Method for evaluating logic functions by logic circuits having optimized number of and/or switches

Information

  • Patent Application
  • 20050149302
  • Publication Number
    20050149302
  • Date Filed
    February 10, 2005
    19 years ago
  • Date Published
    July 07, 2005
    19 years ago
Abstract
A method for creating a logic circuit with an optimized number of AND/OR switches, which evaluates a logic function defined in a high-level description. Through analyzing the dependency relationship among operators used to define the logic function, the present invention may simplify the functional steps used in the high-level description to define the logic function and thus create a logic circuit with an optimized number of AND/OR switches.
Description
FIELD OF THE INVENTION

The present invention relates generally to integrated circuit design, and particularly to a method for evaluating a logic function by a logic circuit having an optimized number of AND/OR switches.


BACKGROUND OF THE INVENTION

Integrated circuits (ICs) are often designed at a high-level of abstraction. For example, ICs may be described in a C++ code, in a RTL (register transfer level) hardware description language such as Verilog HDL or VHDL, or, indeed, in any other programming or hardware description languages. The IC designed at a high-level of abstraction has to be synthesized logically. The gate-level synthesis is a process of generating a logic circuit according to the high-level description. Often, this is a costly and lengthy process.


One of the most important problems during IC development is to reduce the timing and area characteristics of the IC. To save the IC real estate and improve the efficiency, it is a priority to reduce the number of AND/OR switches in a logic circuit that evaluates a logic function defined in a high-level description. An AND/OR switch is a situation in which two neighboring gates on a path from an input of a logic circuit to an output of the logic circuit are of different types. The maximal number of AND/OR switches included on considered paths is called the number of AND/OR switches.


The logic function to be evaluated may be a Boolean function. It is well known that each Boolean function may be presented as a disjunction of conjunctions, which may be referred to as a disjunction normal form (DNF), and thus may be evaluated by the Boolean circuit having only AND/OR switches. However, this Boolean circuit may have a large complexity and the creation of this circuit is a NP-hard problem. NP-hard (Non-deterministic Polynomial-time hard) refers to the class of decision problems that contains all problems H such that for all decision problems L in NP there is a polynomial-time many-one reduction to H. Informally this class may be described as containing the decision problems that are at least as hard as any problem in NP. This intuition may be supported by the fact that if we can find an algorithm A that solves one of these problems H in polynomial time, then we may construct a polynomial time algorithm for every problem in NP by first executing the reduction from this problem to H and then executing the algorithm A.


Therefore, it would be desirable to provide a method for creating a logic circuit with an optimized number of AND/OR switches, which evaluates a logic function defined in a high-level description.


SUMMARY OF THE INVENTION

Accordingly, the present invention discloses a method for creating a logic circuit with an optimized number of AND/OR switches, which evaluates a logic function defined in a high-level description. Through analyzing the dependency relationship among operators used to define the logic function, the present invention may simplify the functional steps used in the high-level description to define the logic function and thus create a logic circuit with an optimized number of AND/OR switches.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and together with the general description, serve to explain the principles of the invention.




BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:



FIG. 1 shows a Boolean function FUNC defined in C++ language in accordance with an exemplary embodiment of the present invention;



FIG. 2 shows the Boolean function FUNC of FIG. 1 being evaluated by a Boolean circuit in accordance with an exemplary embodiment of the present invention;



FIG. 3 is an exemplary C++ code depicting the operators of the C++ program in the order of the operator's presence in the C++ code in accordance with an exemplary embodiment of the present invention;



FIG. 4 depicts the dependency relationship among the operators shown in FIG. 3;



FIG. 5 is a schematic diagram showing a logic circuit with an optimized number of AND/OR switches created to evaluate a logic function defined in a high-level description in accordance with an exemplary embodiment of the present invention; and



FIG. 6 is an exemplary process used to create a logic circuit with an optimized number of AND/OR switches to evaluate a logic function defined in a high-level description in accordance with an exemplary embodiment of the present invention.




DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.


As shown in FIG. 1, an exemplary logic function FUNC is determined by means of C++ functions. Inputs x1, x2, . . . , xn, y1, y2, . . . , ym, n≧1, m≧1 may take values of only 0 (low) and 1 (high). Inputs x1, x2, . . . , xn may be called control inputs, and inputs y1, y2, . . . , ym may be called data inputs.


In FIG. 1, the C++ program PROGRAM may include operators of the following three types:


1) IF-operators, which may be defined as follows:

if(xi)positive_operatorelsenegative_operatororif(custom characterxi)negative_operatorelsepositive_operator


(custom character represents a NOT function). It should be noted that the else option may be absent without departing from the spirit and scope of the present invention.
    • 2) EQ-operators, which may be defined as follows:

      result=yi;
    • 3) SEQ-operators, which may be defined as follows:

      {child_operator1 child_operator2 . . . child_operatorK}


Therefore, for each set of values of control and data inputs, the function FUNC returns a value 0 (low) or 1 (high). Thus, the function FUNC may be considered as a Boolean function.


As shown in FIG. 2, in an exemplary embodiment of the present invention, the present invention is devoted to the evaluation of the Boolean function FUNC as shown in FIG. 1, by means of a Boolean circuit created from the library elements: NOT (NOT gate), AND (2-input AND gate), and OR (2-input OR gate).


The maximal length of any path from any input of a Boolean circuit to the output may be called depth of the Boolean circuit, and the number of gates (AND, OR, NOT) may be called complexity of the Boolean circuit.


One of the most important problems during IC development is to reduce the timing and area characteristics of the IC. Through use of the present invention, minimization of depth and complexity of Boolean circuits may be utilized to optimize and reduce the complexity of an IC.


For instance, through use of an exemplary method of the present invention, a method for synthesizing Boolean circuits is provided that evaluates functions FUNC defined in a C++ code. This method allows the creation of Boolean circuits with low complexity and high ability of depth optimization. The term “ability of depth optimization” pertains to the approach to develop large IC chips from several small parts (called modules). Preferably, these small modules may be easily optimized separate from each other. Typically during this optimization, it is desirable that all inputs of each module have the same arrival depth.


However, the most difficult optimization problem arises when the developer starts to interconnect small modules to arrive at a single large integrated circuit, such as an application specific integrated circuit (ASIC), system-on-chip (SOC), general purpose integrated circuit, and the like. Because the inputs of one module may become the outputs of another module (or several other modules), different arrival depths may be encountered, and thus the module may need to be optimized again (“re-optimized”) for the given set of the arrival depths of the module's inputs. The term “ability of depth optimization” means that the module may be simply optimized and re-optimized to reduce the depth.


Each Boolean circuit may be split into a set of uniform sub-trees, which are the trees that consist of OR elements only or of AND elements only. Reducing the number of these uniform sub-trees may optimize the circuit depth. The number of uniform sub-trees depends from one important characteristic of the Boolean circuit that is called the number of AND/OR switches. In order to determine the number of AND/OR switches, all the paths from any input of a Boolean circuit to its output should be examined. Each path may include gates of types NOT, AND and OR. The AND/OR switch is a situation in which two neighboring gates on the path are of different types. The maximal number of switches included on considered paths is called the number of AND/OR switches. Therefore, the smaller the number of AND/OR switches, the smaller the number of uniform sub-trees.


Each Boolean function may be presented as a disjunction of conjunctions, which may be referred to as a disjunction normal form (DNF), and thus may be evaluated by the Boolean circuit having only AND/OR switches. However, this Boolean circuit may have a large complexity and the creation of this circuit is a NP-hard problem.


The present invention presents a method of rapid synthesis of the Boolean circuit with an optimized number of AND/OR switches and low complexity.


Before the description of the method of the present invention, the following terms may be defined. The operators “positive_operator” and “negative_operator”, as discussed previously, are called children of the IF-operator, and the operators “child_operator1”, “child_operator2”, . . . “child_operatorK” are called children of the SEQ-operator. The operator “positive_operator” is called a positive child of the IF-operator, and the operator “negative_operator” is called a negative child of the IF-operator. The IF-operator is called a parent of operators “positive_operator” and “negative_operator”, and the SEQ-operator is called a parent of operators “child_operator1”, “child_operator2”, . . . “child_operatorK”. The input xi is called control input of the IF-operator.


Let us enumerate all the operators of a C++ program in the order of the operator's presence in the C++ code as shown in FIG. 3. Preferably, the number 1 is always assigned to the top-level SEQ-operator. This operator is the only operator that has no parent. Operators 2 and 9 are children of operator 1. The operator 3 is a positive child of the operator 2, the operator 4 is a child of the operator 3, and continuing likewise. Thus all the operators have a unique number op={overscore (1, N)}.


For example, OPi may be an operator with number i. For each i={overscore (1, N)} par(i) may be a number of the parent of the operator OPi. We may assign par(1)=1.


For purposes of the following discussion, x may be denoted as equal to (x1, x2, xn), and instead of denoting each Boolean function that depends from variables x1, x2, xn as f(x1, x2, . . . , xv), the function may be written as f(x) for the sake of simplifying the discussion.


Define a function Termi(x), i={overscore (1, N)}:

a)Termi(x)=1 if OPpar(i) is a SEQ-operator;
b)Termi(x)=xj if OPpar(i) is an IF-operator with control input xj and OPi is a positive child;
c)Termi(x)=custom characterxj if OPpar(i) is an IF-operator with control input xj and OPi is a negative child.  (Def. 1)


The present discussion will now refer to the process of execution of the C++ program. During this process, all the operators are executed in the order of the operator's enumeration. For example, after the execution of the operator OPi, the operator OPi+1 may be executed. Preferably, the only exception that breaks this order occurs when executing an IF-operator. After the execution of IF-operator, the process may jump to one of two operators; negative child or positive child. If the process jumps to the positive child, the negative child is not executed (and vise versa). Thus, for each set of values of the control inputs x1, x2, . . . , xn some of the operators are executed and others are not executed. Let Condi(x) be a Boolean function that takes value 1 if and only if the operator OPi is executed when the input values are x1, x2, . . . , xx. Thus, the following is true.

Condi(x)=Condpar(i)(xTermi(x)  Equation (1)

(Λ represents an AND function). It should be noted that the considered Boolean function FUNC(x,y) may take only the next values 0, y1, y2, . . . , yn. Let Valk(x), k={overscore (1,m)} be a Boolean function that may take value 1 if and only if FUNC(xy)=yj, therefore the following may be written.
FUNC(x,y)=mj=1Valj(x)·yjEquation(2)

(the middle dot “.” represents an AND function, custom character represents an OR function).


Let Yj, j={overscore (1,m)} be a set of numbers of all operators with type result=yj and
Y=mj=1Yj

(∪ sets a theoretic union).


FUNC(x,y) may be equal to yj when and only when the operator OPi, iεYj, executes and for every s>i, sε=Y\Yj, operator OPs does not execute. (ε sets membership; \ sets a theoretic complement).


Consequently, the following may be written:
Valj(x)=iYj[Condi(x)·s>i,sY\YjConds(x)]


Denote Boolean function

BothCondi,s(x)=Condt(xConds(x), 1≦i<s≦N


Using this function, the following may be written:
Valj(x)=iYj[Condf(x)·s>i,sY\YjBothCondi,s(x)]Equation(3)


Denote par0(i)=i, part+1(i)=par(part(i)), i={overscore (1,N)}, t≧0. For each i={overscore (1, N)} consider the next sequence par0(i), par1(i), par2(i), . . . Let d(i)≧0 be a minimal number so that part(i)=1 for each t≧d(i). The magnitude d(i) may be determined as a depth of the operator OPi in the C++ program.


For each i={overscore (1,N)} define the set

AllParents(i)={par0(i), par1(i), . . . ,pard(i)(i)}  (Def. 2)


Using Equation (1), the following may be determined:
Condi(x)=tAllParents(i)Termi(x)Equation(4)


Let seq(i)≧1 be a minimal number so that the operator OPparseq(i)(i) is a SEQ-operator and define the set

AllParentsBeforeSeq(i)={par0(i), par1(i), . . . parseq(i)−1(i)}  (Def. 3)


Define

AllSeqParents(i)={parseq(i)(i), parseq(seq(i))(i), . . . , pard(i)(i)}  (Def. 4)


Thus, the following may be determined:
AllParents(i)=t{i}AllSeqParents(i)AllParentsBeforeSeq(t)Equation(5)


Determine
TermBeforeSeqi(x)=tAllParentsBeforeSeq(i)Termi(x),i=1,N_Equation(6)


Consequently, using Equations (4), (5) and (6), the following may be determined:
Condi(x)=t{i}AllSeqParents(i)TermBeforeSeqi(x),i=1,N_Equation(7)


Consider the function ContrCondi,s(x), 1≦i<s≦N and two sequences of parents:

par0(i), par1(i), . . . , pard(i)(i)
par0(s), par1(s), . . . , pard(s)(s)


So long as pard(i)(i)=pard(s)(s)=1, there exists a minimal d(i,s)≦d(s) so that the ends of length (d(s)−d(i,s)+1) of both considered sequences

pard(i)+d(i,s)−d(s)(i), . . . , pard(i)(i)
pard(i,s)(s), . . . , pard(s)(s)

are the same.


Define

common(i,s)=pard(i,s)(s)  (Def. 5)


The common(i,s) is a number of an operator which is the first common parent operator for both operators OPi and OPs.


Now, the dependency relationship among the operators shown in FIG. 3 may be illustrated in FIG. 4. For example, AllParents(8) depends on operators 8, 7, 3, 2, and 1, and Common(5,8) depends on operator 3. Thus the functional steps used in C++ language to define the Boolean function FUNC shown in FIG. 3 may be simplified, and a Boolean circuit with an optimized number of AND/OR switches may be created to evaluate the Boolean function FUNC.


If the operator OPcommon(i,s) is an IF-operator, it means that operators OPi and OPs may not be executed simultaneously for the same values of control inputs x1, x2, . . . , xn. Consequently, for such a pair (i,s), BothCondi,s(x) is equal to zero for each value of x. In FIG. 3, the first common operator for the operators OP5 and OP6 is the IF-operator OP4. Thus, for these two operators BothCond5,6(x)=0.


If the operator OPcommon(i,s) is a SEQ-operator, the following may be written:
BothCondi,s(x)=Condi(x)t{s}AllSeqParents(s)t<common(i,s)TermBeforeSeqi(x)Equation(8)


The foregoing Equations (1)-(8) define the Boolean circuit that evaluates the considered Boolean function FUNC(x,y). These eight equations may be rewritten as the following four equations:
TermBeforeSeqi(x)=tAllParentsBeforeSeq(i)Termi(x),i=1,N_Equation(6)Condi(x)=t{i}AllSeqParents(i)TermBeforeSeqi(x),i=1,N_Equation(7)Valj(x)=iYj[Condi(x)·s>isY\Yj{t{s}AllSeqParents(s)t<common(i,s)TermBeforeSeqix}]Equation(9)FUNC(x,y)=j=1mValj(x)·yjFUNC(x,y)=j=1mValj(x)·yjEquation(2)


As shown in FIG. 5, a Boolean circuit 500 may be created according to Equations (6), (7), (9), and (2) to evaluate a logic function FUNC(x,y). The Boolean circuit 500 may include a first part 510 which may consist of AND gates only, a second part 520 which may consist of AND gates only, a third part 530 which may consist of at least one of AND, OR, and NOT gates, and a fourth part 540 which may consist of OR gates only. The first part 510 may have Termi(x) as inputs and may output TermBeforeSeqi(x). The relationship between Termi(x) and TermBeforeSeqi(x) may be defined in Equation (6). The second part 520 may have TermBeforeSeqi(x), which may be the outputs of the first part 510, as inputs and may output Condi(x). The relationship between TermBeforeSeqi(x) and Condi(x) may be defined in Equation (7). The third part 530 may have both TermBeforeSeqi(x), which may be the outputs of the first part 510 and the inputs of the second part 520, and Condi(x), which may be the outputs of the second part 520, as inputs. The third part 530 may output Valj(x), which may be the inputs of the fourth part 540. The relationship between Valj(x) and TermBeforeSeqi(x) and Condi(x) may be defined in Equation (9). The fourth part 540 may have Valj(x) as inputs and may output FUNC(x,y). The relationship between FUNC(x,y) and Valj(x) may be defined in Equation (2).



FIG. 6 is a flow chart depicting a process 600 of evaluating a logic function by a logic circuit with an optimized number of AND/OR switches created according to an exemplary embodiment of the present invention. The process 600 starts with Step 602 at which a logic function FUNC(x,y) may be defined in terms of IF-operators, EQ-operators, and SEQ-operators. Next, at Step 604, all possible sets are evaluated. For example, Termi(x) is evaluated for each operator OPi according to Def. 1; AllParents(i) is evaluated for each operator OPi according to Def. 2; AllParentsBeforeSeq(i) is evaluated for each operator OPi according to Def. 3; AllSeqParents(i) is evaluated for each operator OPi according to Def. 4; and common(i,s) is evaluated for each operators OPi and OPs according to Def. 5.


Then, at Step 606, a logic circuit with an optimized number of AND/OR switches is created. The logic circuit may have four parts. The first part may consist of AND gates only, and may have Termi(x) as inputs and TermBeforeSeqi(x) as outputs, wherein the relationship between Termi(x) and TermBeforeSeqi(x) may be defined in Equation (6). The second part may consist of AND gates only, and may have TermBeforeSeqi(x), which may be the outputs of the first part, as inputs, and may have Condi(x) as outputs, wherein the relationship between TermBeforeSeqi(x) and Condi(x) may be defined in Equation (7). The third part may consist of at least one of AND, OR, and NOT gates, and may have both TermBeforeSeqi(x), which is the outputs of the first part and the inputs of the second part, and Condi(x), which is the outputs of the second part, as inputs. The third part may output Valj(x), which may be the inputs of the fourth part. The relationship between Valj(x) and TermBeforeSeqi(x) and Condi(x) may be defined in equation (9). The fourth part may consist of OR gates only, and may have Valj(x) as inputs and may output FUNC(x,y), wherein the relationship between FUNC(x,y) and Valj(x) may be defined in Equation (2).


The Boolean circuit created by the method of the present invention may have an optimized number of low complexity, and the number of AND/OR switches in the Boolean circuit may be 4 or fewer.


It should be realized that the present invention is not limited to C++ functions described above. The present invention may be applied to functions defined in any other high-level descriptions such as Verilog HDL, VHDL, or the like that have IF, SEQ, and EQ operators.


The present invention may be applied where data inputs y1, y2, . . . , ym may take multi-bit values. In this case each of data inputs may have the integer value that belongs to the set {0, 1, . . . , 2k−1}.


The present invention may also be applied if some of control inputs x1, x2, . . . , xn become multi-bit values instead of one bit value. The present invention may then allow the use of SWITCH-operators switch(xj) instead of IF-operators for such control inputs.


SWITCH-operators may be defined as follows:

switch (xj) {  case A1:    OPi 1 ;  case A2:    OPi 2 ;  ...........  case Ak:    OPik ;}


where A1, A2, . . . , Ak are constants, and OPi1, OPi2, . . . , OPik are operators chosen from EQ, SEQ, IF, and SWITCH operators. Operators OPi1, OPi2, . . . , OPik are called children of the considered SWITCH operator, and the considered SWITCH operator is a parent of Operators OPi1, OPi2, . . . , OPik.


For each s=1, 2, . . . , k, we may determine the function

Termi(x)=(xj==As)


That is, Termis(x)=1 if the value of control input xj=As. Otherwise, Termis(x)=0.


For example, when As=4,

Switch (x) {......  case 4:  OPi;}


and suppose x is a three-bit input, then Termt(x) is defined as

Termt(x)=(x==4)
or
Termt(x)=(custom characterx[0])Λ(custom characterx[1])Λ(custom characterx[2])

as far as x=4 if and only if x[0]=0, x[1]=0, x[2]=1, where x[s] is a s-th bit of the variable.


Although the invention has been described with a certain degree of particularity, it should be recognized that elements thereof may be altered by persons skilled in the art without departing from the spirit and scope of the invention. One of the embodiments of the invention may be implemented as sets of instructions resident in the memory of one or more information handling systems, which may include memory for storing a program of instructions and a processor for performing the program of instruction, wherein the program of instructions configures the processor and information handling system. Until required by the information handling system, the set of instructions may be stored in a computer-readable medium, including runtime media such as RAM, ROM and the like, and distribution media such as floppy disks, CD-ROMs, hard disks, and the like. Further, the set of instructions may be stored in the memory of an information handling system and transmitted over a local area network or a wide area network, such as the Internet, when desired by the user.


Additionally, the instructions may be transmitted over a network in the form of an applet that is interpreted or compiled after transmission to the computer system rather than prior to transmission. One skilled in the art would appreciate that the physical storage of the sets of instructions or applets physically changes the medium upon which it is stored electrically, magnetically, chemically, physically, optically or holographically so that the medium carries computer readable information.


It is also understood that the specific order or hierarchy of steps in the methods disclosed are examples of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the method can be rearranged while remaining within the scope of the present invention. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.


It is believed that the system and method of the present invention and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an explanatory embodiment thereof, it is the intention of the following claims to encompass and include such changes.

Claims
  • 1. A method for creating a logic circuit with an optimized number of AND/OR switches to evaluate a logic function FUNC(x,y), comprising: (a) defining said logic function FUNC(xy) in terms of control inputs x1, x2, . . . , xn, n≧1, data inputs y1, y2, . . . , ym, m≧1, and at least one operator OPi, i={overscore (1, N)}, {overscore (1, N)}=1,2,3, . . . ,N; (b) evaluating dependency relationship among said at least one operator OPi; and (c) creating said logic circuit based on said dependency relationship.
  • 2. The method of claim 1, wherein each of said at least one operator OPi is an IF-operator, an EQ-operator, or a SEQ-operator.
  • 3. The method of claim 1, wherein each of said at least one operator OPi is an IF-operator, an EQ-operator, or a SWITCH-operator.
  • 4. A computer-readable medium having computer-executable instructions for performing a method for creating a logic circuit with an optimized number of AND/OR switches to evaluate a logic function FUNC(x,y), said method comprising steps of: (a) defining said logic function FUNC(x,y) in terms of control inputs x1, x2, . . . , xn, n≧1, data inputs y1, y2, . . . , ym, m≧1, and at least one operator OPi, i={overscore (1,N)}, {overscore (1,N)}=1,2,3, . . . ,N; (b) evaluating dependency relationship among said at least one operator OPi; and (c) creating said logic circuit based on said dependency relationship.
  • 5. The computer-readable medium of claim 4, wherein each of said at least one operator OPi is an IF-operator, an EQ-operator, or a SEQ-operator.
  • 6. The computer-readable medium of claim 4, wherein each of said at least one operator OPi is an IF-operator, an EQ-operator, or a SWITCH-operator.
  • 7. An apparatus for creating a logic circuit with an optimized number of AND/OR switches to evaluate a logic function FUNC(x,y), comprising: (a) means for defining said logic function FUNC(x,y) in terms of control inputs x1, x2, . . . , xn, n≧1, data inputs y1, y2, . . . , ym, m≧1, and at least one operator OPi, i={overscore (1,N)}, {overscore (1,N)}=1,2,3, . . . ,N; (b) means for evaluating dependency relationship among said at least one operator OPi; and (c) means for creating said logic circuit based on said dependency relationship.
  • 8. The apparatus of claim 7, wherein each of said at least one operator OPi is an IF-operator, an EQ-operator, or a SEQ-operator.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 10/382,036, filed Mar. 5, 2003, herein incorporated by reference in its entirety.

Continuations (1)
Number Date Country
Parent 10382036 Mar 2003 US
Child 11055752 Feb 2005 US