Southern et al. “Analysing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models” Genomics vol. 13, pp. 1008-1017, 1992.* |
Handbook of chemistry and physics. The chemicla Rubber CO. 44th edition pp. 9-10, 1961.* |
Kress et al. Journal of biomechanical Engineering, 109 (3), pp. 218-225, 1987.* |
D. J. Lockhart, et al., Nature Biotech. 14: 1675-1684 (1996); “Expression Monitoring by Hybridization to High-Density Oligonucleotide Arrays”. |
M. Mitsuhashi, et al., Nature, 367: 759-761 (1994); “Olignonucleotide Probe Design: A New Approach”. |
R. A. Stull, et al., Nuc. Acids Res., 20(13): 3501-3508 (1992); “Predicting Antisense Olignucleotide Inhibitory Efficacy: A Computational Approach Using Histograms and Thermodynamic Indices”. |
L. Wodicka, et al., Nature Biotechnology, 15: 1359-1367 (1997); “Genome-wide Expression Monitoring in Saccaromyces cerevisiae”. |
J. SantaLucia Jr., et al., Biochemistry, 35: 3555 (1996); “Improved Nearest-Neighbor Parameter for Predicting DNA Duplex Stability”. |
N. Sugimoto, et al., Biochemistry, 34: 11211 (1995); “Thermodynamic Parameters to Predict Stability of RNA/DNA Hybrid Duplexes”. |
A. Kunitsyn, et al., J. of Biomolecular Structure & Dynamics, 14(2): 239-244 (1996); “Partial Thermodynamic Parameters for Prediction Stability and Washing Behavior of DNA Duplexes Immobilized on Gel Matrix”. |
H. Chen, et al., BioTechniques, 22(6): 1158-1160 (1997); “Computer Program for Calculating the Melting Temperature of Degenerate Oligonucleotides Used in PCR of Hybridization”. |
N. Eberhardt, BioTechniques, 13(6): 914-917 (1992); “A Shell Program for the Design of PCR Primers Using Genetics Computer Group (GCG) Software (7.1) on VAX/VMS™ Systems”. |
D. Hyndman, et al., BioTechniques, 20(6): 1090-1094 (1996); “Software to Determine Optimal Oligonucleotide Sequence Based on Hybridization Simulation Data”. |
M. Mitsuhashi, et al., J. of Clinical Laboratory Analysis, 10(5): 277-284 (1996); “Technical Report: Part 1. Basic Requirements for Designing Optimal Oligonucleotide Probe Sequences”. |
M. Mitsuhashi, et al., J. of Clinical Laboratory Analysis, 10(5): 285-293 (1996); “Technical Report: Part 2. Basic Requirements for Designing Optimal PCR Primers”. |
M. Mitsuhashi, et al., J. of Gastroenterology, 32(2): 282-287 (1997); “Strategy for Designing Specific Antisense Oligonucleotide Sequences”. |
W. Rychlik, et al., Nucleic Acids Research, 17(21): 8543-8551 (1989); “A Computer Program for Choosing Optimal Oligonucleotides for Filter Hybridization, Sequencing and in vitro Amplification of DNA”. |
J.A. Jaeger, et al., Proc. Natl. Acad. Sci. USA, 86: 7706 (1989); “Improved Predictions of Secondary Structures for RNA”. |
S. F. Altschul, et al., Nature Genetics, 6: 119-129 (1994); “Issues in Searching Molecular Sequence Databases”. |
V. Patzel, et al., Nature Biotechnology, 16: 64-68 (1998); “Theorectical Design of Antisense RNA Structures Substantially Improves Annealing Kinetics and Efficacy in Human Cells”. |
N. Milner, et al., Nature Biotechnology, 15: 537-541 (1997); Selecting Effective Antisense Reagents on Combinatorial Oligonucleotide Arrays. |
A. Pease, et al., Proc. Natl. Acad. Sic. USA, 91: 5022-5026 (1994); “Light-generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis”. |
Weber, et al., J. Chem Phys., 71(11): 4760-4762 (1979); “Molecular Dynamics Simulation of Polymers. I. Structure”. |