract and Machine Translation].
Liedberg et al. (2003). “Sentinel-Node-Diagnostik Beim Invasiven (Bladder Cancer and the Sentinel Node Concept),” Aktuel Urol. 34:115-118 (English Abstract Only).
Liedberg, F. et al. (Jan. 2006). “Intraoperative Sentinel Node Detection Improves Nodal Staging in Invasive Bladder Cancer,” The Journal of Urology 175(1):84-89.
Lippincott's New Medical Dictionary. “Perfusion,” p. 707 (1897), three pages.
Liptay, M.J. (Mar. 2004). “Sentinel Node Mapping in Lung Cancer,” Annals of Surgical Oncology 11(Supplement 3):271S-274S.
Liu Q. P. et al. (Apr. 2007). “Bacterial Glycosidases for the Production of Universal Red Blood Cells” Nature Biotechnology 25(7):454-464.
Lund, F. et al. (Nov. 1997). “Video Fluorescein Imaging of the Skin: Description of an Overviewing Technique for Functional Evaluation of Regional Cutaneous Blood Evaluation of Regional Cutaneous Perfusion in Occlusive Arterial Disease of the Limbs,” Clinical Physiology 17(6):619-633.
Mack, M.J. et al. (Sep. 1998). “Arterial Graft Patency in Coronary Artery Bypass Grafting: What Do We Really Know?,” Ann. Thorac. Surg. 66(3):1055-1059.
Magnani, M. et al. (Aug. 1998). “Erythrocyte Engineering for Drug Delivery and Targeting,” Biotechnology and Applied Biochemistry 28(Part 1):1-6.
Magnani, M. et al. (Jul. 15, 1992). “Targeting Antiretroviral Nucleoside Analogues in Phosphorylated Form to Macrophasges: In Vitro and In Vivo Studies,” Proc. Natl. Acad. Sci. USA 89(14):6477-6481.
Malmstrom et al. (Nov. 2002). “Early Metastatic Progression of Bladder Carcinoma: Molecular Profile of Primary Tumor and Sentinel Lymph Node,” The Journal of Urology 168(5):2240-2244.
Malmström, P.U. et al. (Jul. 2004). “RE: Extended Radical Lymphadenectomy in Patients With Urothelial Bladder Cancer: Results of a Prospective Multicenter Study,” J. of Urol. 172(1):386, one page.
Marangos, N. et al. (Dec. 2001). “In Vivo Visualization of the Cochlear Nerve and Nuclei with Fluorescent Axonal Tracers,” Hearing Research 162(1-2):48-52.
May, S. (May/Jun. 1995). “Photonic Approaches to Burn Diagnostics,” Biophotonics International pp. 44-50.
McKee, T.D. et al. (Mar. 1, 2006). “Degradation of Fibrillar Collagen in a Human Melanoma Xenograft Improves the Efficacy of an Oncolytic Herpes Simplex Virus Vector,” Cancer Research 66(5):2509-2513.
Merriam Webster Medline Plus Medical Dictionary. “Perfusion,” located at http://www.merriam-webster.com/medlineplus/perfusion, last visited on Apr. 15, 2015, one page.
Microscope Video Camera, For Fluorescent Observation, Easy Fluorescent Image Analysis a CCD Camera.
Minciacchi, D. et al. (Jul. 1991). “A Procedure for the Simultaneous Visualization of Two Anterograde and Different Retrograde Fluorescent Tracers—Application to the Study of the Afferent-Efferent Organization of Thalamic Anterior Intralaminar Nuclei” Journal of Neuroscience Methods 38(2-3):183-191.
Mitaka USA, Inc. (2015). “PDE Breast Free Flap Evaluation,” located at <http://mitakausa.com/category/pde—education/flaps/>, last visited on Dec. 29, 2015, four pages.
Mitaka USA, Inc. (2015). “PDE-Neo” located at <http://mitakausa.com/pde-neo/>, last visited on Dec. 29, 2015, two pages.
Mohr, F.W. et al. (May 1997). “Thermal Coronary Angiography: A Method for Assessing Graft Patency and Coronary Anatomy in Coronary Bypass Surgery,” Ann Thorac. Surgery 63(5):1506-1507.
Montán, S. et al. (Feb. 1, 1985). “Multicolor Imaging and Contrast Enhancement in Cancer-Tumor Localization Using Laser-Induced Fluorescence in Hematoporphyrin-Derivative-Bearing Tissue,” Optics Letters 10(2):56-58.
Mothes, H. et al. (Nov. 2004). “Indocyanine-Green Fluorescence Video Angiography Used Clinically to Evaluate Tissue Perfusion in Microsurgery,” The Journal of Trauma Injury, Infection, and Critical Care 57(5):1018-24.
Motomura et al. (1999). “Sentinel Node Biopsy Guided by Indocyanine Green Dye in Breast Cancer Patients,” Japan J. Clin. Oncol. 29(12):604-607.
Mullooly, V.M. et al. (1990). “Dihematoporphyrin Ether-Induced Photosensitivity in Laryngeal Papilloma Patients,” Lasers in Surgery and Medicine 10(4):349-356.
Murphy (2001). “Digital CCD Microscopy,” Chapter 14 in Fundamentals of Light Microscopy and Electronic Imaging, John Wiley and Sons, pp. i-xi and 259-281.
Nahlieli, O. et al. (Mar. 2001). “Intravital Staining with Methylene Blue as an Aid to Facial Nerve Identification in Parotid Gland Surgery” J. Oral Maxillofac. Surgery 59(3):355-356.
Nakamura, T. et al. (1964). “Use of Novel Dyes, Coomassie Blue and Indocyanine Green in Dye Dilution Method,” Tohoka University, Nakamura Internal Department, The Tuberculosis Prevention Society, Tuberculosis Research Laboratory, 17(2):1361-1366.
Nakayama, A. et al. (Oct. 2002). “Functional Near-Infrared Fluorescence Imaging for Cardiac Surgery and Targeted Gene Therapy,” Molecular Imaging 1(4):365-377.
Naumann, T. et al. (Nov. 15, 2000). “Retrograde Tracing with Fluoro-Gold: Different Methods of Tracer Detection at the Ultrastructural Level and Neurodegenerative Changes of Back-Filled Neurons in Long-Term Studies,” Journal of Neuroscience Methods 103(1):11-21.
Nimura, H. et al. (May 2004, e-published on Mar. 22, 2004). “Infrared Ray Electronic Endoscopy Combined with Indocyanine Green Injection for Detection of Sentinel Nodes of Patients with Gastric Cancer,” British Journal of Surgery 91(5):575-579.
Oddi, A. et al. (Jun. 1996). “Intraoperative Biliary Tree Imaging with Cholyl-Lysyl-Fluorescein: An Experimental Study in the Rabbit” Surgical Laparoscopy & Endoscopy 6(3):198-200.
Ogata, F. et al. (Jun. 2007). “Novel Lymphography Using Indocyanine Green Dye for Near-Infrared Fluorescence Labeling,” Annals of Plastic Surgery 58(6):652-655.
Ohnishi, S. et al. (Jul.-Sep. 2005). “Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Lymph Node Mapping” Molecular Imaging 4(3):172-181.
Ooyama, M. (Oct. 12-15, 1994). The 8th Congress of International YAG Laser Symposium, The 15th Annual Meeting of Japan Society for Laser Medicine, Sun Royal Hotel, Japan.
Ott, P. “Hepatic Elimination of Indocyanine Green with Special Reference to Distribution Kinetics and the Influence of Plasma Protein Binding,” Thesis.
Oxford Concise Medical Dictionary. “Perfusion,” p. 571 (1980), three pages.
Pagni, S. et al. (Jun. 1997). “Anastomotic Complications in Minimally Invasive Coronary Bypass Grafting,” Ann. Thorac. Surg. 63(6 Suppl):S64-S67.
Palcic et al. (1991). “Lung Imaging Fluorescence Endoscope: A Device for Detection of Occult Lung Cancer,” Medical Design and Material, thirteen pages.
Palcic, B. et al. (1990). “Development of a Lung Imaging Fluorescence Endoscope,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society 12(1):0196-0197.
Palcic, B. et al. (Aug. 1, 1990). “The Importance of Image Quality for Computing Texture Features in Biomedical Specimens,” Proc. SPIE 1205:155-162.
Palcic, B. et al. (Jun. 1, 1991). “Lung Imaging Fluorescence Endoscope: Development and Experimental Prototype,” Proc. SPIE 1448:113-117.
Palcic, B. et al. (Mar. 1991). “Detection and Localization of Early Lung Cancer by Imaging Techniques,” Chest 99(3):742-743.
Paques, M. et al. (Mar. 2003). “Axon-Tracing Properties of Indocyanine Green,” Arch Ophthalmol. 121(3):367-370.
Parungo, C.P. et al. (Apr. 2005). “Intraoperative Identification of Esophageal Sentinel Lymph Nodes with Near-Infrared Fluorescence Imaging,” The Journal of Thoracic and Cardiovascular Surgery 129(4):844-850.
Parungo, C.P. et al. (Dec. 2004, e-published on Nov. 15, 2004). “In Vivo Optical Imaging of Pleural Space Drainage to Lymph Nodes of Prognostic Significance,” Annals of Surgical Oncology 11(12):1085-1092.
Peak, M.J. et al. (1986). “DNA-to-Protein Crosslinks and Backbone Breaks Caused by FAR-and NEAR-Ultraviolet and Visible Light Radiations in Mammalian Cells,” in Mechanism of DNA Damage and Repair, Implications for Carcinogenesis and Risk Assessment, SIMIC, M.G. (ed.) et al., Plenum Press, 233 Spring Street, New York, N.Y. 10013, pp. 193-202.
Peiretti et al. (2005). “Human Erythrocyte-Ghost-Mediated Choroidal Angiography and Photocoagulation,” Database Biosis [online] Biosciences Information Service, Philadelphia, PA, US, XP002725023, Database Accession No. Prev200600056121, three pages, (Abstract only).
Peiretti, E. et al. (May 2005). “Human Erythrocyte-Ghost-Mediated Choroidal Angiography and Photocoagulation,” Investigative Ophthalmology & Visual Science, ARVO Annual Meeting Abstract 46(13):4282, located at <http://iovs.arvojournals.org/article.aspx?articleid=2403707>, last visited on Oct. 7, 2016, two pages.
Perez, M.T. et al. (Sep. 2002). “In Vivo Studies on Mouse Erythrocytes Linked to Transferrin,” IUBMB Life 54(3):115-121.
Pfister, A.J. et al. (Dec. 1992). “Coronary Artery Bypass Without Cardiopulmonary Bypass,” Ann. Thorac. Surg. 54(6):1085-1092, (Discussion by S.R. Gundry).
Phillips, R.P. et al. (1991). “Quantification of Diabetic Maculopathy by Digital Imaging of the Fundus,” Eye 5(1):130-137.
Piermarocchi, S. et al. (Apr. 2002). “Photodynamic Therapy Increases the Eligibility for Feeder Vessel Treatment of Choroidal Neovascularization Caused by Age-Related Macular Degeneration,” American Journal of Ophthalmology 133(4):572-575.
Profio, A.E. et al. (Jul.-Aug. 1984). “Fluorometer for Endoscopic Diagnosis of Tumors,” Medical Physics 11(4):516-520.
Profio, A.E. et al. (Jun. 1, 1991). “Endoscopic Fluorescence Detection of Early Lung Cancer,” Proc. SPIE 1426:44-46.
Profio, A.E. et al. (Sep.-Oct. 1986). “Digital Background Subtraction for Fluorescence Imaging,” Medical Physics 13(5):717-721.
Profio, A.E. et al. (Nov./Dec. 1979). “Laser Fluorescence Bronchoscope for Localization of Occult Lung Tumors,” Medical Physics 6:523-525.
Puigdellivol-Sanchez, A. et al. (Apr. 15, 2002). “On the Use of Fast Blue, Fluoro-Gold and Diamidino Yellow for Retrograde Tracing After Peripheral Nerve Injury: Uptake, Fading, Dye Interactions, and Toxicity,” Journal of Neuroscience Methods 115(2):115-127.
Pyner, S. et al. (Nov. 2001). “Tracing Functionally Identified Neurones in a Multisynaptic Pathway in the Hamster and Rat Using Herpes Simplex Virus Expressing Green Fluorescent Protein,” Experimental Physiology 86(6):695-702.
Raabe et al. (2009, e-published on Nov. 12, 2008). “Laser Doppler Imaging for lntraoperative Human Brain Mapping”, NeuroImage 44:1284-1289.
Raabe, A. et al. (Jan. 2003). “Near-Infrared Indocyanine Green Video Angiography: A New Method for lntraoperative Assessment of Vascular Flow,” Neurosurgery 52(1):132-139.
Rava, R.P. et al. (Jun. 1, 1991). “Early Detection of Dysplasia in Colon and Bladder Tissue Using Laser-Induced Fluorescence,” Proc. SPIE 1426:68-78.
Razum, N. et al. (Nov. 1987). “Skin Photosensitivity: Duration and Intensity Following Intravenous Hematoporphyrin Derivatives, HpD and DHE,” Photochemistry and Photobiology 46(5):925-928.
Report on Observation by C2400-75i and ARGUS20 Under Low illumination conditions, Jan. 17, 2008.
Request for invalidation of Japanese Patent JP3881550 filed by Hamamatsu Photonics, Inc (with English Translation).
Reuthebuch, O et al. (Feb. 2004). “Novadaq SPY: Intraoperative Quality Assessment in Off Pump Coronary Artery Bypass Grafting,” Chest 125(2):418-424.
Reuthebuch, O.T. et al. (May 2003). “Graft Occlusion After Deployment of the Symmetry Bypass System,” Ann. Thorac. Surg. 75(5):1626-1629.
Richards-Kortum, R. et al. (Jun. 1991). “Spectroscopic Diagnosis of Colonic Dysplasia: Spectroscopic Analysis,” Biochemistry and Photobiology 53(6):777-786.
Roberts, W.W. et al. (Dec. 1997). “Laparoscopic Infrared Imaging,” Surg. Endoscopy 11(12):1221-1223.
Rodnenkov, O.V. et al. (May 2005). “Erythrocyte Membrane Fluidity and Haemoglobin Haemoporphyrin Conformation: Features Revealed in Patients with Heart Failure,” Pathophysiology 11(4):209-213.
Ropars, C. (ed.) et al. (1987). Red Blood Cells as Carriers for Drugs. Potential therapeutic Applications, Pergamon Press, Oxford, New York, pp. i-vii, (Table of Contents only).
Ross, G.L. et al. (Dec. 2002). “The Ability of Lymphoscintigraphy to Direct Sentinel Node Biopsy in the Clinically N0 Neck for Patients with Head and Neck Squamous Cell Carcinoma,” The British Journal of Radiology 75(900):950-958.
Ross, G.L. et al. (Jul. 2004, e-published on Jun. 14, 2000). “Sentinel Node Biopsy in Head and Neck Cancer: Preliminary Results of a Multicenter Trial,” Annals of Surgical Oncology 11(7):690-696.
Rossi, L. et al. (2001). “Erthrocyte-Mediated Delivery of Dexamethasone in Patients with Chronic Obstructive Pulmonary Disease,” Biotechnol. Appl. Biochem. 33:85-89.
Rossi, L. et al. (1999). “Heterodimer-Loaded Erthrocytes as Bioreactors for Slow Delivery of the Antiviral Drug Azidothymidine and the Antimycobacterial Drug Ethambutol,” Aids Research and Human Retroviruses 15(4):345-353.
Rossi, L. et al. (2004). “Low Doses of Dexamethasone Constantly Delivered by Autologous Erythrocytes Slow the Progression of Lung Disease in Cystic Fibrosis Patients,” Blood Cells, Molecules, and Diseases 33:57-63.
Rozen, W.M. et al. (Jan. 2008). “Preoperative Imaging for DIEA Perforator Flaps: A Comparative Study of Computed Tomographic Angiography and Doppler Ultrasound,” Plastic and Reconstructive Surgery 121(1):9-16.
Rubben, A. et al. (Mar. 1994). “Infrared Videoangiofluorography of the Skin with Indocyanine Green—Rat Random Cutaneous Flap Model and Results in Man,” Microvascular Research 47(2):240-251.
Rubens, F.D. et al. (2002). “A New and Simplified Method for Coronary and Graft Imaging During CABG,” The Heart Surgery Forum 5(2):141-144.
Sakatani, K. et al. (Nov. 1997). “Noninvasive Optical Imaging of the Subarchnoid Space and Cerebrospinal Fluid Pathways Based on Near Infrared Fluorescence,” J. Neurosurg. 87(5):738-745.
Salmon, E.D. et al. (Oct. 1994). “High Resolution Multimode Digital Imaging System for Mitosis Studies In Vivo and In Vitro,” Biol. Bull 187(2):231-232.
Sato, et al., (1991). “Development of a Visualization Method for the Microcirculation of deep viscera using an Infrared intravital microscope System,” Research on ME Devices and ME Technology (with English Translation), five pages.
Satpathy G.R. et al. (Oct. 2004) “Loading Red Blood Cells with Trehalose: A Step Towards Biostabilization,” Cryobiology 49(2):123-136.
Schaff, H.V. et al. (Oct. 15, 1996). “Minimal Thoracotomy for Coronary Artery Bypass: Value of Immediate Postprocedure Graft Angiography,” Supplement to Circulation 94(8):I-51, (Abstract No. 0289), two pages.
Schellingerhout, D. et al. (Oct. 2000). “Quantitation of HSV Mass Distribution in a Rodent Brain Tumor Model,” Gene Therapy 7(19):1648-1655.
Schmued, L. et al. (Aug. 27, 1990). “In Vivo Anterograde and Retrograde Axonal Transport of the Fluorescent Rhodamine-Dextran-Amine, Fluoro-Ruby, Within the CNS,” Brain Research 526(1):127-134.
Schmued, L.C. et al. (Oct. 29, 1993). “Intracranial Injection of Fluoro-Gold Results in the Degeneration of Local but not Retrogradely Labeled Neurons,” Brain Research 626(1-2):71-77.
Schneider Jr., H.C. et al. (Jan. 1975). “Fluorescence of Testicle, An Indication of Viability of Spermatic Cord After Torsion” Urology V(1):133-136.
Seeman, P. (Jan. 1, 1967). “Transient Holes in the Erythrocyte Membrane During Hypotonic Hemolysis and Stable Holes in the Membrane After Lysis by Saponin and Lysolecithin,” Journal of Cell Biology 32(1):55-70.
Sekijima, M. et al. (Sep. 2004). “An Intraoperative Fluorescent Imaging System in Organ Transplantation,” Transplantation Proceedings 36(7):2188-2190.
Serov, A. et al. (Mar. 1, 2002). “Laser Doppler Perfusion Imaging with a Complimentary Metal Oxide Semiconductor Image Sensor,” Optics Letters 27(5):300-302.
Serov, A.N. et al. (Sep. 23, 2003). “Quasi-Parallel Laser Doppler Perfusion Imaging Using a CMOS Image Sensor,” Proc. SPIE 5067:73-84.
Sherif, A. et al. (Sep. 2001). “Lymphatic Mapping and Detection of Sentinel Nodes in Patients with Bladder Cancer,” The Journal of Urology 166(3):812-815.
Sheth, S.A. et al. (Apr. 22, 2004) “Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses,” Neuron 42(2):347-355.
Shoaib, T. et al. (Jun. 1, 2001). “The Accuracy of Head and Neck Carcinoma Sentinel Lymph Node Biopsy in the Clinically NO Neck,” Cancer 91(11):2077-2083.
Siemers, B.M. et al. (Nov. 2001). “The Acoustic Advantage of Hunting at Low Heights Above Water: Behavioual Experiments on the European ‘Trawling’ Bats Myotis Capaccinii, M Dasycneme and M. Daubentonii,” J. Eperimental Biol.204(Pt. 22):3843-3854.
Skalidis, E.I. et al. (Nov. 16, 2004). “Regional Coronary Flow and Contractile Reserve in Patients with Idiopathic Dilated Cardiomyopathy,” Journal of the American College of Cardiology 44(10):2027-2032.
Slakter, J.S. et al. (Jun. 1995). “Indocyanine-Green Angiography,” Current Opinion in Ophthalmology 6(III):25-32.
Smith, G.A. et al. (Mar. 13, 2001). “Herpesviruses Use Bidirectional Fast-Axonal Transport to Spread in Sensory Neurons,” Proceedings of the National Academy of Sciences of the United States of America 98(6):3466-3470.
Soltesz, E.G. et al. (Jan. 2005). “Intraoperative Sentinel Lymph Node Mapping of the Lung Using Near-Infrared Fluorescent Quantum Dots,” Ann. Thorac. Surg. 79(1):269-277.
Staurenghi, G. et al. (Dec. 2001). “Combining Photodynamic Therapy and Feeder Vessel Photocoagulation: A Pilot Study,” Seminars in Ophthalmology 16(4):233-236.
Stern, M.D. (Mar. 6, 1975). “In Vivo Evaluation of Microcirculation by Coherent Light Scattering,” Nature 254(5495):56-58.
Still, J. et al. (Mar. 1999). “Evaluation of the Circulation of Reconstructive Flaps Using Laser-Induced Fluorescence of Indocyanine Green,” Ann. Plast. Surg. 42(3):266-274.
Still, J.M. et al. (Jun. 2001). “Diagnosis of Burn Depth Using Laser-Induced Indocyanine Green Fluorescence: A Preliminary Clinical Trial,” Burns 27(4):364-371.
Stoeckli, S.J. et al. (Sep. 2001). “Sentinel Lymph Node Evaluation in Squamous Cell Carcinoma of the Head and Neck,” Otolaryngol. Head Neck Surg. 125(3):221-226.
Subramanian, V.A. et al. (Oct. 15, 1995). “Minimally Invasive Coronary Bypass Surgery: A Multi-Center Report of Preliminary Clinical Experience,” Supplement to Circulation 92(8):I-645, (Abstract No. 3093), two pages.
Sugi, K. et al. (Jan. 2003). “Comparison of Three Tracers for Detecting Sentinel Lymph Nodes in Patients with Clinical N0 Lung Cancer,” Lung Cancer 39(1):37-40.
Sugimoto, K. et al. (Jun. 2008, e-published on Mar. 19, 2008). “Simultaneous Tracking of Capsid, Tegument, and Envelope Protein Localization in Living Cells Infected With Triply Fluorescent Herpes Simplex Virus 1,” Journal of Virology 82(11):5198-5211.
Suma, H. et al. (2000). “Coronary Artery Bypass Grafting Without Cardiopulmonary Bypass in 200 Patients,” J. Cardiol. 36(2):85-90, (English Abstract only).
Taggart, D.P. et al. (Mar. 2003). “Preliminary Experiences with a Novel lntraoperative Fluorescence Imaging Technique to Evaluate the Patency of Bypass Grafts in Total Arterial Revascularization,” Ann Thorac Surg. 75(3):870-873.
Taichman, G.C. et al. (Jun. 1987). “The Use of Cardio-Green for lntraoperative Visualization of the Coronary Circulation: Evaluation of Myocardial Toxicity,” Texas Heart Institute Journal 14(2):133-138.
Takahashi, M. et al. (Sep. 2004). “SPY: An Innovative Intra-Operative Imaging System to Evaluate Graft Patency During Off-Pump Coronary Artery Bypass Grafting,” Interactive Cardio Vascular and Thoracic Surgery 3(3):479-483.
Takayama, T. et al. (Apr. 1992). “Intraoperative Coronary Angiography Using Fluorescein Basic Studies and Clinical Application,” Vascular and Endovascular Surgery 26(3):193-199.
Takayama, T. et al. (Jan. 1991). “Intraoperative Coronary Angiography Using Fluorescein” The Annals of Thoracic Surgery 51(1):140-143.
Tanaka, E. et al. (Jul. 2009). “Real-time Assessment of Cardiac Perfusion, Coronary Angiography, and Acute Intravascular Thrombi Using Dual-channel Near-infrared Fluorescence Imaging,” The Journal of Thoracic and Cardiovascular Surgery 138(1):133-140.
Tang, G.C. et al. (1989). “Spectroscopic Differences between Human Cancer and Normal Lung and Breast Tissues,” Lasers in Surgery and Medicine 9(3):290-295.
Taylor,, K.M. (Apr. 1998). “Brain Damage During Cardiopulmonary Bypass,” Annals of Thoracic Surgery 65(4):520-526.
The American Heritage Medical Dictionary. “Perfuse.” p. 401 (2008), three pages.
Thelwall, P.E. et al. (Oct. 2002). “Human Erythrocyte Ghosts: Exploring the Origins of Multiexponential Water Diffusion in a Model Biological Tissue with Magnetic Resonance,” Magnetic Resonance in Medicine 48(4):649-657.
Torok, B. et al. (May 1996). “Simultaneous digital indocyanine green and fluorescein angiography” Klinische Monatsblatter Fur Augenheilkunde 208(5):333-336.
Tsutsumi, D. et al. “Moisture Detection of road surface using infrared camera,” Reports of the Hokkaido Industrial Research Institute (No. 297), Issued on Nov. 30, 1998, two pages.
Tubbs, R.S. et al. (Apr. 2005). “Anatomic Landmarks for Nerves of the Neck: A Vade Mecum for Neurosurgeons,” Neurosurgery 56(2 Suppl.):ONS256-ONS260, (2005).
Unno, N. et al. (Feb. 2008, e-published on Oct. 26, 2007). “Indocyanine Green Fluorescence Angiography for intraoperative assessment of Blood flow: A Feasibility Study,” Eur J Vasc Endovasc Surg. 35(2):205-207.
Uren, R.F. (Jan. 2004). “Cancer Surgery Joins the Dots,” Nature Biotechnology 22(1):38-39.
Valero-Cabré, A. et al. (Jan. 15, 2001). “Superior Muscle Reinnervation after Autologous Nerve Graft or Poly-L-Lactide-ε-Caprolactone (PLC) Tube Implantation in Comparison to Silicone Tube Repair,” Journal of Neuroscience Research 63(2):214-223.
Van Son, J.A.M. et al. (Nov. 1997). “Thermal Coronary Angiography for Intraoperative Testing of Coronary Patency in Congenital Heart Defects,” Ann Thorac Surg. 64(5):1499-1500.
Wachi, A. et al. (Apr. 1995). “Characteristics of Cerebrospinal Fluid Circulation in Infants as Detected With MR Velocity Imaging,” Child's Nerv System 11(4):227-230.
Wagnieres, G.A. et al. (Jul. 1, 1990). “Photodetection of Early Cancer by Laser Induced Fluorescence of a Tumor-Selective Dye: Apparatus Design and Realization,” Proc. SPIE 1203:43-52.
Weinbeer, M. et al. (Nov. 25, 2013). “Behavioral Flexibility of the Trawling Long-Legged Bat, Macrophyllum Macrophyllum (Phyllostomidae),” Frontiers in Physiology 4(Article 342):1-11.
What is Perfusion? A Summary of Different Typed of Perfusion. (Sep. 1, 2004). Located at, http://www.perfusion.com/cgi-bin/absolutenm/templates/articledisplay.asp?articleid=1548#.Vo8Hv02FPGj, last visited on Jan. 7, 2016, two pages.
Wise, R.G. et al. (Nov. 2005). “Simultaneous Measurement of Blood and Myocardial Velocity in the Rat Heart by Phase Contrast MRI Using Sparse q-Space Sampling” Journal of Magnetic Resonance Imaging 22(5):614-627.
Woitzik, J. et al. (Apr. 2005). “Intraoperative Control of Extracranial-Intracranial Bypass Patency by Near-Infrared Indocyanine Green Videoangiography,” J. Neurosurg.102 (4):692-698.
Wollert, H.G. et al. (Dec. 1989). “Intraoperative Visualization of Coronary Artery Fistula Using Medical Dye,” The Thoracic and Cardiovascular Surg. 46(6):382-383.
Wu, C. et al. (Apr. 15, 2005). “cGMP (Guanosine 3',5'-Cyclic Monophosphate) Transport Across Human Erythrocyte Membranes,” Biochemical Pharmacology 69(8):1257-1262.
Yada, T. et al. (May 1993). “In Vivo Observation of Subendocardial Microvessels of the Beating Porcine Heart Using a Needle-Probe Videomicroscope with a CCD Camera,” Circulation Research 72(5):939-946.
Yoneya, S. et al. (Jun. 1998). “Binding Properties of Indocyanine Green in Human Blood,” IOVS 39(7):1286-1290.
Yoneya, S. et al. (Sep. 1993). “Improved Visualization of the Choroidal Circulation with Indocyanine Green Angiography,” Arch Opthalmol. 111(9):1165-1166.
Young. I.T. et al. (1993). “Depth of Focus in Microscopy,” SCIA '93, Proc. Of the 8th Scandinavian Conference on Image Analysis, Tromso, Norway, pp. 493-498, six pages.
Chinese Third Office Action mailed Aug. 8, 2016 for Chinese Application No. 201180057244.8 filed on Sep. 20, 2011, eighteen pages.
EP Communication in pursuant to Article 94(3) EPC mailed Mar. 9, 2016 for European Patent Application No. 09739980.2 filed May 1, 2009.
European Communication pursuant to Article 94(3) mailed on May 27, 2016 for EP Application No. 15160177.0 filed on Aug. 11, 2000, five pages.
European Decision in Opposition Proceeding Revoking (Jun. 10, 2010). European Patent No. 1 143 852, thirty pages.
European Opposition of European Patent No. EP1143852 lodged by Hamamatsu Photonics, Inc., Jul. 30, 2008, forty pages.
Extended European Search Report mailed Oct. 14, 2015 for EP Application No. 13806313.6 filed on Jun. 20, 2013, nine pages.
Final Office Action mailed on Apr. 10, 2008, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages.
Final Office Action mailed on Apr. 2, 2013, for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages.
Final Office Action mailed on Apr. 20, 2016, for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, seven pages.
Final Office Action mailed on Apr. 27, 2011 for U.S. Appl. No. 11/515,419, filed Sep. 1, 2006, nine pages.
Final Office Action mailed on Aug. 10, 2012, for U.S. Appl. No. 11/912,877, filed Aug. 13, 2008, ten pages.
Final Office Action mailed on Dec. 31, 2015 for U.S. Appl. No. 14/177,050 filed Feb. 10, 2014, eighteen pages.
Final Office Action mailed on Dec. 4, 2014, for U.S. Appl. No. 12/776,835, filed May 10, 2010, thirteen pages.
Final Office Action mailed on Feb. 1, 2013, for U.S. Appl. No. 12/776,835, filed May 10, 2010, thirteen pages.
Final Office Action mailed on Feb. 13, 2015, for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, six pages.
Final Office Action mailed on Feb. 18, 2010, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages.
Final Office Action mailed on Feb. 4, 2015 for U.S. Appl. No. 13/314,418, filed Dec. 8, 2011, six pages.
Final Office Action mailed on Jul. 21, 2016 for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, seven pages.
Final Office Action mailed on Jul. 9, 2015, for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, eight pages.
Final Office Action mailed on Jun. 1, 2015, for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, nine pages.
Final Office Action mailed on Jun. 13, 2014, for U.S. Appl. No. 12/776,835, filed May 10, 2010, thirteen pages.
Final Office Action mailed on Mar. 28, 2013 for U.S. Appl. No. 12/063,349, filed May 12, 2010, twenty pages.
Final Office Action mailed on Nov. 6, 2013, for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages.
Final Office Action mailed on Oct. 7, 2011 for U.S. Appl. No. 11/851,312, filed Sep. 6, 2007, ten pages.
Final Office Action mailed on Sep. 13, 2011, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, five pages.
Final Office Action mailed on Sep. 17, 2014 for U.S. Appl. No. 11/515,419, filed Sep. 1, 2006, eleven pages.
Final Office Action mailed on Sep. 23, 2004, for U.S. Appl. No. 09/744,034, filed Apr. 27, 2001, seven pages.
Final Office Action mailed on Sep. 29, 2016, for U.S. Appl. No. 13/922,996, filed Jun. 20, 2013, fourteen pages.
Indian Examination Report mailed on Sep. 22, 2016 for Indian Application No. 7566/DELNP/2010, filed on Oct. 27, 2010, nine pages.
International Preliminary Examination Report completed on Jul. 1, 2001 for PCT/US00/22088, filed on Aug. 11, 2000, three pages.
International Search Report and Written Opinion mailed Jul. 29, 2009 for PCT/US2009/043975 filed on May 14, 2009, eleven pages.
International Search Report mailed on Jun. 2, 2009 for PCT Application No. PCT/EP2008/008547, filed on Oct. 9, 2008, five pages.
International Search Report mailed Dec. 3, 2015 for PCT Application No. PCT/CA2015/050973 filed on Sep. 28, 2015, three pages.
International Search Report mailed on Jan. 22, 2014, for PCT Application No. PCT/IB2013/001934, filed on Jun. 20, 2013, four pages.
International Search Report mailed on Oct. 18, 2000, for PCT Application No. PCT/US2000/22088, filed on Aug. 11, 2000, one page.
International Search Report mailed on Sep. 11, 2009 for Application No. PCT/US2009/042606 filed on May 1, 2009, five days.
Japanese First Office Action mailed Feb. 1, 2016 for Japanese Patent Application No. 2015-517876 filed Jun. 20, 2013, eight pages.
Korean Patent Office, Office Action mailed Jun. 25, 2014 in Korean Patent Application No. 10-2013-7035027 w/English-language Translation, fifteen pages.
Non-Final Office Action mailed on Apr. 26, 2012, for U.S. Appl. No. 12/776,835, filed May 10, 2010, nine pages.
Non-Final Office Action mailed on Apr. 28, 2010, for U.S. Appl. No. 11/946,672, filed Nov. 28, 2007, nine pages.
Non-Final Office Action mailed on Aug. 10, 2016 for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, twenty pages.
Non-Final Office Action mailed on Aug. 29, 2014 for U.S. Appl. No. 12/063,349, filed May 12, 2010, nineteen pages.
Non-Final Office Action mailed on Dec. 30, 2010, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages.
Non-Final Office Action mailed on Feb. 1, 2011 for U.S. Appl. No. 11/851,312, filed Sep. 6, 2007, seven pages.
Non-Final Office Action mailed on Feb. 5, 2016, for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, seven pages.
Non-Final Office Action mailed on Jan. 22, 2014 for U.S. Appl. No. 11/851,312, filed Sep. 6, 2007, ten pages.
Non-Final Office Action mailed on Jan. 27, 2012, for U.S. Appl. No. 11/912,877, filed Aug. 13, 2008, eleven pages.
Non-Final Office Action mailed on Jan. 9, 2009, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages.
Non-Final Office Action mailed on Jul. 2, 2015, for U.S. Appl. No. 14/177,050, filed Feb. 10, 2014, nineteen pages.
Non-Final Office Action mailed on Jul. 22, 2015 for U.S. Appl. No. 13/314,418, filed Dec. 8, 2011, six pages.
Non-Final Office Action mailed on Jul. 8, 2014 for U.S. Appl. No. 13/314,418, filed Dec. 8, 2011, seven pages.
Non-Final Office Action mailed on Jun. 11, 2013 for U.S. Appl. No. 11/515,419, filed Sep. 1, 2006, eleven pages.
Non-Final Office Action mailed on Jun. 28, 2012 for U.S. Appl. No. 12/063,349, filed May 12, 2010, seventeen pages.
Non-Final Office Action mailed on Mar. 10, 2004, for U.S. Appl. No. 09/744,034, filed Apr. 27, 2001, seven pages.
Non-Final Office Action mailed on Mar. 13, 2015, for U.S. Appl. No. 14/543,356, filed Nov. 17, 2014, eight pages.
Non-Final Office Action mailed on Mar. 6, 2007, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, eight pages.
Non-Final Office Action mailed on May 21, 2015, for U.S. Appl. No. 13/922,996, filed Jun. 20, 2013, fourteen pages.
Non-Final Office Action mailed on May 6, 2015 for U.S. Appl. No. 12/063,349, filed May 12, 2010, seventeen pages.
Non-Final Office Action mailed on Nov. 27, 2015, for U.S. Appl. No. 14/543,429, filed Nov. 17, 2014, six pages.
Non-Final Office Action mailed on Nov. 9, 2015, for U.S. Appl. No. 14/177,045, filed Feb. 10, 2014, seven pages.
Non-Final Office Action mailed on Oct. 3, 2013, for U.S. Appl. No. 12/776,835, filed May 10, 2010, twelve pages.
Non-Final Office Action mailed on Sep. 15, 2010, for U.S. Appl. No. 11/106,154, filed Apr. 14, 2005, six pages.
Non-Final Office Action mailed on Sep. 30, 2010 for U.S. Appl. No. 11/515,419, filed Sep. 1, 2006, eleven pages.
Non-Final Office Action mailed on Sep. 5, 2012 for U.S. Appl. No. 12/933,477, filed Sep. 20, 2010, seven pages.
Notice of Allowance mailed Jul. 13, 2016 for U.S. Appl. No. 14/598,832, filed Jan. 16, 2015, seven pages.
Notice of Allowance mailed on Apr. 17, 2014, for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages.
Notice of Allowance mailed on Mar. 7, 2005, for U.S. Appl. No. 09/744,034, filed Apr. 27, 2001, five pages.
Notice of Allowance mailed on May 26, 2016, for U.S. Appl. No. 14/177,045, filed Feb. 10, 2014, eight pages.
Notice of Allowance mailed on Nov. 25, 2015, for U.S. Appl. No. 14/598,832, filed Jan. 16, 2015, seven pages.
Notice of Allowance mailed on Nov. 30, 2010, for U.S. Appl. No. 11/946,672, filed Nov. 28, 2007, six pages.
Notice of Allowance mailed on Oct. 4, 2013, for U.S. Appl. No. 11/912,877, filed Aug. 13, 2008, nine pages.
Notice of Allowance mailed on Oct. 6, 2014, for U.S. Appl. No. 13/419,368, filed Mar. 13, 2012, five pages.
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority, or the Declaration mailed on Apr. 3, 2008 for PCT/US07/77892, filed on Sep. 7, 2007, ten pages.
Partial European Search Report mailed on Dec. 16, 2010 for European Application No. 10186218.3 filed on Aug. 11, 2000, seven pages.
Partial European Search Report mailed on Jun. 11, 2014 for European Application No. 13178642.8, filed on May 1, 2009, five pages.
Supplemental European Search Report for EP Application No. 00955472.6 mailed on Jul. 6, 2004, five pages.
Written Opinion for Application No. PCT/EP2008/008547, mailed on Jun. 2, 2009; eleven pages.
Written Opinion of the International Searching Authority mailed on Jan. 22, 2014, for PCT Application No. PCT/IB2013/001934, filed on Jun. 20, 2013, six pages.
Related Publications (1)
Number Date Country
20150196208 A1 Jul 2015 US
Provisional Applications (2)
Number Date Country
61023818 Jan 2008 US
61243688 Sep 2009 US
Divisions (2)
Number Date Country
Parent 13850063 Mar 2013 US
Child 14598832 US
Parent 12841659 Jul 2010 US
Child 13850063 US
Continuation in Parts (1)
Number Date Country
Parent PCT/CA2009/000073 Jan 2009 US
Child 12841659 US