Method for evaluating oligonucleotide probe sequences

Information

  • Patent Grant
  • 6251588
  • Patent Number
    6,251,588
  • Date Filed
    Tuesday, February 10, 1998
    26 years ago
  • Date Issued
    Tuesday, June 26, 2001
    23 years ago
Abstract
Methods are disclosed for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides is identified. The unique oligonucleotides are chosen to sample the entire length of a nucleotide sequence that is hybridizable with the target nucleotide sequence. At least one parameter that is independently predictive of the ability of each of the oligonucleotides of the set to hybridize to the target nucleotide sequence is determined and evaluated for each of the above oligonucleotides. A subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified based on the evaluation of the parameter. Oligonucleotides in the subset are identified that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. The method may be carried out with the aid of a computer.
Description




This patent application includes a computer program listing appendix, which contains the source code for the software used in carrying out the examples in accordance with the present invention. The Appendix is contained on one compact disc submitted in duplicate designated as Copy 1 and Copy 2. The Appendix is in a single file that is 292 kB in size and named “computer program listing appendix U.S. Ser. No. 09-021,701”. The file was created on Feb. 2, 1998 and is a Microsoft Word document. The material in the Appendix is incorporated herein by reference.




A portion of the present disclosure contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.




BACKGROUND OF THE INVENTION




1. Field of the Invention




Significant morbidity and mortality are associated with infectious diseases and genetically inherited disorders. More rapid and accurate diagnostic methods are required for better monitoring and treatment of these conditions. Molecular methods using DNA probes, nucleic acid hybridization and in vitro amplification techniques are promising methods offering advantages to conventional methods used for patient diagnoses.




Nucleic acid hybridization has been employed for investigating the identity and establishing the presence of nucleic acids. Hybridization is based on complementary base pairing. When complementary single stranded nucleic acids, are incubated together, the complementary base sequences pair to form double-stranded hybrid molecules. The ability of single stranded deoxyribonucleic acid (ssDNA) or ribonucleic acid (RNA) to form a hydrogen bonded structure with a complementary nucleic acid sequence has been employed as an analytical tool in molecular biology research. The availability of radioactive nucleoside triphosphates of high specific activity and the development of methods for their incorporation into DNA and RNA has made it possible to identify, isolate, and characterize various nucleic acid sequences of biological interest. Nucleic acid hybridization has great potential in diagnosing disease states associated with unique nucleic acid sequences. These unique nucleic acid sequences may result from genetic or environmental change in DNA by insertions, deletions, point mutations, or by acquiring foreign DNA or RNA by means of infection by bacteria, molds, fungi, and viruses. The application of nucleic acid hybridization as a diagnostic tool in clinical medicine is limited due to the cost and effort associated with the development of sufficiently sensitive and specific methods for detecting potentially low concentrations of disease-related DNA or RNA present in the complex mixture of nucleic acid sequences found in patient samples.




One method for detecting specific nucleic acid sequences generally involves immobilization of the target nucleic acid on a solid support such as nitrocellulose paper, cellulose paper, diazotized paper, or a nylon membrane. After the target nucleic acid is fixed on the support, the support is contacted with a suitably labeled probe nucleic acid for about two to forty-eight hours. After the above time period, the solid support is washed several times at a controlled temperature to remove unhybridized probe. The support is then dried and the hybridized material is detected by autoradiography or by spectrometric methods. When very low concentrations must be detected, the above method is slow and labor intensive, and nonisotopic labels that are less readily detected than radio labels are frequently not suitable.




A method for the enzymatic amplification of specific segments of DNA known as the polymerase chain reaction (PCR) method has been described. This in vitro amplification procedure is based on repeated cycles of denaturation, oligonucleotide primer annealing, and primer extension by thermophilic polymerase, resulting in the exponential increase in copies of the region flanked by the primers. The PCR primers, which anneal to opposite strands of the DNA, are positioned so that the polymerase catalyzed extension product of one primer can serve as a template strand for the other, leading to the accumulation of a discrete fragment whose length is defined by the distance between the 5′ ends of the oligonucleotide primers.




Other methods for amplifying nucleic acids have also been developed. These methods include single primer amplification, ligase chain reaction (LCR), transcription-mediated amplification methods including 3SR and NASBA, and the Q-beta-replicase method. Regardless of the amplification used, the amplified product must be detected.




One method for detecting nucleic acids is to employ nucleic acid probes that have sequences complementary to sequences in the target nucleic acid. A nucleic acid probe may be, or may be capable of being, labeled with a reporter group or may be, or may be capable of becoming, bound to a support. Detection of signal depends upon the nature of the label or reporter group. Usually, the probe is comprised of natural nucleotides such as ribonucleotides and deoxyribonucleotides and their derivatives although unnatural nucleotide mimetics such as peptide nucleic acids and oligomeric nucleoside phosphonates are also used. Commonly, binding of the probes to the target is detected by means of a label incorporated into the probe. Alternatively, the probe may be unlabeled and the target nucleic acid labeled. Binding can be detected by separating the bound probe or target from the free probe or target and detecting the label. In one approach, a sandwich is formed comprised of one probe, which may be labeled, the target and a probe that is or can become bound to a surface. Alternatively, binding can be detected by a change in the signal-producing properties of the label upon binding, such as a change in the emission efficiency of a fluorescent or chemiluminescent label. This permits detection to be carried out without a separation step. Finally, binding can be detected by labeling the target, allowing the target to hybridize to a surface-bound probe, washing away the unbound target and detecting the labeled target that remains.




Direct detection of labeled target hybridized to surface-bound probes is particularly advantageous if the surface contains a mosaic of different probes that are individually localized to discrete, known areas of the surface. Such ordered arrays containing a large number of oligonucleotide probes have been developed as tools for high throughput analyses of genotype and gene expression. Oligonucleotides synthesized on a solid support recognize uniquely complementary nucleic acids by hybridization, and arrays can be designed to define specific target sequences, analyze gene expression patterns or identify specific allelic variations. One difficulty in the design of oligonucleotide arrays is that oligonucleotides targeted to different regions of the same gene can show large differences in hybridization efficiency, presumably due, at least in part, to the interplay between the secondary structures of the oligonucleotides and their targets and the stability of the final probe/target hybridization product. A method for predicting which oligonucleotides will show detectable hybridization would substantially decrease the number of iterations required for optimal array design and would be particularly useful when the total number of oligonucleotide probes on the array is limited. A method to predict oligonucleotide hybridization efficiency would also streamline the empirical approaches currently used to select potential antisense therapeutics, which are designed to modulate gene expression in vivo by hybridizing to specific messenger RNA (mRNA) molecules and inhibiting their translation into proteins.




While it is well known that the structure of the target nucleic acid affects the affinity of oligonucleotide hybridization, current methods for predicting target structures from the primary sequence fail to predict target regions accessible for oligonucleotide binding. Consequently, selection of oligonucleotides for antisense reagents or oligonucleotide probe arrays has been largely empirical. As most of the target sequence is sequestered by intramolecular base pairing and not accessible for oligonucleotide binding, the process of identifying good oligonucleotides has required large numbers of low efficiency experiments.




The design and implementation of algorithms that effectively predict the ability of oligonucleotides to rapidly and avidly bind to complementary nucleotide sequences has been an important problem in molecular biology since the invention of facile methods for chemical DNA synthesis. The subsequent inventions of the polymerase chain reaction (PCR), antisense inhibition of gene expression and oligonucleotide array methods for performing massively parallel hybridization experiments have made the need for effective predictive algorithms even more critical.




Previous attempts to solve the nucleic acid probe design problem include PCR primer design software applications (e.g., OLIGO®), neural networks, PCR primer design applications that search for sequences that possess minimal ability to cross-hybridize with other targets present in a sample (e.g., HYBsimulator™), and approaches that attempt to predict the efficiency of antisense sequence suppression of mRNA translation from a combination of predicted nucleic acid duplex melting temperature and predicted target strand structure. The methods that predict effective oligonucleotide primers for performing PCR from DNA templates work well for that application where relatively stringent conditions are employed. This is because PCR experimental design greatly simplifies the prediction problem: hybridization is performed at high temperature, at relatively low ionic strength and in the presence of a large molar excess of oligonucleotide. Under these conditions, the oligonucleotide and target secondary structures are relatively unimportant.




Unfortunately, these conditions do not apply to oligonucleotide arrays, which are usually hybridized under relatively non-denaturing conditions, or to antisense suppression of gene expression, which takes place in vivo. Oligonucleotide arrays can contain hundreds of thousands of different sequences and conditions are chosen to allow the oligonucleotide with the lowest melting temperature to hybridize efficiently. These “lowest common denominator” conditions are usually relatively non-denaturing and secondary structure constraints become significant. Accordingly, the above applications require new predictive methods that are capable of estimating the effects of oligonucleotide and target structure on hybridization efficiency. For these reasons, current algorithms for designing PCR primer oligonucleotides fail badly when applied to the problems of oligonucleotide array or antisense oligonucleotide design.




To date, the most effective approach for identifying oligonucleotides with good hybridization efficiency has been an empirical one. Such an approach involves the synthesis of large numbers of oligonucleotide probes for a given target nucleotide sequence. Arrays are formed that include the above oligonucleotide probes. Hybridization experiments are carried out to determine which of the oligonucleotide probes exhibit good hybridization efficiencies. Examples of such an approach are found in D. Lockhart, et al.,


Nature Biotech


., infra, L. Wodicka, et al.,


Nature Biotechnology


, infra., and N. Milner et al.


Nature Biotech


, infra. One major drawback to this approach is the vast number of oligonucleotides that must be synthesized in order to achieve a satisfactory result. Typically, about 2%-5% of the test probes synthesized yield acceptable signal levels.




The use of neural networks for oligonucleotide design has also been investigated. Neural networks are easily taught with real data; they therefore afford a general approach to many problems. However, their performance is limited by the “senses” that they are given. An analogy works best here: the human brain is an astoundingly capable neural network, but a blind person cannot be taught to reliably distinguish colors by smell. In addition, a large amount of data is required to adequately teach a neural network to perform its job well. A comprehensive database for either oligonucleotide array design or antisense suppression of gene expression has not been made available. For these reasons, the performance reported to-date of neural network solutions against the probe design problem is mediocre.




Finally, approaches that have attempted to use target nucleic acid folding calculations to predict experimental results inferred to depend upon hybridization efficiency (e.g. antisense suppression of mRNA translation) have so far only demonstrated that the predictions of current nucleic acid folding calculations correlate poorly with observed behavior. The probable reason for this is that the structures predicted by such programs for long sequences are poor predictors of chemical reality; the results of experiments that attempt to confirm the predictions of such calculations support this assessment. Recent improvements to this approach which use predicted RNA structure topology as a predictor of relative RNA/RNA association kinetics have been more successful at forecasting the results of antisense experiments. However, these methods are not computationally efficient, and have so far only been shown to work for targets less than 100 bases long. Such methods are therefore not yet capable of predicting the behavior of full-length mRNA targets, which are typically between 1,000 and 2,000 bases in length.




2. Description of the Related Art




U.S. Pat. No. 5,512,438 (Ecker) discloses the inhibition of RNA expression by forming a pseudo-half knot RNA at the target's RNA secondary structure using antisense oligonucleotides.




Cook, et al., in U.S. Pat. No. 5,670,633 discuss sugar-modified oligonucleotides that detect and modulate gene expression.




Antisense oligonucleotide inhibition of the RAS gene is disclosed in U.S. Pat. No. 5,582,986 (Monia, et al.).




U.S. Pat. No. 5,593,834 (Lane, et al.) discusses a method of preparing DNA sequences with known ligand binding characteristics.




Mitsuhashi, et al., in U.S. Pat. No. 5,556,749 discusses a computerized method for designing optimal DNA probes and an oligonucleotide probe design station.




U.S. Pat. No. 5,081,584 (Omichinski, et al.) discloses a computer-assisted design of anti-peptides based on the amino acid sequence of a target peptide.




A PCR primer design application that searches for sequences that possess minimal ability to cross-hybridize with other targets present in a sample is available as HYBsimulatorm™, version 2.0, AGCT, Inc., 2102 Business Center Drive, Suite 170, Irvine, Calif. 92715 (714) 833-9983.




A PCR primer design software application is available as OLIGO®, version 5.0, National Biosciences, Inc., 3650 Annapolis Lane North, #140, Plymouth, Minn. 55447 (800) 747-4362.




D. J. Lockhart, et al.,


Nature Biotech


. 14:1675-1684 (1996) describe a neural network approach to the selection of efficient surface-bound oligonucleotide probes.




M. Mitsuhashi, etal.,


Nature


, 367:759-761 (1994) disclose a method for designing specific oligonucleotide probes and primers by modeling the potential cross-hybridization of candidate probes to non-target sequences known to be present in samples.




R. A. Stull, et al.,


Nuc. Acids Res


., 20:3501-3508 (1992) describe a method of predicting the efficacy of antisense oligonucleotides, using predicted target secondary structure and predicted oligonucleotide/target binding free energy as input parameters.




N. Milner, et al.,


Nature Biotechnology


, 15:537-541 (1997) compare observed patterns of probe hybridization to those expected from the predicted secondary structure of the nucleic acid target.




L. Wodicka, et al.,


Nature Biotechnology


, 15:1359-1367 (1997) describe simple rules for avoiding inefficient and non-specific probes during design and synthesis of oligonucleotides arrays.




J. SantaLucia Jr., et al.,


Biochemistry


, 35:3555 (1996) disclose parameters and methods for the calculation of thermodynamic properties of DNA/DNA homoduplexes.




N. Sugimoto, et al.,


Biochemistry


, 34:11211 (1995) disclose parameters and methods for the calculation of thermodynamic properties of DNA/RNA heteroduplexes.




J. A. Jaeger, et al.,


Proc. Natl. Acad. Sci. USA


, 86:7706 (1989) disclose methods for estimation of the free energy of the most stable intramolecular structure of a single-stranded polynucleotide, by means of a dynamic programming algorithm.




S. F. Altschul, et al.,


Nature Genetics


, 6:119-129 (1994) disclose methods for calculating the complexity and information content of amino acid and nucleic acid sequences.




T. A. Weber and E. Helfand,


J. Chem. Phys


., 71, 4760 (1979) describe approaches for the modeling of polymer structures by molecular dynamics simulations.




V. Patzel and G. Sczakiel,


Nature Biotech


., 16, 64-68 (1998) disclose methods for estimating rate constants for association of antisense RNA molecules with mRNA targets by examination of predicted antisense RNA secondary structures.




Light-generated oligonucleotide arrays for rapid DNA sequence analysis is described by A. C. Pease, et al.,


Proc. Nat. Acad. Sci. USA


(1994) 91:5022-5026.




Mitsuhashi discusses basic requirements for designing optimal oligonucleotide probe sequences in


J. Clinical Laboratory Analysis


(1996) 10:277-284.




Rychlik, et al., discloses a computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA in


Nucleic Acids Research


(1989) 17(21):8543-8551.




A strategy for designing specific antisense oligonucleotide sequences is described by Mitsuhashi in


J. Gastroenterol


. (1997) 32:282-287.




Mitsuhashi discusses basic requirements for designing optimal PCR primers in


J. Clinical Laboratory Analysis


(1996) 10:285-293.




Hyndman, et al., disclose software to determine optimal oligonucleotide sequences based on hybridization simulation data in


BioTechniques


(1996) 20(6):1090-1094.




Eberhardt discloses a shell program for the design of PCR primers using genetics computer group (GCG) software (7.1) on VAX/VMS™ systems in


BioTechniques


(1992) 13(6):914-917.




Chen, et al., disclose a computer program for calculating the melting temperature of degenerate oligonucleotides used in PCR or hybridization in


BioTechniques


(1997) 22(6):1158-1160.




Partial thermodynamic parameters for prediction stability and washing behavior of DNA duplexes immobilized on gel matrix is described by Kunitsyn, et al., in


J. Biomolecular Structure


&


Dynamics


, ISSN 0739-1102 (1996) 14(1):239-244.




SUMMARY OF THE INVENTION




One embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined set of unique oligonucleotide sequences is identified. The unique. oligonucleotide sequences are chosen to sample the entire length of a nucleotide sequence that is hybridizable with the target nucleotide sequence. At least one parameter that is predictive of the ability of each of the oligonucleotides specified by the set of sequences to hybridize to the target nucleotide sequence is determined and evaluated for each of the above oligonucleotide sequences. A subset of oligonucleotide sequences within the predetermined set of unique oligonucleotide sequences is identified based on the examination of the parameter values. Finally, oligonucleotide sequences in the subset are identified that are clustered along one or more regions of the nucleotide sequence that is hybridizable to the target nucleotide sequence. The oligonucleotide probes corresponding to the identified sequences find use in polynucleotide assays particularly where the assays involve oligonucleotide arrays. For a discussion of oligonucleotide arrays, see, e.g., U.S. Pat. No. 5,700,637 (E. Southern) and U.S. Pat. No. 5,667,667 (E. Southern), the relevant disclosures of which are incorporated herein by reference.




Another embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence. A set of overlapping oligonucleotide sequences is identified based on a nucleotide sequence that is complementary to the target nucleotide sequence. At least two parameters that are independently predictive of the ability of each of the oligonucleotides specified by the oligonucleotide sequences to hybridize to the target nucleotide sequence are determined and evaluated for each of the oligonucleotide sequences. Independence is assured by requiring that the parameters be poorly correlated with respect to one another. A subset of oligonucleotide sequences within the set of oligonucleotide sequences is identified based on the examination of the parameter values. Finally, oligonucleotide sequences in the subset are identified that are clustered along one or more regions of the nucleotide sequence that is complementary to the target nucleotide sequence.




Another embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence. A set of overlapping oligonucleotide sequences is obtained based on a nucleotide sequence of length L, complementary to the target nucleotide sequence. The oligonucleotide sequences of the set of overlapping oligonucleotide sequences are of identical length N and spaced one nucleotide apart. The set comprises L−N+1 oligonucleotide sequences. Parameters are determined for each of the oligonucleotide sequences of the set of overlapping oligonucleotide sequences. One parameter is the predicted melting temperature of the duplex of each of the oligonucleotides specified by the oligonucleotide sequences and the target nucleotide sequence, corrected for salt concentration. The other parameter is the predicted free energy of the most stable intramolecular structure of each of the oligonucleotides specified by the oligonucleotide sequences at the temperature of hybridization of the oligonucleotide with the target nucleotide sequence. A subset of oligonucleotide sequences within the set of oligonucleotide sequences is selected based on an examination of the parameter values by establishing cut-off values for each of the parameters. Oligonucleotide sequences in the subset that are clustered along one or more regions of the complementary nucleotide sequence are ranked based on the sizes of the clusters of oligonucleotide sequences. Finally, a subset of the clustered oligonucleotide sequences is selected that statistically samples the clusters of oligonucleotide sequences. The selected sampled subset is used to specify the synthesis of oligonucleotides for experimental evaluation.




Another aspect of the present invention is a computer based method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides within a nucleotide sequence that is hybridizable with the target nucleotide sequence is identified under computer control. The oligonucleotides are chosen to sample the entire length of the nucleotide sequence. A value is determined and evaluated under computer control for each of the oligonucleotides for at least one parameter that is independently predictive of the ability of each of the oligonucleotides to hybridize to the target nucleotide sequence. The parameter values are stored. A subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified by examination of the stored parameter values under computer control. Then, oligonucleotides in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence are identified under computer control.




Another aspect of the present invention is a computer system for conducting a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. The system comprises (a) input means for introducing a target nucleotide sequence into the computer system, (b) means for determining a number of unique oligonucleotide sequences that are within a nucleotide sequence that is hybridizable with the target nucleotide sequence where the oligonucleotide sequences are chosen to sample the entire length of the nucleotide sequence, (c) memory means for storing the oligonucleotide sequences, (d) means for controlling the computer system to carry out for each of the oligonucleotide sequences a determination and evaluation of a value for at least one parameter that is independently predictive of the ability of each of the oligonucleotide sequences to hybridize to the target nucleotide sequence, (e) means for storing the parameter values, (f) means for controlling the computer to carry out an identification from the stored parameter values a subset of oligonucleotide sequences within the number of unique oligonucleotide sequences based on the examination of the parameter, (g) means for storing the subset of oligonucleotides, (h) means for controlling the computer to carry out an identification of oligonucleotide sequences in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence, (i) means for storing the oligonucleotide sequences in the subset, and (j) means for outputting data relating to the oligonucleotide sequences in the subset.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a general flow chart depicting the method of the present invention.





FIG. 2

is a flow chart depicting a preferred embodiment of a method in accordance with the present invention.





FIG. 3

is a contour plot of normalized hybridization intensity from multiple experiments, as a function of the free energy of the most stable probe intramolecular structure (ΔG


MFOLD


) and the difference between the predicted RNA/DNA heteroduplex melting temperature (T


m


) and the temperature of hybridization (T


hyb


).





FIG. 4

shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to a portion of the rabbit β-globin gene (radiolabeled antisense RNA target).





FIG. 5

shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the HIV PRT gene (fluorescein-labeled sense RNA target).





FIG. 6

shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the G3PDH gene (fluorescein-labeled antisense RNA target).





FIG. 7

shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the p53 gene (fluorescein-labeled antisense RNA target).





FIG. 8

shows the observed hybridization patterns for oligonucleotides selected using a method in accordance with the present invention and additional oligonucleotides to the HIV PRTs gene (using data from the GeneChip™ data).











DEFINITIONS




Before proceeding further with a description of the specific embodiments of the present invention, a number of terms will be defined.




Nucleic Acids:




Polynucleotide—a compound or composition that is a polymeric nucleotide or nucleic acid polymer. The polynucleotide may be a natural compound or a synthetic compound. In the context of an assay, the polynucleotide is often referred to as a polynucleotide analyte. The polynucleotide can have from about 20 to 5,000,000 or more nucleotides. The larger polynucleotides are generally found in the natural state. In an isolated state the polynucleotide can have about 30 to 50,000 or more nucleotides, usually about 100 to 20,000 nucleotides, more frequently 500 to 10,000 nucleotides. It is thus obvious that isolation of a polynucleotide from the natural state often results in fragmentation. The polynucleotides include nucleic acids, and fragments thereof, from any source in purified or unpurified form including DNA (dsDNA and ssDNA) and RNA, including tRNA, mRNA, rRNA, mitochondrial DNA and RNA, chloroplast DNA and RNA, DNA/RNA hybrids, or mixtures thereof, genes, chromosomes, plasmids, the genomes of biological material such as microorganisms, e.g., bacteria, yeasts, viruses, viroids, molds, fungi, plants, animals, humans, and the like. The polynucleotide can be only a minor fraction of a complex mixture such as a biological sample. Also included are genes, such as hemoglobin gene for sickle-cell anemia, cystic fibrosis gene, oncogenes, cDNA, and the like.




The polynucleotide can be obtained from various biological materials by procedures well known in the art. The polynucleotide, where appropriate, may be cleaved to obtain a fragment that contains a target nucleotide sequence, for example, by shearing or by treatment with a restriction endonuclease or other site specific chemical cleavage method.




For purposes of this invention, the polynucleotide, or a cleaved fragment obtained from the polynucleotide, will usually be at least partially denatured or single stranded or treated to render it denatured or single stranded. Such treatments are well known in the art and include, for instance, heat or alkali treatment, or enzymatic digestion of one strand. For example, dsDNA can be heated at 90-100° C. for a period of about 1 to 10 minutes to produce denatured material.




Target nucleotide sequence—a sequence of nucleotides to be identified, usually existing within a portion or all of a polynucleotide, usually a polynucleotide analyte. The identity of the target nucleotide sequence generally is known to an extent sufficient to allow preparation of various sequences hybridizable with the target nucleotide sequence and of oligonucleotides, such as probes and primers, and other molecules necessary for conducting methods in accordance with the present invention, an amplification of the target polynucleotide, and so forth.




The target sequence usually contains from about 30 to 5,000 or more nucleotides, preferably 50 to 1,000 nucleotides. The target nucleotide sequence is generally a fraction of a larger molecule or it may be substantially the entire molecule such as a polynucleotide as described above. The minimum number of nucleotides in the target nucleotide sequence is selected to assure that the presence of a target polynucleotide in a sample is a specific indicator of the presence of polynucleotide in a sample. The maximum number of nucleotides in the target nucleotide sequence is normally governed by several factors: the length of the polynucleotide from which it is derived, the tendency of such polynucleotide to be broken by shearing or other processes during isolation, the efficiency of any procedures required to prepare the sample for analysis (e.g. transcription of a DNA template into RNA) and the efficiency of detection and/or amplification of the target nucleotide sequence, where appropriate.




Oligonucleotide—a polynucleotide, usually single stranded, usually a synthetic polynucleotide but may be a naturally occurring polynucleotide. The oligonucleotide(s) are usually comprised of a sequence of at least 5 nucleotides, preferably, 10 to 100 nucleotides, more preferably, 20 to 50 nucleotides, and usually 10 to 30 nucleotides, more preferably, 20 to 30 nucleotides, and desirably about 25 nucleotides in length.




Various techniques can be employed for preparing an oligonucleotide. Such oligonucleotides can be obtained by biological synthesis or by chemical synthesis. For short sequences (up to about 100 nucleotides), chemical synthesis will frequently be more economical as compared to the biological synthesis. In addition to economy, chemical synthesis provides a convenient way of incorporating low molecular weight compounds and/or modified bases during specific synthesis steps. Furthermore, chemical synthesis is very flexible in the choice of length and region of the target polynucleotide binding sequence. The oligonucleotide can be synthesized by standard methods such as those used in commercial automated nucleic acid synthesizers. Chemical synthesis of DNA on a suitably modified glass or resin can result in DNA covalently attached to the surface. This may offer advantages in washing and sample handling. For longer sequences standard replication methods employed in molecular biology can be used such as the use of M13 for single stranded DNA as described by J. Messing (1983)


Methods Enzymol


, 101:20-78.




Other methods of oligonucleotide synthesis include phosphotriester and phosphodiester methods (Narang, et al. (1979)


Meth. Enzymol


68:90) and synthesis on a support (Beaucage, et al. (1981)


Tetrahedron Letters


22:1859-1862) as well as phosphoramidite techniques (Caruthers, M. H., et al., “Methods in Enzymology,” Vol. 154, pp.287-314 (1988)) and others described in “Synthesis and Applications of DNA and RNA,” S. A. Narang, editor, Academic Press, New York, 1987, and the references contained therein. The chemical synthesis via a photolithographic method of spatially addressable arrays of oligonucleotides bound to glass surfaces is described by A. C. Pease, et al.,


Proc. Nat. Acad. Sci. USA


(1994) 91:5022-5026.




Oligonucleotide probe—an oligonucleotide employed to bind to a portion of a polynucleotide such as another oligonucleotide or a target nucleotide sequence. The design and preparation of the oligonucleotide probes are generally dependent upon the sensitivity and specificity required, the sequence of the target polynucleotide and, in certain cases, the biological significance of certain portions of the target polynucleotide sequence.




Oligonucleotide primer(s)—an oligonucleotide that is usually employed in a chain extension on a polynucleotide template such as in, for example, an amplification of a nucleic acid. The oligonucleotide primer is usually a synthetic nucleotide that is single stranded, containing a sequence at its 3′-end that is capable of hybridizing with a defined sequence of the target polynucleotide. Normally, an oligonucleotide primer has at least 80%, preferably 90%, more preferably 95%, most preferably 100%, complementarity to a defined sequence or primer binding site. The number of nucleotides in the hybridizable sequence of an oligonucleotide primer should be such that stringency conditions used to hybridize the oligonucleotide primer will prevent excessive random non-specific hybridization. Usually, the number of nucleotides in the oligonucleotide primer will be at least as great as the defined sequence of the target polynucleotide, namely, at least ten nucleotides, preferably at least 15 nucleotides, and generally from about 10 to 200, preferably 20 to 50, nucleotides.




In general, in primer extension, amplification primers hybridize to, and are extended along (chain extended), at least the target nucleotide sequence within the target polynucleotide and, thus, the target sequence acts as a template. The extended primers are chain “extension products.” The target sequence usually lies between two defined sequences but need not. In general, the primers hybridize with the defined sequences or with at least a portion of such target polynucleotide, usually at least a ten-nucleotide segment at the 3′-end thereof and preferably at least 15, frequently a 20 to 50 nucleotide segment thereof.




Nucleoside triphosphates—nucleosides having a 5′-triphosphate substituent. The nucleosides are pentose sugar derivatives of nitrogenous bases of either purine or pyrimidine derivation, covalently bonded to the 1′-carbon of the pentose sugar, which is usually a deoxyribose or a ribose. The purine bases include adenine (A), guanine (G), inosine (I), and derivatives and analogs thereof. The pyrimidine bases include cytosine (C), thymine (T), uracil (U), and derivatives and analogs thereof. Nucleoside triphosphates include deoxyribonucleoside triphosphates such as the four common deoxyribonucleoside triphosphates dATP, dCTP, dGTP and dTTP and ribonucleoside triphosphates such as the four common triphosphates rATP, rCTP, rGTP and rUTP.




The term “nucleoside triphosphates” also includes derivatives and analogs thereof, which are exemplified by those derivatives that are recognized and polymerized in a similar manner to the underivatized nucleoside triphosphates.




Nucleotide—a base-sugar-phosphate combination that is the monomeric unit of nucleic acid polymers, i.e., DNA and RNA. The term “nucleotide” as used herein includes modified nucleotides as defined below.




DNA—deoxyribonucleic acid.




RNA—ribonucleic acid.




Modified nucleotide—a unit in a nucleic acid polymer that contains a modified base, sugar or phosphate group. The modified nucleotide can be produced by a chemical modification of the nucleotide either as part of the nucleic acid polymer or prior to the incorporation of the modified nucleotide into the nucleic acid polymer. For example, the methods mentioned above for the synthesis of an oligonucleotide may be employed. In another approach a modified nucleotide can be produced by incorporating a modified nucleoside triphosphate into the polymer chain during an amplification reaction. Examples of modified nucleotides, by way of illustration and not limitation, include dideoxynucleotides, derivatives or analogs that are biotinylated, amine modified, alkylated, fluorophore-labeled, and the like and also include phosphorothioate, phosphite, ring atom modified derivatives, and so forth.




Nucleoside—is a base-sugar combination or a nucleotide lacking a phosphate moiety.




Nucleotide polymerase—a catalyst, usually an enzyme, for forming an extension of a polynucleotide along a DNA or RNA template where the extension is complementary thereto. The nucleotide polymerase is a template dependent polynucleotide polymerase and utilizes nucleoside triphosphates as building blocks for extending the 3′-end of a polynucleotide to provide a sequence complementary with the polynucleotide template. Usually, the catalysts are enzymes, such as DNA polymerases, for example, prokaryotic DNA polymerase (I, II, or III), T4 DNA polymerase, T7 DNA polymerase, Klenow fragment, reverse transcriptase, Vent DNA polymerase, Pfu DNA polymerase, Taq DNA polymerase, and the like, or RNA polymerases, such as T3 and T7 RNA polymerases. Polymerase enzymes may be derived from any source such as cells, bacteria such as


E. coli


, plants, animals, virus, thermophilic bacteria, and so forth.




Amplification of nucleic acids or polynucleotides—any method that results in the formation of one or more copies of a nucleic acid or polynucleotide molecule (exponential amplification) or in the formation of one or more copies of only the complement of a nucleic acid or polynucleotide molecule (linear amplification).




Hybridization (hybridizing) and binding—in the context of nucleotide sequences these terms are used interchangeably herein. The ability of two nucleotide sequences to hybridize with each other is based on the degree of complementarity of the two nucleotide sequences, which in turn is based on the fraction of matched complementary nucleotide pairs. The more nucleotides in a given sequence that are complementary to another sequence, the more stringent the conditions can be for hybridization and the more specific will be the binding of the two sequences. Increased stringency is achieved by elevating the temperature, increasing the ratio of co-solvents, lowering the salt concentration, and the like.




Hybridization efficiency—the productivity of a hybridization reaction, measured as either the absolute or relative yield of oligonucleotide probe/polynucleotide target duplex formed under a given set of conditions in a given amount of time.




Homologous or substantially identical polynucleotides—In general, two polynucleotide sequences that are identical or can each hybridize to the same polynucleotide sequence are homologous. The two sequences are homologous or substantially identical where the sequences each have at least 90%, preferably 100%, of the same or analogous base sequence where thymine (T) and uracil (U) are considered the same. Thus, the ribonucleotides A, U, C and G are taken as analogous to the deoxynucleotides dA, dT, dC, and dG, respectively. Homologous sequences can both be DNA or one can be DNA and the other RNA.




Complementary—Two sequences are complementary when the sequence of one can bind to the sequence of the other in an anti-parallel sense wherein the 3′-end of each sequence binds to the 5′-end of the other sequence and each A, T(U), G, and C of one sequence is then aligned with a T(U), A, C, and G, respectively, of the other sequence. RNA sequences can also include complementary G/U or U/G base pairs.




Member of a specific binding pair (“sbp member”)—one of two different molecules, having an area on the surface or in a cavity that specifically binds to and is thereby defined as complementary with a particular spatial and polar organization of the other molecule. The members of the specific binding pair are referred to as cognates or as ligand and receptor (antiligand). These may be members of an immunological pair such as antigen-antibody, or may be operator-repressor, nuclease-nucleotide, biotin-avidin, hormones-hormone receptors, nucleic acid duplexes, IgG-protein A, DNA-DNA, DNA-RNA, and the like.




Ligand—any compound for which a receptor naturally exists or can be prepared.




Receptor (“antiligand”)—any compound or composition capable of recognizing a particular spatial and polar organization of a molecule, e.g., epitopic or determinant site. Illustrative receptors include naturally occurring receptors, e.g., thyroxine binding globulin, antibodies, enzymes, Fab fragments, lectins, nucleic acids, repressors, protection enzymes, protein A, complement component C1q, DNA binding proteins or ligands and the like.




Oligonucleotide Properties:




Potential of an oligonucleotide to hybridize—the combination of duplex formation rate and duplex dissociation rate that determines the amount of duplex nucleic acid hybrid that will form under a given set of experimental conditions in a given amount of time.




Parameter—a factor that provides information about the hybridization of an oligonucleotide with a target nucleotide sequence. Generally, the factor is one that is predictive of the ability of an oligonucleotide to hybridize with a target nucleotide sequence. Such factors include composition factors, thermodynamic factors, chemosynthetic efficiencies, kinetic factors, and the like.




Parameter predictive of the ability to hybridize—a parameter calculated from a set of oligonucleotide sequences wherein the parameter positively correlates with observed hybridization efficiencies of those sequences. The parameter is, therefore, predictive of the ability of those sequences to hybridize. “Positive correlation” can be rigorously defined in statistical terms. The correlation coefficient ρ


x,y


of two experimentally measured discreet quantities x and y (N values in each set) is defined as








ρ

x
,
y


=


Covariance






(

x
,
y

)




Variance






(
x
)


Variance






(
y
)





,










where the Covariance (x,y) is defined by







Covariance






(

x
,
y

)


=


1
N






j
=
1

N




(


x
j

-

μ
x


)




(


y
j

-

μ
y


)

.














The quantities μ


x


and μ


y


are the averages of the quantities x and y, while the variances are simply the squares of the standard deviations (defined below). The correlation coefficient is a dimensionless (unitless) quantity between −1 and 1. A correlation coefficient of 1 or −1 indicates that x and y have a linear relationship with a positive or negative slope, respectively. A correlation coefficient of zero indicates no relationship; for example, two sets of random numbers will yield a correlation coefficient near zero. Intermediate correlation coefficients indicate intermediate degrees of relatedness between two sets of numbers. The correlation coefficient is a good statistical measure of the degree to which one set of numbers predicts a second set of numbers.




Composition factor—a numerical factor based solely on the composition or sequence of an oligonucleotide without involving additional parameters, such as experimentally measured nearest-neighbor thermodynamic parameters. For instance, the fraction (G+C), given by the formula








f
GC

=



n
G

+

n
C




n
G

+

n
C

+

n
A

+

n

T





or





U





,










where n


G


, n


C


, n


A


and n


T or U


are the numbers of G, C, A and T (or U) bases in an oligonucleotide, is an example of a composition factor. Examples of composition factors, by way of illustration and not limitation, are mole fraction (G+C), percent (G+C), sequence complexity, sequence information content, frequency of occurrence of specific oligonucleotide sequences in a sequence database and so forth.




Thermodynamic factor—numerical factors that predict the behavior of an oligonucleotide in some process that has reached equilibrium. For instance, the free energy of duplex formation between an oligonucleotide and its complement is a thermodynamic factor. Thermodynamic factors for systems that can be subdivided into constituent parts are often estimated by summing contributions from the constituent parts. Such an approach is used to calculate the thermodynamic properties of oligonucleotides.




Examples of thermodynamic factors, by way of illustration and not limitation, are predicted duplex melting temperature, predicted enthalpy of duplex formation, predicted entropy of duplex formation, free energy of duplex formation, predicted melting temperature of the most stable intramolecular structure of the oligonucleotide or its complement, predicted enthalpy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted entropy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted free energy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted melting temperature of the most stable hairpin structure of the oligonucleotide or its complement, predicted enthalpy of the most stable hairpin structure of the oligonucleotide or its complement, predicted entropy of the most stable hairpin structure of the oligonucleotide or its complement, predicted free energy of the most stable hairpin structure of the oligonucleotide or its complement, thermodynamic partition function for intramolecular structure of the oligonucleotide or its complement and the like.




Chemosynthetic efficiency—oligonucleotides and nucleotide sequences may both be made by sequential polymerization of the constituent nucleotides. However, the individual addition steps are not perfect; they instead proceed with some fractional efficiency that is less than unity. This may vary as a function of position in the sequence. Therefore, what is really produced is a family of molecules that consists of the desired molecule plus many truncated sequences. These “failure sequences” affect the observed efficiency of hybridization between an oligonucleotide and its complementary target. Examples of chemosynthetic efficiency factors, by way of illustration and not limitation, are coupling efficiencies, overall efficiencies of the synthesis of a target nucleotide sequence or an oligonucleotide probe, and so forth.




Kinetic factor—numerical factors that predict the rate at which an oligonucleotide hybridizes to its complementary sequence or the rate at which the hybridized sequence dissociates from its complement are called kinetic factors. Examples of kinetic factors are steric factors calculated via molecular modeling or measured experimentally, rate constants calculated via molecular dynamics simulations, associative rate constants, dissociative rate constants, enthalpies of activation, entropies of activation, free energies of activation, and the like.




Predicted duplex melting temperature—the temperature at which an oligonucleotide mixed with a hybridizable nucleotide sequence is predicted to form a duplex structure (double-helix hybrid) with 50% of the hybridizable sequence. At higher temperatures, the amount of duplex is less than 50%; at lower temperatures, the amount of duplex is greater than 50%. The melting temperature T


m


(° C.) is calculated from the enthalpy (ΔH), entropy (ΔS) and C, the concentration of the most abundant duplex component (for hybridization arrays, the soluble hybridization target), using the equation








T
m

=



Δ





H



Δ





S

+

R





ln





C



-
273.15


,










where R is the gas constant, 1.987 cal/(mole-° K). For longer sequences (>100 nucleotides), T


m


can also be estimated from the mole fraction (G+C), χ


G+C


, using the equation




 T


m


=81.5+41.0


χG+C


.




Melting temperature corrected for salt concentration—polynucleotide duplex melting temperatures are calculated with the assumption that the concentration of sodium ion, Na


+


, is 1 M. Melting temperatures T′


m


calculated for duplexes formed at different salt concentrations are corrected via the semi-empirical equation






T′


m


([Na


+


])=T


m


+16.6 log([Na


+


]).






Predicted enthalpy, entropy and free energy of duplex formation—the enthalpy (ΔH), entropy and free energy (ΔG) are thermodynamic state functions, related by the equation






ΔG=ΔH−T ΔS,






where T is the temperature in ° K. In practice, the enthalpy and entropy are predicted via a thermodynamic model of duplex formation (the “nearest neighbor” model which is explained in more detail below), and used to calculate the free energy and melting temperature.




Predicted free energy of the most stable intramolecular structure of an oligonucleotide or its complement—single-stranded DNA and RNA molecules that contain self-complementary sequences can form intramolecular secondary structures. For instance, the oligonucleotide




5′-ACTGGCAATCACAATTGCCAGTAA-3′ (SEQ ID NO:1)




can base pair with itself, to form the structure











where a vertical line indicates Watson-Crick base pair formation. Many such structures are possible for a given sequence; two are of particular interest. The first is the lowest energy “hairpin” structure (formed by folding a sequence back on itself with a connecting loop at least 3 nucleotides long). The second is the lowest energy structure that can be formed by including more complex topologies, such as “bulge loops” (unpaired duplexes between two regions of base-paired duplex) and cloverleaf structures, where 3 base-paired stretches meet at a triple-junction. A good example of a complex secondary structure is the structure of a tRNA molecule, an example of which, namely, yeast tRNA


Ala


is shown below.




For either type of structure, a value of the free energy of that structure can be calculated, relative to the unpaired strand, by means of a thermodynamic model similar to that used to calculate the free energy of a base-paired duplex structure. Again, the free energy ΔG is calculated from the enthalpy ΔH and the entropy ΔS at a given absolute temperature T via the equation






ΔG=ΔH−T ΔS.






However, in this case there is the added difficulty that the lowest energy structure must be found. For a simple hairpin structure, this optimization can be performed via a relatively simple search algorithm. For more complex structures (such as a cloverleaf a dynamic programming algorithm, such as that implemented in the program MFOLD, must be used.




Yeast tRNA


Ala


—The RNA sequence includes many non-standard ribonucleotides, such as D (5,6 dihydrouridine), m


1


G (1-methylguanosine), m


2


G (N


2


-dimethylguanosine), ψ (pseudouridine), I (inosine), m


1


I (1-methylinosine) and T (ribothymidine). Dots (•) mark (non-standard) G=U base pairs. The structure is taken from A. L. Lehninger, et al.,


Principles of Biochemistry


, 2


nd


Ed. (Worth Publishers, New York, N.Y., 1993).











Coupling efficiencies—chemosynthetic efficiencies are called coupling efficiencies when the synthetic scheme involves successive attachment of different monomers to a growing oligomer; a good example is oligonucleotide synthesis via phosphoramidite coupling chemistry.




Algorithmic Operations:




Evaluating a parameter—determination of the numerical value of a numerical descriptor of a property of an oligonucleotide sequence by means of a formula, algorithm or look-up table.




Filter—a mathematical rule or formula that divides a set of numbers into two subsets. Generally, one subset is retained for further analysis while the other is discarded. If the division into two subsets is achieved by testing the numbers against a simple inequality, then the filter is referred to as a “cut-off”. In the context of the current invention, an example by way of illustration and not limitation is the statement “The predicted self structure free energy must be greater than or equal to −0.4 kcal/mole,” which can be used as a filter for oligonucleotide sequences; this particular filter is also an example of a cut-off.




Filter set—A set of rules or formulae that successively winnow a set of numbers by identifying and discarding subsets that do not meet specific criteria. In the context of the current invention, an example by way of illustration and not limitation is the compound statement “the predicted self structure free energy must be greater than or equal to −0.4 kcal/mole and the predicted RNA/DNA heteroduplex melting temperature must lie between 600° C. and 85° C.,” which can be used as a filter set for oligonucleotide sequences.




Examining a parameter—comparing the numerical value of a parameter to some cutoff-value or filter.




Statistical sampling of a cluster—extraction of a subset of oligonucleotides from a cluster of oligonucleotides based upon some statistical measure, such as rank by oligonucleotide starting position in the sequence complementary to the target sequence.




First quartile, median and third quartile—If a set of numbers is ranked by value, then the value that divides the lower ¼ from the upper ¾ of the set is the first quartile, the value that divides the set in half is the median and the value that divides the lower ¾ from the upper ¼ of the set is the third quartile.




Poorly correlated—If it is not possible to perform a “good” prediction, as defined via statistics, of one set of numbers from another set of numbers using a simple linear model, then the two sets of numbers are said to be poorly correlated.




Computer program—a written set of instructions that symbolically instructs an appropriately configured computer to execute an algorithm that will yield desired outputs from some set of inputs. The instructions may be written in one or several standard programming languages, such as C, C++, Visual BASIC, FORTRAN or the like. Alternatively, the instructions may be written by imposing a template onto a general-purpose numerical analysis program, such as a spreadsheet.




Experimental System Components:




Small organic molecule—a compound of molecular weight less than 1500, preferably 100 to 1000, more preferably 300 to 600 such as biotin, fluorescein, rhodamine and other dyes, tetracycline and other protein binding molecules, and haptens, etc. The small organic molecule can provide a means for attachment of a nucleotide sequence to a label or to a support.




Support or surface—a porous or non-porous water insoluble material. The surface can have any one of a number of shapes, such as strip, plate, disk, rod, particle, including bead, and the like. The support can be hydrophilic or capable of being rendered hydrophilic and includes inorganic powders such as glass, silica, magnesium sulfate, and alumina; natural polymeric materials, particularly cellulosic materials and materials derived from cellulose, such as fiber containing papers, e.g., filter paper, chromatographic paper, etc.; synthetic or modified naturally occurring polymers, such as nitrocellulose, cellulose acetate, poly (vinyl chloride), polyacrylamide, cross linked dextran, agarose, polyacrylate, polyethylene, polypropylene, poly(4-methylbutene), polystyrene, polymethacrylate, poly(ethylene terephthalate), nylon, poly(vinyl butyrate), etc.; either used by themselves or in conjunction with other materials; glass available as Bioglass, ceramics, metals, and the like. Natural or synthetic assemblies such as liposomes, phospholipid vesicles, and cells can also be employed.




Binding of oligonucleotides to a support or surface may be accomplished by well-known techniques, commonly available in the literature. See, for example, A. C. Pease, et al,


Proc. Nat. Acad. Sci. USA


, 91:5022-5026 (1994).




Label—a member of a signal producing system. Usually the label is part of a target nucleotide sequence or an oligonucleotide probe, either being conjugated thereto or otherwise bound thereto or associated therewith. The label is capable of being detected directly or indirectly. Labels include (i) reporter molecules that can be detected directly by virtue of generating a signal, (ii) specific binding pair members that may be detected indirectly by subsequent binding to a cognate that contains a reporter molecule, (iii) oligonucleotide primers that can provide a template for amplification or ligation or (iv) a specific polynucleotide sequence or recognition sequence that can act as a ligand such as for a repressor protein, wherein in the latter two instances the oligonucleotide primer or repressor protein will have, or be capable of having, a reporter molecule. In general, any reporter molecule that is detectable can be used.




The reporter molecule can be isotopic or nonisotopic, usually non-isotopic, and can be a catalyst, such as an enzyme, a polynucleotide coding for a catalyst, promoter, dye, fluorescent molecule, chemiluminescent molecule, coenzyme, enzyme substrate, radioactive group, a small organic molecule, amplifiable polynucleotide sequence, a particle such as latex or carbon particle, metal sol, crystallite, liposome, cell, etc., which may or may not be further labeled with a dye, catalyst or other detectable group, and the like. The reporter molecule can be a fluorescent group such as fluorescein, a chemiluminescent group such as luminol, a terbium chelator such as N-(hydroxyethyl) ethylenediaminetriacetic acid that is capable of detection by delayed fluorescence, and the like.




The label is a member of a signal producing system and can generate a detectable signal either alone or together with other members of the signal producing system. As mentioned above, a reporter molecule can be bound directly to a nucleotide sequence or can become bound thereto by being bound to an sbp member complementary to an sbp member that is bound to a nucleotide sequence. Examples of particular labels or reporter molecules and their detection can be found in U.S. Pat. No. 5,508,178 issued Apr. 16, 1996, at column 11, line 66, to column 14, line 33, the relevant disclosure of which is incorporated herein by reference. When a reporter molecule is not conjugated to a nucleotide sequence, the reporter molecule may be bound to an sbp member complementary to an sbp member that is bound to or part of a nucleotide sequence.




Signal Producing System—the signal producing system may have one or more components, at least one component being the label. The signal producing system generates a signal that relates to the presence or amount of a target polynucleotide in a medium. The signal producing system includes all of the reagents required to produce a measurable signal. Other components of the signal producing system may be included in a developer solution and can include substrates, enhancers, activators, chemiluminescent compounds, cofactors, inhibitors, scavengers, metal ions, specific binding substances required for binding of signal generating substances, and the like. Other components of the signal producing system may be coenzymes, substances that react with enzymic products, other enzymes and catalysts, and the like. The signal producing system provides a signal detectable by external means, by use of electromagnetic radiation, desirably by visual examination. Signal-producing systems that may be employed in the present invention are those described more fully in U.S. Pat. No. 5,508,178, the relevant disclosure of which is incorporated herein by reference.




Ancillary Materials—Various ancillary materials will frequently be employed in the methods and assays utilizing oligonucleotide probes designed in accordance with the present invention. For example, buffers and salts will normally be present in an assay medium, as well as stabilizers for the assay medium and the assay components. Frequently, in addition to these additives, proteins may be included, such as albumins, organic solvents such as formamide, quaternary ammonium salts, polycations such as spermine, surfactants, particularly non-ionic surfactants, binding enhancers, e.g., polyalkylene glycols, or the like.




DETAILED DESCRIPTION OF THE INVENTION




The invention is directed to methods or algorithms for predicting oligonucleotides specific for a nucleic acid target where the oligonucleotides exhibit a high potential for hybridization. The algorithm uses parameters of the oligonucleotide and the oligonucleotide/target nucleotide sequence duplex, which can be readily predicted from the primary sequences of the target polynucleotide and candidate oligonucleotides. In the methods of the present invention, oligonucleotides are filtered based on one or more of these parameters, then further filtered based on the sizes of clusters of oligonucleotides along the input polynucleotide sequence. The methods or algorithms of the present invention may be carried out using either relatively simple user-written subroutines or publicly available stand-alone software applications (e.g., dynamic programming algorithm for calculating self-structure free energies of oligonucleotides). The parameter calculations may be orchestrated and the filtering algorithms may be implemented using any of a number of commercially available computer programs as a framework such as, e.g., Microsoft® Excel spreadsheet, Microsoft® Access relational database and the like. The basic steps involved in the present methods involve parsing a sequence that is complementary to a target nucleotide sequence into a set of overlapping oligonucleotide sequences, evaluating one or more parameters for each of the oligonucleotide sequences, said parameter or parameters being predictive of probe hybridization to the target nucleotide sequence, filtering the oligonucleotide sequences based on the values for each parameter, filtering the oligonucleotide sequences based on the length of contiguous sequence elements and ranking the contiguous sequence elements based on their length. We have found that oligonucleotides in the longest contiguous sequence elements generally show the highest hybridization efficiencies.




The present methods are based on our recognition that oligonucleotides showing high hybridization efficiencies tend to form clusters. It is believed that this clustering reflects local regions of the target nucleotide sequence that are unstructured and accessible for oligonucleotide binding. Oligonucleotides that are contiguous along a region of the input nucleic acid sequence are identified. These oligonucleotides are sorted based on the length of the contiguous sequence elements. The sorting approach used in the present invention apparently serves as a surrogate for the calculation of local secondary structure of the target a nucleotide sequence. This is supported by our observation that treatments intended to eliminate long-range nucleic acid structure (e.g., random fragmentation) do not eliminate the differences in hybridization yields across oligonucleotide probe arrays. This implies that major determinants of efficient hybridization are local regions of the target sequence. The identification of contiguous sequence elements is a simple and efficient method for recognizing clusters of such determinants and, thus, for identifying oligonucleotide probes that exhibit high hybridization efficiency for a target nucleotide sequence.




As mentioned above one embodiment of the present invention is a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides is identified. The length of the oligonucleotides may be the same or different. The oligonucleotides are unique in that no two of the oligonucleotides are identical. The unique oligonucleotides are chosen to sample the entire length of a nucleotide sequence that is hybridizable with the target nucleotide sequence. The actual number of oligonucleotides is generally determined by the length of the nucleotide sequence and the desired result. The number of oligonucleotides should be sufficient to achieve a consensus behavior. In other words, the oligonucleotide sequences should be sufficiently numerous that several possible probes overlap or fall within a given region that is expected to yield acceptable hybridization efficiency. Since the location of these regions is not known before hand, the best strategy is to equally space the probe sequences along the sequence that is hybridizable to the target sequence. Since regions of acceptable hybridization efficiency are generally on the order of 20 nucleotides in length, a practical strategy is to space the starting nucleotides of the oligonucleotide sequences no more than five base pairs apart. If computation time needed to calculate the predictive parameters is not an issue, then the best strategy is to space the starting nucleotides one nucleotide apart. An important feature of the present invention is to determine oligonucleotides that are clustered along a region of the nucleotide sequence. The individual predictions made for individual oligonucleotide sequences are not very good. However, we have found that the predictions that are experimentally observed tend to form contiguous clusters, while the spurious predictions tend to be solitary. Thus, the number of oligonucleotides should be sufficient to achieve the desired clustering.




Preferably, a set of overlapping sequences is chosen. To this end, the subsequences are chosen so that there is overlap of at least one nucleotide from one oligonucleotide to the next. More preferably, the overlap is two or more nucleotides. Most preferably, the oligonucleotides are spaced one nucleotide apart and the predetermined number is L−N+1 oligonucleotides where L is the length of the nucleotide sequence and N is the length of the oligonucleotides. In the latter situation, the unique oligonucleotides are of identical length N. Thus, a set of overlapping oligonucleotides is a set of oligonucleotides that are subsequences derived from some master sequence by subdividing that sequence in such a way that each subsequence contains either the start or end of at least one other subsequence in the set.




An example of the above for purposes of illustration and not limitation is presented by the sequence ATGGACTTAGCATTCG (SEQ ID NO:3), from which the following set of overlapping oligonucleotides can be identified:












ATGGACTTAGCA (SEQ ID NO:4)













 TGGACTTAGCAT (SEQ ID NO:5)













   GGACTTAGCATT (SEQ ID NO:6)













   GACTTAGCATTC (SEQ ID NO:7)













    ACTTAGCATTCG (SEQ ID NO:8)











In this example the overlapping oligonucleotides are spaced one nucleotide apart. In other words, there is overlap of all but one nucleotide from one oligonucleotide to the next. In the example above, the original nucleotide sequence is 16 nucleotides long (L=16). The length of each of the overlapping oligonucleotides is 12 nucleotides long (N=12) and there are L−N+1=5 oligonucleotides.




The length of the oligonucleotides may be the same or different and may vary depending on the length of the nucleotide sequence. The length of the oligonucleotides is determined by a practical compromise between the limits of current chemistries for oligonucleotide synthesis and the need for longer oligonucleotides, which exhibit greater binding affinity for the target sequence and are more likely to occur only once in complicated mixtures of polynucleotide targets. Usually, the length of the oligonucleotides is from about 10 to 50 nucleotides, more usually, from about 25 to 35 nucleotides.




In the next step of the method at least one parameter that is independently predictive of the ability of each of the oligonucleotides of the set to hybridize to the target nucleotide sequence is determined and evaluated for each of the above oligonucleotides. Examples of such a parameter, by way of illustration and not limitation, is a parameter selected from the group consisting of composition factors, thermodynamic factors, chemosynthetic efficiencies, kinetic factors and mathematical combinations of these quantities.




The determination of a parameter may be carried out by known methods. For example, melting temperature of the oligonucleotide/target duplex may be determined using the nearest neighbor method and parameters appropriate for the nucleotide acids involved. For DNA/DNA parameters, see J. SantaLucia Jr., et al., (1996)


Biochemistry


, 35:3555. For RNA/DNA parameters, see N. Sugimoto, et al., (1995)


Biochemistry


, 34:11211. Briefly, these methods are based on the observation that the thermodynamics of a nucleic acid duplex can be modeled as the sum of a term arising from the entire duplex and a set of terms arising from overlapping pairs of nucleotides (“nearest neighbor” model). For a discussion of the nearest neighbor see J. SantaLucia Jr., et al., (1996)


Biochemistry


, supra, and N. Sugimoto, et al., (1995)


Biochemistry


, supra. For example, the enthalpy ΔH of the duplex formed by the sequence




ATGGACTTAGCA (SEQ ID NO:4)




and its perfect complement can be approximated by the equation






ΔH {tilde over (=)}H


init


+H


AT


+H


TG


+H


GG


+H


GA


+H


AC


+H


CT


+H


TT


+H


TA


+H


AG


+H


GC


+H


CA


.






In the above equation, the term Hinit is the initiation enthalpy for the entire duplex, while the terms H


AT


, . . . , H


CA


are the so-called “nearest neighbor” enthalpies. Similar equations can be written for the entropy, for the corresponding quantities for RNA homoduplexes, or for DNA/RNA heteroduplexes. The free energy can then be calculated from the enthalpy, entropy and absolute temperature, as described previously.




Predicted free energy of the most stable intramolecular structure of an oligonucleotide (ΔG


MFOLD


) may be determined using the nucleic acid folding algorithm MFOLD and parameters appropriate for the oligonucleotide, e.g., DNA or RNA. For MFOLD, see J. A. Jaeger, et al., (1989), supra. For DNA folding parameters, see J. SantaLucia Jr., et al., (1996), supra. Briefly, these methods operate in two steps. First, a map of all possible compatible intramolecular base pairs is made. Second, the global minimum of the free energy of the various possible base pairing configurations is found, using the nearest neighbor model to estimate the enthalpy and entropy, the user input temperature to complete the calculation of free energy, and a dynamic programming algorithm to find the global minimum. The algorithm is computationally intensive; calculation times scale as the third power of the sequence length.




The following Table 1 summarizes groups of parameters that are independently predictive of the ability of each of the oligonucleotides to hybridize to the target nucleotide sequence together with a reference to methods for their determination. Parameters within a given group are known or expected to be strongly correlated to one another, while parameters in different groups are known or expected to be poorly correlated with one another.














TABLE 1









Group




Parameter




Source or Reference

























I




duplex enthalpy, ΔH




Santa Lucia et al., 1996; Sugimoto et al., 1995







duplex entropy, ΔS




Santa Lucia et al., 1996; Sugimoto et al., 1995







duplex free energy, ΔG




ΔG = ΔH − TΔS (see text)







melting temperature, T


m






(see text)







mole fraction (or percent) G + C




self-explanatory







subsequence duplex enthalpy




Santa Lucia et al., 1996; Sugimoto et al., 1995







subsequence duplex entropy




Santa Lucia et al., 1996; Sugimoto et al., 1995







subsequence duplex free energy




ΔG = ΔH − TΔS (see text)







subsequence duplex T


m






(see text)







subsequence duplex mole fraction




self-explanatory







(or percent) G + C






II




intramolecular enthalpy, ΔH


MFOLD






Jaeger et al., 1989; Santa Lucia et al., 1996







intramolecular entropy, ΔS


MFOLD






Jaeger et al., 1989; Santa Lucia et al., 1996







intramolecular free energy, ΔG


MFOLD






ΔG = ΔH − TΔS (see text)







hairpin enthalpy, ΔH


hairpin






Jaeger et al., 1989; Santa Lucia et al., 1996







hairpin entropy, ΔS


hairpin






Jaeger et al., 1989; Santa Lucia et al., 1996







hairpin free energy, ΔG


hairpin






ΔG = ΔH − TΔS (see text)














intramolecular partition function, Z











Z
=




k





structures








exp


(


-

ΔG
intramolecular

(
k
)



/
RT

)






















III




sequence complexity




Altschul et al., 1994







sequence information content




Altschul et al., 1994






IV




steric factors




molecular modeling or experiment







molecular dynamic simulation




Weber & Hefland, 1979







enthalpy, entropy & free energy of




measured experimentally







activation







association & dissociation rates




Patzel & Sczakiel, 1998






V




oligonucleotide chemosynthetic




measured experimentally







efficiencies






VI




target synthetic efficiencies




measured experimentally














In a next step of the present method, a subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified based on the above evaluation of the parameter. A number of mathematical approaches may be followed to sort the oligonucleotides based on a parameter. In one approach a cut-off value is established. The cut-off value is adjustable and can be optimized relative to one or more training data sets. This is done by first establishing some metric for how well a cutoff value is performing; for example, one might use the normalized signal observed for each oligonucleotide in the training set. Once such a metric is established, the cutoff value can be numerically optimized to maximize the value of that metric, using optimization algorithms well known to the art. Alternatively, the cutoff value can be estimated using graphical methods, by graphing the value of the metric as a function of one or more parameters, and then establishing cutoff values that bracket the region of the graph where the chosen metric exceeds some chosen threshold value. In essence, the cut off values are chosen so that the rule set used yields training data that maximizes the inclusion of oligonucleotides that exhibit good hybridization efficiency and minimizes the inclusion of oligonucleotides that exhibit poor hybridization efficiency.




A preferred approach to performing such a graph-based optimization of filter parameters is shown in FIG.


3


. In

FIG. 3

, hybridization data from several different genes have been used to prepare a contour plot of relative hybridization intensity as a function of DNA/RNA heteroduplex melting temperature and free energy of the most stable intramolecular structure of the probe. Contours are shown only for regions for which there are data; the white space outside of the outermost contour indicates that there are no experimental data for that region. The details of how the data were obtained can be found in Example 1 below. A summary of the sequences and number of data points employed is shown in Table 2 below. The measured hybridization intensities for each data set were normalized prior to construction of the contour plot depicted in

FIG. 3

by dividing each observed intensity by the maximum intensity observed for that gene. In addition, differences in hybridization salt concentrations and hybridization temperatures were accounted for by using the salt concentration-corrected values of the melting temperatures and by subtracting the hybridization temperature from each predicted melting temperature, respectively. The filter set determined by examination of

FIG. 3

is indicated by both the dotted open box in the figure and by the inequalities above the box.




One way in which such a contour plot may be prepared involves the use of an appropriate software application such as Microsoft® Excel® or the like. For example, the cross-abulation tool may be used in the Microsoft Excel® program. Data is accumulated into rectangular bins that are 0.5 kcal ΔG


MFOLD


wide and 2.5° C. T


m


wide. In each bin the average values of ΔG


MFOLD


, T


m


−T


hyb


, and the normalized hybridization intensity are calculated. The data is output to the software application DeltaGraph® (Deltapoint, Inc., Monterey, Calif.) and the contour plot is prepared using the tools and instructions provided.
















TABLE 2









Target (GenBank




Target




No. Data





[Na


+


]






Accession No.)




Strand




Points




T


hyb






Correction



























HIV protease-reverse




Sense




1,022




35° C.




−1.4° C.






transcriptase (PRT)


a








(M15654)






HIV protease-reverse




antisense




1,041




30° C.




−1.4° C.






transcriptase (PRT)


a








(M15654)






HIV protease-reverse




Sense




88




35° C.




−1.4° C.






transcriptase (PRT)


b








(M15654)






Human G3PDH




antisense




93




35° C.




−1.4° C.






(glyceraldehyde-3-






dehydrogenase)


b


(X01677)






Human p53


b


(X02469)




antisense




93




35° C.




−1.4° C.






Rabbit β-globin


c


(K03256)




antisense




106




30° C.




  0° C.













a


Data from Affymetrix GeneChip ™ Array












b


Data from biotinylated probes bound to streptavidin-coated microtiter wells












c


Literature data: see N. Milner, K. U. Mir & E. M. Southern (1997) Nature Biotech. 15, 537-541.













Once the cut-off value is selected, a subset of oligonucleotides having parameter values greater than or equal to the cut-off value is identified. This refers to the inclusion of oligonucleotides in a subset based on whether the value of a predictive parameter satisfies an inequality.




Examples of identifying a subset of oligonucleotides by establishing cut-off values for predictive parameters are as follows: for melting temperature an inequality might be 60° C.≦T


m


; for predicted free energy an inequality, preferably, might be







Δ






G
MFOLD





-
0.4








kcal
mole

.












In a variation of the above, both a maximum and a minimum cut-off value may be selected. A subset of oligonucleotides is identified whose values fall within the maximum and minimum values, i.e., values greater than or equal to the minimum cut-off value and less than or equal to the maximum cut-off value. An example of this approach for melting temperature might be the inequality






60° C.≦T


m


≦85° C.






With regard to cut off values for T


m


the lower limit is most important, and is preferably T


m


=T


hyb


, more preferably, T


m


=T


hyb


+15° C. The upper cutoff is important when the sequence region under consideration is unusually rich in G and C, and is preferably T


m


=T


hyb


+40° C. With regard to ΔG


MFOLD


the cutoff value is usually greater than or equal to −1.0 kcal/mole. As mentioned above, the cutoff values preferably are determined from real data through experimental observations.




In another approach the parameter values may be converted into dimensionless numbers. The parameter value is converted into a dimensionless number by determining a dimensionless score for each parameter resulting in a distribution of scores having a mean value of zero and a standard deviation of one. The dimensionless score is a number that is used to rank some object (such as an oligonucleotide) to which that score relates. A score that has no units (i.e., a pure number) is called a dimensionless score.




In one approach the following equations are used for converting the values of said parameters into dimensionless numbers:








s

i
,
x


=



x
i

-


x




σ

{
x
}




,










where S


i,x


is the dimensionless score derived from parameter x calculated for oligonucleotide i, x


i


is the value of parameter x calculated for oligonucleotide i, <x> is the average of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and σ


{x}


is the standard deviation of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and is given by the equation








σ

{
x
}


=






j
=
1

M




(


x
j

-


x



)

2



M
-
1




,










where M is the number of oligonucleotides. The resulting distribution of scores, {S} has a mean value of zero and a standard deviation of one. These properties can be important for a combination of the scores discussed below.




The use of a dimensionless number approach may further include calculating a combination score S


i


by evaluating a weighted average of the individual values of the dimensionless scores s


i,x


by the equation:








S
i

=




{
x
}





q
x



s

i
,
x





,










where q


x


is the weight assigned to the score derived from parameter x, the individual values of q


x


are always greater than zero, and the sum of the weights q


x


is unity.




In another variation of the above approach, the method of calculation of the composite parameter is optimized based on the correlation of the individual composite scores to real data, as explained more fully below.




In one approach the calculation of the composite score further involves determining a moving window-averaged combination score <S


i


> for the ith probe by the equation:










S
i



=


1
w






j
=

i
-


w
-
1

2




i
+


w
-
1

2





S
j




,





w
=

an





odd





integer


,










where w is the length of the window for averaging (i.e., w nucleotides long), and then applying a cutoff filter to the value of <S


i


>. This procedure results in smoothing (smoothing procedure) by turning each score into a consensus metric for a set of w adjacent oligonucleotide probes. The score, referred to as the “smoothed score,” is essentially continuous rather than a few discrete values. The value of the smoothed score is strongly influenced by clustering of scores with high or low values; window averaging therefore provides a measurement of cluster size.




An advantage of the dimensionless score approach to the probe prediction algorithm is that it is easy to objectively optimize. In one approach to training the algorithm, optimization of the weights q


x


above may be performed by varying the values of the weights so that the correlation coefficient ρ


{<Si>},{Vi}


between the set of window-averaged combination scores {<S


i


>} and a set of calibration experimental measurements {V


i


} is maximized. The correlation coefficient ρ


{<Si>},{Vi}


is calculated from the equation








ρ


{



S
i



}

,

{

V
i

}



=


(

1
M

)




Covariance






(



S


,
V

)




σ

{



S
i



}




σ

{

V
i

}






,










where M is the number of window averaged, combination dimensionless scores and the number of corresponding measurements, the covariance is as defined earlier (see earlier equations) and σ


{<Si>}


and σ


{Vi}


are the standard deviations of {<S


i


>} and {V


i


}, as defined previously. An example of this approach is shown in Example 2, below.




In another approach the parameter is derived from one or more factors by mathematical transformation of the factors. This involves the calculation of a new predictive parameter from one or more existing predictive parameters, by means of an equation. For instance, the equilibrium constant K


open


for formation of an oligonucleotide with no intramolecular structure from its structured form can be calculated from the intramolecular structure free energy ΔG


MFOLD


, using the equation







K
open

=

exp







(


Δ






G
MFOLD



R





T


)

.












In a next step of the method oligonucleotides in the subset are then identified that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. For example, consider a set of overlapping oligonucleotides identified by dividing a nucleotide sequence into subsequences. A subset of the oligonucleotides is obtained as described above. In general, this subset is obtained by applying a rule that rejects some members of the set. For the remaining members of the set, namely, the subset, there will be some average number of nucleotides in the nucleotide sequence between the first nucleotides of adjacent remaining subsequences. If, for some sub-region of the nucleotide sequence, the average number of nucleotides in the nucleotide sequence between the first nucleotides of adjacent remaining subsequences is less than the average for the entire nucleotide sequence, then the oligonucleotides are clustered. The smaller the average number of nucleotides between the first nucleotides of adjacent oligonucleotides, the stronger the clustering. The strongest clustering occurs when there are no intervening nucleotides between adjacent starting nucleotides. In this case, the oligonucleotides are said to be contiguous and may be referred to as contiguous sequence elements or “contigs.”




Accordingly, in this step oligonucleotides are sorted based on length of contiguous sequence elements. Oligonucleotides in the subset determined above are identified that are contiguous along a region of the input nucleic acid sequence. The length of each contigs that is equal to the number of oligonucleotides in each contigs, namely, oligonucleotides from the above step whose complement begin at positions m+1, m+2, . . . , m+k in the target sequence, form a contig of length k. Contigs can be identified and contig length can be calculated using, for example, a Visual Basic® module that can be incorporated into a Microsoft® Excel workbook.




Cluster size can be defined in several ways:




For contiguous clusters, the size is simply the number of adjacent oligonucleotides in the cluster. Again, this may also be referred to as contiguous sequence elements. The number may also be referred to as “contig length”. For example, consider the nucleotide sequence discussed above, namely, ATGGACTTAGCATTCG (SEQ ID NO:3) and the identified set of overlapping oligonucleotides












ATGGACTTAGCA (SEQ ID NO:4)













 TGGACTTAGCAT (SEQ ID NO:5)













  GGACTTAGCATT (SEQ ID NO:6)













   GACTTAGCATTC (SEQ ID NO:7)













    ACTTAGCATTCG (SEQ ID NO:8)











Suppose that, after calculation and evaluation of the predictive parameters, four nucleotides remain:












ATGGACTTAGCA     (SEQ ID NO:4)   &Rectversolid;













 TGGACTTAGCAT    (SEQ ID NO:5)   &Rectversolid;  contig













  GGACTTAGCATT   (SEQ ID NO:6)   &Rectversolid;













    ACTTAGCATTCG (SEQ ID NO:8)   &Rectversolid;  single






                                    oligonucleotide











A “contig” encompassing three of the oligonucleotides of the subset is present together with a single oligonucleotide. The contig length is 3 oligonucleotides.




Alternatively, cluster size at some position in the sequence hybridizable or complementary to the target sequence may be defined as the number of oligonucleotides whose center nucleotides fall inside a region of length M centered about the position in question, divided by M. This definition of clustering allows small gaps in clusters. In the example used above for contiguous clusters, if M was 10, then the cluster size would step through the values 0/10, . . . , 0/10, 1/10, 2/10, 3/10, 3/10, 4/10, 4/10, 4/10, 4/10, 4/10, 3/10, 2/10, 1/10, 1/10, 0/10 as the center of the window of length 10 passed through the cluster. In each fraction, the numerator is the number of oligonucleotide sequences that have satisfied the filter set and whose central nucleotides are within a window 10 nucleotides long, centered about the nucleotide under consideration. The denominator (10) is simply the window length.




Another alternative is to define the size of a cluster at some position in the sequence hybridizable or complementary to the target sequence as the number of oligonucleotide sequences overlapping that position. This definition is equivalent to the last definition with M set equal to the oligonucleotide probe length and omission of the division by M.




Finally, cluster size can be approximated at each position in a nucleotide sequence by dividing the sequence into oligonucleotides, evaluating a numerical score for each oligonucleotide, and then averaging the scores in the neighborhood of each position by means of a moving window average as described above. Window averaging has the effect of reinforcing clusters of high or low values around a particular position, while canceling varying values about that position. The window average, therefore, provides a score that is sensitive to both the hybridization potential of a given oligonucleotide and the hybridization potentials of its neighbors.




In a next step of the present method, the oligonucleotides in the subset are ranked. Generally, this ranking is based on the lengths of the clusters or contigs, sizes of the clusters or values of a window averaged score. Oligonucleotides found in the longest contigs or largest clusters, or possessing the highest window averaged scores usually show the highest hybridization efficiencies. Often, the highest signal intensity within the cluster corresponds to the median oligonucleotide of the cluster. However, the peak signal intensity within the contig can be determined experimentally, by sampling the cluster at its first quartile, midpoint and third quartile, measuring the hybridization efficiencies of the sampled oligonucleotides, interpolating or extrapolating the results, predicting the position of the optimal probe, and then iterating the probe design process.





FIG. 1

shows a diagram of an example of the above-described method by way of illustration and not limitation. Referring to

FIG. 1

a target sequence of length L from, e.g., a database, is used to generate a sequence that is hybridizable to the target sequence from which candidate oligonucleotide probe sequences are generated. One or more parameters are calculated for each of the oligonucleotide probe sequences. The candidate oligonucleotide probe sequences are filtered based on the values of the parameters. Clustering of the filtered candidate probe sequences is evaluated and the clusters are ranked by size. Then, the oligonucleotide probes are statistically sampled and synthesized. Further evaluation may be made by evaluating the hybridization of the selected oligonucleotide probes in real hybridization experiments. The above process may be reiterated to further define the selection. In this way only a small fraction of the potential oligonucleotide probe candidates are synthesized and tested. This is in sharp contrast to the known method of synthesizing and testing all or a major portion of potential oligonucleotide probes for a given target sequence.




The methods of the present invention are preferably carried out at least in part with the aid of a computer. For example, an IBM® compatible personal computer (PC) may be utilized. The computer is driven by software specific to the methods described herein.




The preferred computer hardware capable of assisting in the operation of the methods in accordance with the present invention involves a system with at least the following specifications: Pentium® processor or better with a clock speed of at least 100 MHz, at least 32 megabytes of random access memory (RAM) and at least 80 megabytes of virtual memory, running under either the Windows 95 or Windows NT 4.0 operating system (or successor thereof).




As mentioned above, software that may be used to carry out the methods may be either Microsoft Excel or Microsoft Access, suitably extended via user written functions and templates, and linked when necessary to stand-alone programs that calculate specific parameters (e.g., MFOLD for intramolecular thermodynamic parameters). Examples of software programs used in assisting in conducting the present methods may be written, preferably, in Visual BASIC, FORTRAN and C++, as exemplified below in the Examples. It should be understood that the above computer information and the software used herein are by way of example and not limitation. The present methods may be adapted to other computers and software. Other languages that may be used include, for example, PASCAL, PERL or assembly language.





FIG. 2

depicts a more specific approach to a method in accordance with the present invention. Referring to

FIG. 2

, a sequence of length L is obtained from a database such as GenBank, UniGene or a proprietary sequence database. Probe length N is determined by the user based on the requirements for sensitivity and specificity and the limitations of the oligonucleotide synthetic scheme employed. The probe length and sequence length are used to generate L−N+1 candidate oligonucleotide probes, i.e., from every possible starting position. An initial selection is made based on local sequence predicted thermodynamic properties. To this end, melting temperature T


m


and the self-structure free energy ΔG


MFOLD


, are calculated for each of the potential oligonucleotide probe: target nucleotide sequence complexes. Next, M probes that satisfy T


m


and ΔG


MFOLD


filters are selected. A further selection can be made based on clustering of “good” parameters. Good parameters are parameters that satisfy all of the filters in the filter set. Clustering is defined by any of the methods described previously; in

FIG. 2

, the “contig length” definition of clustering is used.




For each of the M oligonucleotide sequences that satisfied all filters the question is asked whether the oligonucleotide sequence immediately following the sequence under consideration is also one of the sequences that satisfied all of the filters. If the answer to this question is NO, then one stores the current value of the contig length counter, resets the counter to zero and proceeds to the next oligonucleotide sequence that satisfied all filters. If the answer to the question is YES, then 1 is added to the contig length counter and, if the counter now equals 1 (i.e., this is the first oligonucleotide probe sequence in the contig), the starting position of the oligonucleotide is stored. One then moves to the next oligonucleotide that satisfied all filters, which, in this case, is the same as the next oligonucleotide before the application of the filter set. The process is repeated until all M filtered oligonucleotide sequences have been examined. In this way, a single pass through the set of M filtered oligonucleotide sequences generates the lengths and starting positions of all contigs.




Next, contigs are ranked based on the lengths of their contiguous sequence elements. Longer contig lengths generally correlate with higher hybridization efficiencies. All oligonucleotides of the higher-ranking contigs may be considered, or candidate oligonucleotide probes may be picked. For example, candidate oligonucleotide probes can be picked one quarter, one half and three quarters of the way through each contig. The lafter approach provides local curvature determination after experimental determination of hybridization efficiencies, which allows either interpolation or extrapolation of the positions of the next probes to be synthesized in order to close in on the optimal probe in the region. If the contig brackets the actual peak of hybridization efficiency, the process will converge in 2-3 iterations. If the contig lies to one side of the actual peak, the process will converge in 3-4 iterations.




The above illustrative approach is further described with reference to the following DNA nucleotide sequence, which is the complement of the target RNA nucleotide sequence:




GTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAAAAACTCATGTTCAAGA (SEQ ID NO:9).




In the first step of the method, the nucleotide sequence is divided into overlapping oligonucleotides that are 25 nucleotides in length. This length is chosen because it is an effective compromise between the need for sensitivity (enhanced by longer oligonucleotides) and the chemosynthetic efficiency of schemes for synthesis of surface-bound arrays of oligonucleotide probes.




Next, the estimated duplex melting temperatures (T


m


) and self-structure free energies (ΔG


MFOLD


) are calculated for each oligonucleotide in the set of overlapping oligonucleotides. The values are obtained from a user-written function that calculates DNA/RNA heteroduplex thermodynamic parameters (see N. Sugimoto, et al.,


Biochemistry


, 34:11211 (1995)) and a modified version of the program MFOLD that estimates the free energy of the most stable intramolecular structure of a single stranded DNA molecule (see J. A. Jaeger, et al., (1989), supra, respectively. The steps are illustrated below.















GTCCAAAAAGGGTCAGTCTACCTCCCGCCATAAAAACTCATGTTCAAGA (target complement sequence)















T


m


(° C.)




ΔG


MFOLD




















GTCCAAAAAGGGTCAGTCTACCTCC




71.77




−1.20




SEQ ID NO:10






 TCCAAAAAGGGTCAGTCTACCTCCC




71.99




−1.20




SEQ ID NO:11






  CCAAAAAGGGTCAGTCTACCTCCCG




70.78




−1.20




SEQ ID NO:12






   CAAAAAGGGTCAGTCTACCTCCCGC




71.23




−1.20




SEQ ID NO:13






     AAAAAGGGTCAGTCTACCTCCCGCC




73.07




−1.20




SEQ ID NO:14






     AAAAGGGTCAGTCTACCTCCCGCCA




75.68




−1.20




SEQ ID NO:15






       AAAGGGTCAGTCTACCTCCCGCCAT




77.53




−1.20




SEQ ID NO:16






       AAGGGTCAGTCTACCTCCCGCCATA




79.03




−1.20




SEQ ID NO:17






         AGGGTCAGTCTACCTCCCGCCATAA




79.03




−1.20




SEQ ID NO:18






         GGGTCAGTCTACCTCCCGCCATAAA




76.85




−1.20




SEQ ID NO:19






          GGTCAGTCTACCTCCCGCCATAAAA




73.10




−0.80




SEQ ID NO:20






           GTCAGTCTACCTCCCGCCATAAAAA




69.50




0.90




SEQ ID NO:21






            TCAGTCTACCTCCCGCCATAAAAAA




65.60




0.90




SEQ ID NO:22






              CAGTCTACCTCCCGCCATAAAAAAC




64.96




0.90




SEQ ID NO:23






              AGTCTACCTCCCGCCATAAAAAACT




65.




1.10




SEQ ID NO:24






                GTCTACCTCCCGCCATAAAAAACTC




66.36




2.40




SEQ ID NO:25






                TCTACCTCCCGCCATAAAAAACTCA




64.97




2.90




SEQ ID NO:26






                  CTACCTCCCGCCATAAAAAACTCAT




63.96




2.70




SEQ ID NO:27






                  TACCTCCCGCCATAAAAAACTCATG




62.58




1.10




SEQ ID NO:28






                   ACCTCCCGCCATAAAAAACTCATGT




65.10




0.40




SEQ ID NO:29






                     CCTCCCGCCATAAAAAACTCATGTT




64.96




0.10




SEQ ID NO:30






                     CTCCCGCCATAAAAAACTCATGTTC




63.37




−0.10




SEQ ID NO:31






                      TCCCGCCATAAAAAACTCATGTTCA




62.86




−0.10




SEQ ID NO:32






                       CCCGCCATAAAAAACTCATGTTCAA




60.47




−0.10




SEQ ID NO:33






                        CCGCCATAAAAAACTCATGTTCAAG




57.98




−0.10




SEQ ID NO:34






                         CGCCATAAAAAACTCATGTTCAAGA




56.20




−0.10




SEQ ID NO:35














Next, the oligonucleotide sequences are filtered on the basis of T


m


. A high and low cut-off value may be selected, for example, 60° C.≦T


m


≦85° C. Thus, oligonucleotides having T


m


values falling within the above range are retained. Those outside the range are discarded, which is indicated below by lining out of those oligonucleotides and parameter values.







































Next, the oligonucleotide sequences remaining after the above exercise are iltered on the basis of ΔG


MFOLD


and are retained if the value is greater than −0.4. Those oligonucleotides with a ΔG


MFOLD


less than −0.4 are discarded, which is indicated below by double lining out of those oligonucleotides and parameter values.







































Clusters of retained oligonucleotides are identified and ranked based on cluster size. In this example, a contiguous cluster of 13 retained oligonucleotides is identified by the vertical black bar on the left. Any or all of the oligonucleotides in this cluster may be evaluated experimentally.







































Alternatively, in one approach the oligonucleotides at the first quartile, the median and the third quartile of the cluster may be selected for experimental evaluation, indicated below by bold print.







































In one aspect of the present method, at least two parameters are determined wherein the parameters are poorly correlated with respect to one another. The reason for requiring that the different parameters chosen are poorly correlated with one another is that an additional parameter that is strongly correlated to the original parameter brings no additional information to the prediction process. The correlation to the original parameter is a strong indication that both parameters represent the same physical property of the system. Another way of stating this is that correlated parameters are linearly dependent on one another, while poorly correlated parameters are linearly independent of one another. In practice, the absolute value of the correlation coefficient between any two parameters should be less than 0.5, more preferably, less than 0.25, and, most preferably, as close to zero as possible.




In one preferred approach instead of T


m


, for each oligonucleotide/target nucleotide sequence duplex, the difference between the predicted duplex melting temperature corrected for salt concentration and the temperature of hybridization of each of the oligonucleotides with the target nucleotide sequence is determined.




In one aspect the present method comprises determining two parameters at least one of the parameters being the association free energy between a subsequence within each of the oligonucleotides and its complementary sequence on the target nucleotide sequence, or some similar, strongly correlated parameter. The object of this approach is to identify a particularly stable subsequence of the oligonucleotide that might be capable of acting as a nucleation site for the beginning of the heteroduplex formation between the oligonucleotide and the target nucleotide sequence. Such nucleation is believed to be the rate-limiting step for process of heteroduplex formation.




The subsequence within the oligonucleotide is from about 3 to 9 nucleotides in length, usually, 5 to 7 nucleotides in length. The subsequence is at least three nucleotides from the terminus of the oligonucleotide. For support-bound oligonucleotides the subsequence is at least three nucleotides from the free end of the oligonucleotide, i.e., the end that is not attached to the support. Generally, this free end is the 5′ end of the oligonucleotide. When the oligonucleotide is attached to a support, the subsequence is at least three nucleotides from the end of the oligonucleotide that is bound to the surface of the support to which the oligonucleotide is attached. Generally, the 3′ end of the oligonucleotide is bound to the support.




The predictive parameter can be, for example, either melting temperature or duplex free energy of the subsequence with the target nucleotide sequence. The subsequence with the maximum (melting temperature) or minimum (free energy) value of one of the above parameters is chosen as the representative subsequence for that oligonucleotide probe. For example, if the oligonucleotide is nucleotides in length and a subsequence of 5 nucleotides is chosen, i.e., a 5-mer, then parameter values are calculated for all 5-mer subsequences of the oligonucleotide that do not include the 2 nucleotides at the free end of the oligonucleotide. Where 5′ is the free end of the oligonucleotide with designated nucleotide number 1, the values are calculated for all 5-mer subsequences with starting nucleotides from position number 3 to position number 16. Thus, in this example, parameter values for 14 different subsequences are calculated. The subsequence with the maximum value for the parameter is then assigned as the stability subsequence for the oligonucleotide.




The inclusion of the above determination of a stability subsequence results in the following algorithm for determining the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides are identified within a nucleotide sequence that is hybridizable with said target nucleotide sequence. The oligonucleotides are chosen to sample the entire length of the nucleotide sequence. For each of the oligonucleotides, parameters that are independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence are determined and evaluated. Two parameters that may be used are the thermodynamic parameters of T


m


and ΔG


MFOLD


. These parameters give rise to associated parameter filters. In one approach evaluation of the parameters involves establishing cut-off values as described above. Application of these cut-off values results in the identification of a subset of oligonucleotides for further scrutiny under the algorithm. In accordance with this embodiment of the present invention, there is included a stability subsequence limit in addition to the above. Cutoff values are determined either by means of objective optimization algorithms well known to the art or via graphical estimation methods; both approaches have been described previously in this document. In either case, the optimization of cutoff values involves comparison of predictions to known hybridization efficiency data sets. This process results in objective optimization as it looks at prediction versus experimental results and is otherwise referred to herein as “training the algorithm.” The experimental data used to train the algorithm is referred to herein as “training data.”




In the present approach filters are assigned to the T


m


oligonucleotide probe data. The T


m


of each oligonucleotide probe needs to be greater than or equal to the assigned filter (T


m


probe limit) to be given a filter score of “1”; otherwise, the filter score is “0”. In addition, one can also impose a second filter for this parameter; that is, that the T


m


of the oligonucleotide probe also has to be less than a defined upper limit. Filters are also assigned to the ΔG


MFOLD


data. The ΔA


GMFOLD


of each oligonucleotide probe should be greater than or equal to the assigned filter (ΔG


MFOLD


limit) to be given a filter score of “1”; otherwise, the filter score is “0”. The filter scores are added. Furthermore, one can also impose a second filter for this parameter; that is, that the ΔG


MFOLD


also has to be less than a defined upper limit. In accordance with the above discussion stability subsequences are identified. This leads to another filter. Accordingly, filters are assigned to the stability sequence data. The stability subsequence of each oligonucleotide probe needs to be greater than or equal to the assigned filter limit to be given a filter score of “1”; otherwise, the filter score is “0”. In addition, one can also impose a second filter for this parameter; that is, that the stability subsequence also has to be less than a defined upper limit. In all cases, the filter values are determined by objective optimization (algorithmic or graphical) of the predictions of the present method versus training data, as described previously.




On the basis of the above filter sets a subset of oligonucleotides within said predetermined number of unique oligonucleotides is identified. Oligonucleotides in the subset are identified that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. The resulting number of oligonucleotide probe regions is examined. The above filters may then be loosened or tightened by changing the filter limits to obtain more or fewer clusters of oligonucleotides to match the goal, which is set by the needs of the investigator. For instance, a particular application might require that the investigator design 5 non-overlapping probes that efficiently hybridize to a given target sequence.




As mentioned above, the contigs may be selected on the basis of contig length. In another approach, the scores defined above may be summed for cluster size determination. To this end the probe score of the particular filter set (e.g., T


m


probe limit, ΔG


MFOLD


limit and stability sequence limit) is calculated for each oligonucleotide probe. The probe score is the sum of the filter scores. Thus, the probe score is 0 if no parameters pass their respective filters. The probe score is 1, 2 or 3 if one, two or three parameters, respectively, pass their filters for that oligonucleotide probe. This summing is continued for each parameter that is in the current filter set of the algorithm used. For a given algorithm a minimum probe score limit is set. In the current example this limit will be at least 1 and could be 2 or 3 depending on the needs of the investigator, the number of probe clusters required and the results of objective optimizations of algorithm performance against training data. The probe score is compared to this probe score limit. If the probe score of oligonucleotide probe i is greater than or equal to the probe score limit, then oligonucleotide probe i is assigned a score passed value of 1. Next, a window is chosen for the evaluation of clustering (the “cluster window”). This will be the next filter applied. The cluster window (“w”) smoothes the score passed values by summing the values in a window w nucleotides long, centered about position i. The resulting sum is called the cluster sum. Usually, the cluster window is an odd integer, usually 7 or 9 nucleotides. The cluster sum values are then filtered, by comparing to a user-set threshold, cluster filter. If cluster sum is greater than or equal to cluster filter, this filter is passed, and the probe is predicted to hybridize efficiently to its target.




This window summing procedure converts the score for the passed value for each oligonucleotide into a consensus metric for a set of w adjacent probes. A “consensus metric” is a measurement that distills a number of values into one consensus value. In this case, the consensus value is calculated by simply summing the individual values. The window summing procedure therefore evaluates a property similar to the contig length metric discussed above. However, the summed score has the advantage of allowing for a few probes within a cluster to have not passed their individual probe score limits. We have found that this allows more observed hybridization peaks to be predicted.




It may be desired in some circumstances to combine the results of multiple algorithm versions. We refer to this operation as “tiling”. This may be explained more fully as follows. Tiling generally involves joining together the predicted oligonucleotide probe sets identified by multiple algorithm versions. In the context of the present invention, tiling multiple algorithm versions involves forming the union of multiple sets of predictions. These predictions may arise from different embodiments of the present invention. Alternatively, the different sets of predictions may arise from the same embodiment, but different filter sets. The different filter sets may additionally be restricted to different combinations of parameter values. For instance, one filter set might be used when the predicted duplex melting temperature T


m


is greater than or equal to some value, while another might be used when T


m


is below that value.




An example of the logical endpoint of tiling multiple filter sets across different regions of the possible combinations of predictive parameters and then forming the union of the resulting predictions is the contour plot shown in

FIG. 3

, with the associated rule that “the value of the normalized hybridization intensity associated with a particular combination of (T


m


−T


hyb


) and ΔG


MFOLD


must be greater than or equal to some threshold value.” In this case, the contour at the threshold value becomes the filter. This contour and its interior can be thought of as the union of many small rectangular regions (“tiles”), each of which is bracketed by low and high cutoff values for each of the parameters.




The predictions of different algorithm versions can also be combined by forming the intersection of two or more different predictions. The reliability of predictions within such intersection sets is enhanced because such sets are, by definition, insensitive to changes in the details of the predictive algorithm. Intersection is a useful method for reducing the number of predicted probes when a single algorithm version produces too many candidate probes for efficient experimental evaluation.




The most specific oligonucleotide probe set (i.e., the set least likely to include poor probes) will be the intersection set from multiple algorithms. Clusters that have overlapping oligonucleotide probes from multiple algorithms constitute the intersection set of oligonucleotide probes. The oligonucleotide probe that is in the center of an intersection cluster is chosen. This central oligonucleotide probe may have the highest probability of predicting a peak or, in other words, of binding well to the target nucleotide sequence. Oligonucleotide probes on either side of center, which are still within the intersection cluster, may also be selected. The distance of these “side” oligonucleotide probes from the center generally will be shorter or longer depending upon the length of the cluster.




The most sensitive set of oligonucleotide probes (i.e., the set most likely to include at least one good probe) is generally the union set from multiple algorithms. Clusters that are predicted by at least one type of algorithm constitute the union set of oligonucleotide probes. The oligonucleotide probe in the center of a union cluster is chosen. Oligonucleotide probes on either side of center, which are still within the union cluster, usually are also chosen. The distance of these side probes from the center will be shorter or longer depending upon the length of the cluster. In summary, the combination of using the stability subsequence parameter, tiling multiple filter sets, and making union and intersection cluster sets of oligonucleotide probes exhibits very high sensitivity and specificity in predicting oligonucleotide probes that effectively hybridize to a target nucleotide sequence of interest.




Another aspect of the present invention is a computer based method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. A predetermined number of unique oligonucleotides within a nucleotide sequence that is hybridizable with the target nucleotide sequence is identified under computer control. The oligonucleotides are chosen to sample the entire length of the nucleotide sequence. A value is determined and evaluated under computer control for each of the oligonucleotides for at least one parameter that is independently predictive of the ability of each of the oligonucleotides to hybridize to the target nucleotide sequence. The parameter values are stored. Based on the examination of the stored parameter values, a subset of oligonucleotides within the predetermined number of unique oligonucleotides is identified under computer control. Then, oligonucleotides in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence are identified under computer control.




A computer program is utilized to carry out the above method steps. The computer program provides for input of a target-hybridizable or target-complementary nucleotide sequence, efficient algorithms for computation of oligonucleotide sequences and their associated predictive parameters, efficient, versatile mechanisms for filtering sets of oligonucleotide sequences based on parameter values, mechanisms for computation of the size of clusters of oligonucleotide sequences that pass multiple filters, and mechanisms for outputting the final predictions of the method of the present invention in a versatile, machine-readable or human-readable form.




Another aspect of the present invention is a computer system for conducting a method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence. An input means for introducing a target nucleotide sequence into the computer system is provided. The input means may permit manual input of the target nucleotide sequence. The input means may also be a database or a standard format file such as GenBank. Also included in the system is means for determining a number of unique oligonucleotide sequences that are within a nucleotide sequence that is hybridizable with the target nucleotide sequence. The oligonucleotide sequences is chosen to sample the entire length of the nucleotide sequence. Suitable means is a computer program or software, which also provides memory means for storing the oligonucleotide sequences. The system also includes means for controlling the computer system to carry out a determination and evaluation for each of the oligonucleotide sequences a value for at least one parameter that is independently predictive of the ability of each of the oligonucleotide sequences to hybridize to the target nucleotide sequence. Suitable means is a computer program or software such as, for example, Microsoft® Excel spreadsheet, Microsoft® Access relational database or the like, which also provides memory means for storing the parameter values. The system further comprises means for controlling the computer to carry out an identification of a subset of oligonucleotide sequences within the number of unique oligonucleotide sequences based on the automated examination of the stored parameter values. Suitable means is a computer program or software, which also allocates memory means for storing the subset of oligonucleotides. The system also includes means for controlling the computer to carry out an identification of oligonucleotide sequences in the subset that are clustered along a region of the nucleotide sequence that is hybridizable to the target nucleotide sequence. Suitable means is a computer program or software, which also allocates memory means for storing the oligonucleotide sequences in the subset. The computer system also includes means for outputting data relating to the oligonucleotide sequences in the subset. Such means may be machine readable or human readable and may be software that communicates with a printer, electronic mail, another computer program, and the like. One particularly attractive feature of the present invention is that the outputting means may communicate directly with software that is part of an oligonucleotide synthesizer. In this way the results of the method of the present invention may be used directly to provide instruction for the synthesis of the desired oligonucleotides.




Another advantage of the present invention is that it may be used to predict efficient hybridization oligonucleotides for each of multiple target sequences. thus, very large arrays may be constructed and tested with minimal synthesis of ligonucleotides.




EXAMPLES




The invention is demonstrated further by the following illustrative examples. Parts and percentages are by weight unless otherwise indicated. Temperatures are in degrees Centigrade (° C.) unless otherwise specified. The following preparations and examples illustrate the invention but are not intended to limit its scope. All reagents used herein were from Amresco, Inc., Solon, Ohio (buffers), Pharmacia Biotech, Piscataway, N.J. (nucleoside triphosphates) or Promega, Madison, Wis. (RNA polymerases) unless indicated otherwise.




Example 1




Synopsis:




Data from labeled RNA target hybridizations to surface-bound DNA probes directed against 4 different gene sequences were compared to the predictions of the preferred version of the prediction algorithm illustrated by the flow chart in FIG.


2


. The RNA targets were sequences derived from the human immunodeficiency virus protease-reverse transcriptase region (HIV PRT; sense-strand target polynucleotide), human glyceraldehyde-3-phosphate dehydrogenase gene (G3PDH; antisense-strand target polynucleotide), human tumor suppressor p53 gene (p53; antisense-strand target polynucleotide) and rabbit β-globin gene (β-globin; antisense-strand target polynucleotide). The GenBank accession numbers for the gene sequences, number of data points collected and temperature of hybridization have all been previously listed in Table 2.




Materials and Methods:




Three different experimental systems and two different labeling schemes were used to collect data.




The sequence and hybridization data for β-globin were taken from the literature (see Milner et al., (1997), supra; in this experiment,


32


P-radiolabeled RNA target was used.




The hybridization data for HIV PRT were obtained using an Affymetrix GeneChip™ HIV PRT-sense probe array (i.e. sense strand target polynucleotide) (GeneChip™ HIV PRT 440s, Affymetrix Corporation, Santa Clara, Calif.) as specified by the manufacturer, except that the fluorescein-labeled RNA target was not fragmented prior to hybridization and that hybridization was performed for 24 hours. The concentration of fluorescein-labeled RNA used was 26.3 nM; label density was approximately 18 fluoresceinated uridyl nucleotides per 1 kilobase (kb) RNA transcript. The raw data were collected by scanning the array with a GeneChip™ Scanner 50 (Affymetrix Corporation, Santa Clara, Calif.), as specified by the manufacturer. The raw data were reduced to a feature-averaged (“CEL”) file, using the GeneChip™ software supplied with the scanner. Finally, a table of hybridization intensities for perfect-complement 20-mer probes was constructed using the ASCII feature map file supplied with the GeneChip™ software to connect probe sequences to measured hybridization intensities. The resulting data set contained data for every overlapping 20-mer probe to the target sequence.




The data for G3PDH and p53 were measured using 93-feature arrays constructed using commercially available streptavidin-coated microtiter plates (Pierce Chemical Company, Rockford, Ill.). Every tenth possible 25-mer probe complementary to each target was synthesized and 3′-biotinylated by a contract synthesis vendor (Operon, Inc., Alameda, Calif.). The 3′-Iinked biotin was used to anchor individual probes to microtiter wells, via the well known, strong affinity of streptavidin for biotin. Biotinylated DNA probes were resuspended to a concentration of 10 μM in hybridization buffer (5×sodium chloride-sodium phosphate-disodium ethylenediaminetetraacetate (SSPE), 0.05% Triton X-100, filter-sterilized; 1×SSPE is 150 mM sodium chloride, 10 mM sodium phosphate, 1 mM disodium ethylenediaminetetraacetate (EDTA), pH 7.4). Individual probes were diluted 1:10 in hybridization buffer into specified wells (100 μl total volume per well) of a streptavidin-coated microtiter plate; probes were allowed to bind to the covered plates overnight at 35° C. The other 3 wells of the 96-well microtiter plate were probe-less controls. The coated plates were washed with 3×200 μl of wash buffer (6×SSPE, 0.005% Triton X-100, filter-sterilized). Fluorescein-labeled RNA (100 μl of a 10 nM solution in hybridization buffer) was added to each well. The plates were covered and hybridized at 35° C. for 20-24 hours. The hybridized plates were washed with 3×200 μl of wash buffer. Label was then released in each well by adding 100 μl of 20 μg/ml RNAase I (Sigma Chemical Company, St. Louis, Mo.) in Tris-EDTA (TE) (10 mM Tris(hydroxymethyl)aminomethane (Tris), 1 mM EDTA, pH 8.0, sterile) and incubating at 35° C. for at least 30 minutes. The fluorescence released from the surface of each well was quantitated with a PerSeptive Biosystems Cytofluor II microtiter plate fluorimeter (PerSeptive Biosystems, Inc., Framingham, Mass.) using the manufacturer's recommended excitation and emission filter sets for fluorescein. Each plate hybridization was performed in quadruplicate, and the data for each probe were averaged to obtain the hybridization intensity.




Labeled RNA targets specific for G3PDH and p53 were produced via T7 RNA polymerase transcription of DNA templates in the presence of fluorescein-UTP (Boehringer Mannheim Corporation, Indianapolis, Ind.), using the same method as that outlined by Affymetrix for their GeneChip™ HIV PRT sense probe array. The DNA template for G3PDH was purchased from a commercial source (Clontech, Inc., Palo Alto, Calif.). The DNA template for p53 was obtained by sub-cloning a PCR fragment from an ATCC-derived reference clone (No. 57254) of human p53 into the commercially-available PCR cloning vector pCR2.1-TOPO (Invitrogen, Inc., Carlsbad, Calif.), then linearizing the plasmid at the end of the polycloning site opposite the vector-derived T7 promoter.




Probe predictions were performed using a software application (referred to as “p5”) that was built atop Microsoft's Access relational database application, using added Visual Basic modules, the TrueDB Grid Pro 5.0 (Apex Software Corporation, Pittsburgh, Pa.) enhancement to Visual Basic, and a version of the FORTRAN application MFOLD, modified to run in a Windows NT 4.0 environment, as an ActiveX control. The Visual Basic source code for the p5 software application is found in the CD-ROM appendix to this specification. The DNA target sequence complements that were input into p5 for division into potential oligonucleotide probe sequences are listed below:




Parent Sequence Accession No.: K03256




Locus: BUNGLOB.DNA (portion of rabbit β-globin)




Length: 122















1




TTCTTCCACA TTCACCTTGC CCCACAGGGC AGTGACCGCA GACTTCTCCT CACTGGACAG




SEQ ID NO:36














61




ATGCACCATT CTGTCTGTTT TGGGGGATTG CAAGTAAACA CAGTTGTGTC AAAAGCAAGT













121




GT











Parent Sequence Accession No.: M15654




Locus: HIV_PRTA.S (HIV PRT antisense; parses into probes specific for sense-strand target)




Length: 1040















1




TGTACTGTCC ATTTATCAGG ATGGAGTTCA TAACCCATCC AAAGGAATGG AGGTTCTTTC




SEQ ID NO:37














61




TGATGTTTTT TGTCTGGTGT GGTAAGTCCC CACCTCAACA GATGTTGTCT CAGCTCCTCT













121




ATTTTTGTTC TATGCTGCCC TATTTCTAAG TCAGATCCTA CATACAAATC ATCCATGTAT













181




TGATAGATAA CTATGTCTGG ATTTTGTTTT TTAAAAGGCT CTAAGATTTT TGTCATGCTA













241




CTTTGGAATA TTGCTGGTGA TCCTTTCCAT CCCTGTGGAA GCACATTGTA CTGATATCTA













301




ATCCCTGGTG TCTCATTGTT TATACTAGGT ATGGTAAATG CAGTATACTT CCTGAAGTCT













361




TCATCTAAGG GAACTGAAAA ATATGCATCA CCCACATCCA GTACTGTTAC TGATTTTTTC













421




TTTTTTAACC CTGCGGGATG TGGTATTCCT AATTGAACTT CCCAGAAGTC TTGAGTTCTC













481




TTATTAAGTT CTCTGAAATC TACTAATTTT CTCCATTTAG TACTGTCTTT TTTCTTTATG













541




GCAAATACTG GAGTATTGTA TGGATTCTCA GGCCCAATTT TTGAAATTTT CCCTTCCTTT













601




TCCATTTCTG TACAAATTTC TACTAATGCT TTTATTTTTT CTTCTGTCAA TGGCCATTGT













661




TTAACTTTTG GGCCATCCAT TCCTGGCTTT AATTTTACTG GTACAGTCTC AATAGGGCTA













721




ATGGGAAAAT TTAAAGTGCA ACCAATCTGA GTCAACAGAT TTCTTCCAAT TATGTTGACA













781




GGTGTAGGTC CTACTAATAC TGTACCTATA GCTTTATGTC CACAGATTTC TATGAGTATC













841




TGATCATACT GTCTTACTTT GATAAAACCT CCAATTCCCC CTATCATTTT TGGTTTCCAT













901




CTTCCTGGCA AACTCATTTC TTCTAATACT GTATCATCTG CTCCTGTATC TAATAGAGCT













961




TCCTTTAGTT GCCCCCCTAT CTTTATTGTG ACGAGGGGTC GTTGCCAAAG AGTGATCTGA













1021




GGGAAGTTAA AGGATACAGT











Parent Sequence Accession No.: X01677




Locus: G3PDH (Clontech G3PDH template—parses into probes specific for antisense-strand target)




Length: 999















1




GAAGGTCGGA GTCAACGGAT TTGGTCGTAT TGGGCGCCTG GTCACCAGGG CTGCTTTTAA




SEQ ID NO:38














61




CTCTGGTAAA GTGGATATTG TTGCCATCAA TGACCCCTTC ATTGACCTCA ACTACATGGT













121




TTACATGTTC CAATATGATT CCACCCATGG CAAATTCCAT GGCACCGTCA AGGCTGAGAA













181




CGGGAAGCTT GTCATCAATG GAAATCCCAT CACCATCTTC CAGGAGCGAG ATCCCTCCAA













241




AATCAAGTGG GGCGATGCTG GCGCTGAGTA CGTCGTGGAG TCCACTGGCG TCTTCACCAC













301




CATGGAGAAG GCTGGGGCTC ATTTGCAGGG GGGAGCCAAA AGGGTCATCA TCTCTGCCCC













361




CTCTGCTGAT GCCCCCATGT TCGTCATGGG TGTGAACCAT GAGAAGTATG ACAACAGCCT













421




CAAGATCATC AGCAATGCCT CCTGCACCAC CAACTGCTTA GCACCCCTGG CCAAGGTCAT













481




CCATGACAAC TTTGGTATCG TGGAAGGACT CATGACCACA GTCCATGCCA TCACTGCCAC













541




CCAGAAGACT GTGGATGGCC CCTCCGGGAA ACTGTGGCGT GATGGCCGCG GGGCTCTCCA













601




GAACATCATC CCTGCCTCTA CTGGCGCTGC CAAGGCTGTG GGCAAGGTCA TCCCTGAGCT













661




AGACGGGAAG CTCACTGGCA TGGCCTTCCG TGTCCCCACT GCCAACGTGT CAGTGGTGGA













721




CCTGACCTGC CGTCTAGAAA AACCTGCCAA ATATGATGAC ATCAAGAAGG TGGTGAAGCA













781




GGCGTCGGAG GGCCCCCTCA AAGGCATCCT GGGCTACACT GAGCACCAGG TGGTCTCCTC













841




TGACTTCAAC AGCGACACCC ACTCCTCCAC CTTTGACGCT GGGGCTGGCA TTGCCCTCAA













901




CGACCACTTT GTCAAGCTCA TTTCCTGGTA TGACAACGAA TTTGGCTACA GCAACAGGGT













961




GGTGGACCTC ATGGCCCACA TGCTATAGTG AGTCGTATT











Parent Sequence Accession No.: X54156




Locus: HSP53PCRa (p53 template—parses into probes specific for antisense-strand target)




Length: 1049















1




GAGGTGCGTG TTTGTGCCTG TCCTGGGAGA GACCGGCGCA CAGAGGAAGA GAATCTCCGC




SEQ ID NO:39














61




AAGAAAGGGG AGCCTCACCA CGAGCTGCCC CCAGGGAGCA CTAAGCGAGC ACTGCCCAAC













121




AACACCAGCT CCTCTCCCCA GCCAAAGAAG AAACCACTGG ATGGAGAATA TTTCACCCTT













181




CAGATCCGTG GGCGTGAGCG CTTCGAGATG TTCCGAGAGC TGAATGAGGC CTTGGAACTC













241




AAGGATGCCC AGGCTGGGAA GGAGCCAGGG GGGAGCAGGG CTCACTCCAG CCACCTGAAG













301




TCCAAAAAGG GTCAGTCTAC CTCCCGCCAT AAAAAACTCA TGTTCAAGAC AGAAGGGCCT













361




GACTCAGACT GACATTCTCC ACTTCTTGTT CCCCACTGAC AGCCTCCCTC CCCCATCTCT













421




CCCTCCCCTG CCATTTTGGG TTTTGGGTCT TTGAACCCTT GCTTGCAATA GGTGTGCGTC













481




AGAAGCACCC AGGACTTCCA TTTGCTTTGT CCCGGGGCTC CACTGAACAA GTTGGCCTGC













541




ACTGGTGTTT TGTTGTGGGG AGGAGGATGG GGAGTAGGAC ATACCAGCTT AGATTTTAAG













601




GTTTTTACTG TGAGGGATGT TTGGGAGATG TAAGAAATGT TCTTGCAGTT AAGGGTTAGT













661




TTACAATCAG CCACATTCTA GGTAGGTAGG GGCCCACTTC ACCGTACTAA CCAGGGAAGC













721




TGTCCCTCAT GTTGAATTTT CTCTAACTTC AAGGCCCATA TCTGTGAAAT GCTGGCATTT













781




GCACCTACCT CACAGAGTGC ATTGTGAGGG TTAATGAAAT AATGTACATC TGGCCTTGAA













841




ACCACCTTTT ATTACATGGG GTCTAAAACT TGACCCCCTT GAGGGTGCCT GTTCCCTCTC













901




CCTCTCCCTG TTGGCTGGTG GGTTGGTAGT TTCTACAGTT GGGCAGCTGG TTAGGTAGAG













961




GGAGTTGTCA AGTCTTGCTG GCCCAGCCAA ACCCTGTCTG ACAACCTCTT GGTCGACCTT













1021




AGTACCTAAA AGGAAATCTC ACCCCATCC











The sequences indicated above, which are complements of the target sequences, were divided into overlapping oligonucleotide sequences with one nucleotide between starting positions. The oligonucleotide sequence lengths were 17 (rabbit βglobin), 20 (HIV PRT) or 25 (G3PDH; p53). The oligonucleotide sequence lengths were dictated by the probe lengths used in the experiments to which the predictions were compared. The RNA target concentrations used to calculate predicted RNA/DNA duplex melting temperatures were 100 pM (rabbit β-globin), 26.3 nM (HIV PRT) and 10 nM (G3PDH; p53). These were also dictated by experimental conditions for the comparison data. The cut-off filter used for the predicted free energy of the most stable probe sequence intramolecular structure, ΔG


MFOLD


, was







Δ






G
MFOLD





-
0.4








kcal
mole

.












The filter condition used for the predicted RNA/DNA duplex melting temperature was






25° C.≦T


m


+16.6 log([Na


+


])−T


hyb


≦50° C.,






where T


m


is the target concentration-dependent value of the predicted RNA/DNA duplex melting temperature before correction for salt concentration, the term “16.6 log([Na


+


])” corrects the melting temperature for salt effects, and T


hyb


is the hybridization temperature. The values of the salt correction term and T


hyb


have already been listed in Table 2. For convenient use within p5, the above condition was algebraically rearranged into the equivalent form






25° C.−16.6 log([Na


+


])+T


hyb


≦T


m


≦50° C.−16.6 log([Na


+


])+T


hyb


.






Clusters were ranked according to the number of contiguous oligonucleotide sequences that passed through the filter set (“contig” length).




Results:




The detailed analysis results for rabbit β-globin are presented in Table 3; a graphical summary of the results is shown in FIG.


4


. In Table 3, values of T


m


and ΔG


MFOLD


that were excluded by the filter set are shown with a line through them, and table entries for contig length are shown in gray when the oligonucleotide sequence in question was not in a contig. The top 20% of the observed hybridization intensities are shown underlined.


















TABLE 3










Oligonucleotide




SEQ ID





ΔG


MFOLD






Contig




Hybridization Intensity






Position




Sequence




NO:




T


m


(° C.)




(kcal/mole)




Length




(Milner et al., 1997)





























1




TTCTTCCACATTCACCT




40
















5.00





100













2




TCTTCCACATTCACCTT




41
















5.00





130













3




CTTCCACATTCACCTTG




42
















0.90





130













4




TTCCACATTCACCTTGC




43
















0.50





200













5




TCCACATTCACCTTGCC




44




58.46




0.50




7




120













6




CCACATTCACCTTGCCC




45




61.10




0.50




7




180













7




CACATTCACCTTGCCCC




46




61.10




0.50




7






230















8




ACATTCACCTTGCCCCA




47




61.10




0.50




7






220















9




CATTCACCTTGCCCCAC




48




61.10




0.90




7






320















10




ATTCACCTTGCCCCACA




49




61.10




0.70




7






310















11




TTCACCTTGCCCCACAG




50




61.33




0.50




7






320















12




TCACCTTGCCCCACAGG




51




63.70



















390















13




CACCTTGCCCCACAGGG




52




64.85



















410















14




ACCTTGCCCCACAGGGC




53




68.01



















240















15




CCTTGCCCCACAGGGCA




54




68.63

















 50













16




CTTGCCCCACAGGGCAG




55




64.95

















 20













17




TTGCCCCACAGGGCAGT




56




66.31

















 20













18




TGCCCCACAGGGCAGTG




57




65.79

















 20













19




GCCCCACAGGGCAGTGA




58




67.37

















 20













20




CCCCACAGGGCAGTGAC




59




63.42

















 40













21




CCCACAGGGCAGTGACC




60




63.42

















 20













22




CCACAGGGCAGTGACCG




61




59.85

















 20













23




CACAGGGCAGTGACCGC




62




60.14

















 20













24




ACAGGGCAGTGACCGCA




63




60.14

















 20













25




CAGGGCAGTGACCGCAG




64




59.76

















 30













26




AGGGCAGTGACCGCAGA




65




59.83

















 20













27




GGGCAGTGACCGCAGAC




66




60.22

















 30













28




GGCAGTGACCGCAGACT




67




59.53

















 30













29




GCAGTGACCGCAGACTT




68




57.06

















 30













30




CAGTGACCGCAGACTTC




69





























 40













31




AGTGACCGCAGACTTCT




70
















−0.20





 40













32




GTGACCGCAGACTTCTC




71




55.99




0.60




7




100













33




TGACCGCAGACTTCTCC




72




57.01




0.60




7




120













34




GACCGCAGACTTCTCCT




73




59.22




0.60




7




180













35




ACCGCAGACTTCTCCTC




74




59.28




0.60




7




210













36




CCGCAGACTTCTCCTCA




75




60.07




0.60




7




200













37




CGCAGACTTCTCCTCAC




76




56.34




0.60




7




190













38




GCAGACTTCTCCTCACT




77




57.79




0.60




7






240















39




CAGACTTCTCCTCACTG




78
















0.60







240















40




AGACTTCTCCTCACTGG




79
















0.00







340















41




GACTTCTCCTCACTGGA




80




55.77



















340















42




ACTTCTCCTCACTGGAC




81































240















43




CTTCTCCTCACTGGACA




82




55.75



















240















44




TTCTCCTCACTGGACAG




83





























120













45




TCTCCTCACTGGACAGA




84





























100













46




CTCCTCACTGGACAGAT




85





























110













47




TCCTCACTGGACAGATG




86





























 80













48




CCTCACTGGACAGATGC




87
















0.00







240















49




CTCACTGGACAGATGCA




88
















0.20





 90


















50




TCACTGGACAGATGCAC




89
















0.20





 30













51




CACTGGACAGATGCACC




90
















0.50





100













52




ACTGGACAGATGCACCA




91





























 80













53




CTGGACAGATGCACCAT




92





























 90













54




TGGACAGATGCACCATT




93





























 80













55




GGACAGATGCACCATTC




94
















0.30





180













56




GACAGATGCACCATTCT




95
















−0.10





220













57




ACAGATGCACCATTCTG




96





























120













58




CAGATGCACCATTCTGT




97





























120













59




AGATGCACCATTCTGTC




98
















−0.10







250















60




GATGCACCATTCTGTCT




99
















0.30







520















61




ATGCACCATTCTGTCTG




100
















0.40







980















62




TGCACCATTCTGTCTGT




101




56.05




0.20




2






780















63




GCACCATTCTGTCTGTT




102




56.52




0.20




2






810















64




CACCATTCTGTCTGTTT




103
















0.20







220















65




ACCATTCTGTCTGTTTT




104
















0.20





120













66




CCATTCTGTCTGTTTTG




105
















0.20





120













67




CATTCTGTCTGTTTTGG




106
















0.60





160













68




ATTCTGTCTGTTTTGGG




107
















1.70







310















69




TTCTGTCTGTTTTGGGG




108
















1.70







250















70




TCTGTCTGTTTTGGGGG




109




55.90




1.70




2




 80













71




CTGTCTGTTTTGGGGGA




110




55.91




1.40




2




 30













72




TGTCTGTTTTGGGGGAT




111
















0.90





 50













73




GTCTGTTTTGGGGGATT




112
















0.90





 10













74




TCTGTTTTGGGGGATTG




113
















1.10





 10













75




CTGTTTTGGGGGATTGC




114
















2.20





 10













76




TGTTTTGGGGGATTGCA




115
















1.20





 10













77




GTTTTGGGGGATTGCAA




116
















0.00





  5













78




TTTTGGGGGATTGCAAG




117
















−0.20





  5













79




TTTGGGGGATTGCAAGT




118
















−0.20





  5













80




TTGGGGGATTGCAAGTA




119
















0.00





  5













81




TGGGGGATTGCAAGTAA




120
















1.20





  5













82




GGGGGATTGCAAGTAAA




121
















1.40





  5













83




GGGGATTGCAAGTAAAC




122
















1.40





  5













84




GGGATTGCAAGTAAACA




123
















1.30





  5













85




GGATTGCAAGTAAACAC




124
















0.90





  5













86




GATTGCAAGTAAACACA




125
















0.50





  5













87




ATTGCAAGTAAACACAG




126
















0.50





  5













88




TTGCAAGTAAACACAGT




127
















0.50





  5













89




TGCAAGTAAACACAGTT




128
















0.30





  5













90




GCAAGTAAACACAGTTG




129
















0.10





 10













91




CAAGTAAACACAGTTGT




130
















−0.30





  5













92




AAGTAAACACAGTTGTG




131





























  5













93




AGTAAACACAGTTGTGT




132





























  5













94




GTAAACACAGTTGTGTC




133





























  5













95




TAAACACAGTTGTGTCA




134





























  5













96




AAACACAGTTGTGTCAA




135





























  5













97




AACACAGTTGTGTCAAA




136





























  5













98




ACACAGTTGTGTCAAAA




137





























 10













99




CACAGTTGTGTCAAAAG




138





























 15













100




ACAGTTGTGTCAAAAGC




139





























 30













101




CAGTTGTGTCAAAAGCA




140
















0.20





 25













102




AGTTGTGTCAAAAGCAA




141
















−0.10





 25













103




GTTGTGTCAAAAGCAAG




142
















−0.30





 20













104




TTGTGTCAAAAGCAAGT




143
















−0.10





120













105




TGTGTCAAAAGCAAGTG




144
















0.50





 20














In

FIG. 4

, the hybridization intensity observed experimentally is plotted as a function of oligonucleotide starting position in the target-complementary sequence that was input into p5. The identified contigs are plotted as horizontal bars, with the contig rank (by length) shown in parentheses next to each bar. It is clear from Table 3 and

FIG. 4

that the prediction algorithm identified contigs that overlap all of the “top 20%” hybridization intensity peaks observed. Iterative experimental improvement of these predictions would converge on each of the observed intensity maxima in 3-4 iterations.




Prediction worksheets for HIV PRT, G3PDH and p53 were prepared in a manner similar to that for rabbit β-globin as shown in Table 3, except that the probes were longer as indicated above and that approximately 1,000 probes were analyzed for each of these genes. The results of these analyses are shown in

FIG. 5

(HIV PRT),

FIG. 6

(G3PDH) and

FIG. 7

(p53). In

FIG. 5

, data are plotted for all possible 20-mer oligonucleotide probes. In

FIGS. 6 and 7

, data were available for only every 10


th


25-mer probe, and the actual data points are plotted as open diamonds.




It is clear from

FIGS. 5-7

that the hybridization efficiency prediction algorithm of the present invention performed well in the task of identifying regions with observed high hybridization intensity. In each case, the 4 longest contigs point to good-to-excellent regions for experimental investigation. It should be noted that the contigs usually bracket observed intensity peaks; experimental iterative refinement would therefore be expected to converge in 2-3 iterations. By this is meant that certain oligonucleotides from the identified contigs are prepared and subjected to evaluation in actual hybridization experiments. Based on the results of such experiments, the observed signal is evaluated to determine whether the oligonucleotides are hybridizing to the left of, the right of, or on the center of a peak with respect to the graphed data. The next iteration is carried out to experimentally evaluate the hybridization efficiency of probes that are inferred to lie closer to the peak of hybridization efficiency, based on the data from the previous iteration. Iteration is continued until the signal level is deemed acceptable by the user, or the local hybridization efficiency maximum is reached (i.e. the best probe in the cluster identified by the method of the current invention has been experimentally identified). A detailed illustration of this process is shown in Example 3.




It should be noted that clusters of predictions that overlap the maxima of observed peaks of hybridization efficiency will often yield user-acceptable probes on the first iteration. Thus, the method of the present invention is much more efficient than current methods in which every potential probe is synthesized. For instance, in the HIV PRT example shown in

FIG. 5

, at least 3 good probes would be identified after synthesis of ˜10 test probes (i.e. statistical sampling of the 3 longest contigs). This is much more efficient than the ˜1,000 probes represented by the data in FIG.


5


.




Example 2




Synopsis:




Data from a labeled RNA target hybridization to an Affymetrix GeneChip™ HIV PRT-sense probe array (GeneChip™ HIV PRT 440s, Affymetrix Corporation, Santa Clara, Calif.) were compared to the predictions of the window-averaged composite dimensionless score version of the method of the present invention.




Materials and Methods:




Data were obtained as described for the Affymetrix GeneChip™ HIV PRT-sense probe array (GeneChip™ HIV PRT 440s, Affymetrix Corporation, Santa Clara, Calif.) in Example 1. The DNA sequence (SEQ ID NO: 37) complementary to the fluorescein-labeled RNA target was divided into overlapping 20-mer oligonucleotide sequences spaced one nucleotide apart, using the prototype application p5; p5 was also used to calculate the predicted values of the RNA/DNA heteroduplex melting temperature (T


m


) and the free energy of the most stable predicted probe intramolecular structure, ΔG


MFOLD


, as described in Example 1. The probe sequences and parameter values were then transferred to a Microsoft Excel spreadsheet, which was used to complete the predictions of efficient and inefficient probes. The weight was obtained by optimizing the performance of the algorithm with the data of Milner et al., supra, as the training data using the Microsoft® Excel® spreadsheet software. The composite score was calculated using a weight of 0.62 for the dimensionless Tm score and a weight of 0.38 for the ΔG


MFOLD


dimensionless score. The windowed-averaging was performed using a window width of 7 and Microsoft® Excel® spreadsheet software. Finally, the oligonucleotide sequences having the top 10% of the window-averaged composite dimensionless scores were predicted to be efficient probes, while the oligonucleotide sequences having the bottom 10% of the window-averaged composite dimensionless scores were predicted to be inefficient probes.




Results:




The calculated parameters and scores are shown in Table 4; the algorithm predictions are also shown diagrammatically in FIG.


8


. In Table 4, window-averaged composite score values that were in the top 10% of the distribution of values are shown in bold type, values that were in the bottom 10% are shown in italics, and all other values are shown with a line through them. It is clear from both Table 4 and

FIG. 8

that the window-averaged composite dimensionless score embodiment of the current invention correctly predicted both efficient and inefficient hybridization probes for HIV PRT sense-strand RNA. As in Example 1, statistical sampling of contiguous stretches of predicted “good” probes would lead to convergence of the design process to the best probes in each region in 2-4 design iterations.





















TABLE 4

















Window-











≢G


MFOLD









Averaged




HIV PRT






p5 Probe





SEQ ID




RNA/DNA




(kcal/




T


m






ΔG


MFOLD






Composite




Composite




GeneChip ™






Position




DNA Probe Sequence




NO:




T


m


(° C.)




mole @ 35° C.)




Score




Score




Score




Score




Data
































 1




GTACTGTCCATTTATCAGGA




145




64.16




−0.10




0.557




−0.199




0.269





1152.2






 2




TACTGTCCATTTATCAGGAT




146




60.91




−0.40




0.080




−0.460




−0.125





1040.7






 3




ACTGTCCATTTATCAGGATG




147




61.41




−0.90




0.152




−0.895




−0.246





291.9






 4




CTGTCCATTTATCAGGATGG




148




63.46




−0.90




0.453




−0.895




−0.059




———−0.168




221.8






 5




TGTCCATTTATCAGGATGGA




149




62.82




−0.90




0.360




−0.895




−0.117




———−0.281




148.3






 6




GTCCATTTATCAGGATGGAG




150




63.15




−1.90




0.408




−1.764




−0.418




———−0.308




84.6






 7




TCCATTTATCAGGATGGAGT




151




63.15




−2.10




0.408




−1.938




−0.484




———−0.252




128.7






 8




CCATTTATCAGGATGGAGTT




152




62.03




−1.90




0.245




−1.764




−0.519




———−0.242




94.6






 9




CATTTATCAGGATGGAGTTC




153




59.53




−0.60




−0.122




−0.634




−0.317




———−0.236




157.5






 10




ATTTATCAGGATGGAGTTCA




154




59.53




0.80




−0.122




0.583




0.146




———−0.227




316.9






 11




TTTATCAGGATGGAGTTCAT




155




59.53




0.40




−0.122




0.236




0.014




———−0.194




360.2






 12




TTATCAGGATGGAGTTCATA




156




58.58




0.40




−0.262




0.236




−0.073




———−0.105




403.8






 13




TATCAGGATGGAGTTCATAA




157




56.21




0.20




−0.609




0.062




−0.354




———−0.014




382.5






 14




ATCAGGATGGAGTTCATAAC




158




57.34




0.20




−0.444




0.062




−0.252




———−0.004




324.4






 15




TCAGGATGGAGTTCATAACC




159




61.25




0.20




0.129




0.062




0.104




———−0.035




320.5






 16




CAGGATGGAGTTCATAACCC




160




63.57




0.20




0.470




0.062




0.315




———−0.101




238.9






 17




AGGATGGAGTTCATAACCCA




161




63.57




−0.10




0.470




−0.199




0.216




———−0.157




202.3






 18




GGATGGAGTTCATAACCCAT




162




63.34




−1.30




0.436




−1.243




−0.202




———−0.120




113.6






 19




GATGGAGTTCATAACCCATC




163




62.24




−2.00




0.275




−1.851




−0.533




———−0.099




97.7






 20




ATGGAGTTCATAACCCATCC




164




64.62




−3.30




0.624




−2.982




−0.746




———−0.100




143.3






 21




TGGAGTTCATAACCCATCCC




165




68.18




−2.00




1.146




−1.851




0.007




———−0.109




484.6






 22




GGAGTTCATAACCCATCCCA




166




69.39




−1.60




1.324




−1.504




0.249




———−0.058




857.6






 23




GAGTTCATAACCCATCCCAA




167




64.93




−0.20




0.670




−0.286




0.307




——— 0.053




991.4






 24




AGTTCATAACCCATCCCAAA




168




61.82




0.20




0.213




0.062




0.155




——— 0.173




907.0






 25




GTTCATAACCCATCCCAAAG




169




61.82




0.20




0.213




0.062




0.155




——— 0.137




887.9






 26




TTCATAACCCATCCCAAAGG




170




61.36




0.60




0.145




0.410




0.246




——— 0.053




1015.3






 27




TCATAACCCATCCCAAAGGA




171




62.21




−0.10




0.270




−0.199




0.092




———0.040




279.7






 28




CATAACCCATCCCAAAGGAA




172




59.26




−0.30




−0.163




−0.373




−0.243




———−0.124




210.7






 29




ATAACCCATCCCAAAGGAAT




173




58.19




−0.30




−0.320




−0.373




−0.340




———−0.204




179.9






 30




TAACCCATCCCAAAGGAATG




174




58.13




−0.30




−0.328




−0.373




−0.345




———−0.309




91.8






 31




AACCCATCCCAAAGGAATGG




175




60.78




−1.30




0.061




−1.243




−0.435




———−0.412




44.6






 32




ACCCATCCCAAAGGAATGGA




176




63.69




−2.00




0.487




−1.551




−0.401




———−0.488




42.9






 33




CCCATCCCAAAGGAATGGAG




177




63.40




−2.20




0.445




−2.025




−0.494




———−0.542




45.0






 34




CCATCCCAAAGGAATGGAGG




178




62.34




−2.30




0.290




−2.112




−0.623




———−0.579




45.3






 35




CATCCCAAAGGAATGGAGGT




179




61.72




−2.60




0.199




−2.373




−0.778




———−0.587




47.9






 36




ATCCCAAAGGAATGGAGGTT




180




60.90




−2.20




0.079




−2.025




−0.721




———−0.580




49.2






 37




TCCCAAAGGAATGGAGGTTC




181




62.24




−2.20




0.274




−2.025




−0.600




———−0.585




74.2






 38




CCCAAAGGAATGGAGGTTCT




182




62.71




−2.00




0.344




−1.851




−0.490




———−0.572




125.5






 39




CCAAAGGAATGGAGGTTCTT




183




59.47




−0.70




−0.132




−0.721




−0.356




———−0.485




183.3






 40




CAAAGGAATGGAGGTTCTTT




184




56.10




−0.30




−0.627




−0.373




−0.530




———−0.380




261.4






 41




AAAGGAATGGAGGTTCTTTC




185




56.11




−0.30




−0.625




−0.373




−0.529




———−0.277




518.3






 42




AAGGAATGGAGGTTCTTTCT




186




60.05




−0.30




−0.046




−0.373




−0.170




———−0.206




716.5






 43




AGGAATGGAGGTTCTTTCTG




187




62.09




−0.30




0.253




−0.373




0.015




———−0.164




1056.0






 44




GGAATGGAGGTTCTTTCTGA




188




63.23




−0.30




0.420




−0.373




0.119




———−0.025




1084.3






 45




GAATGGAGGTTCTTTCTGAT




189




60.56




0.10




0.028




−0.025




0.008




——— 0.119




1241.1






 46




AATGGAGGTTCTTTCTGATG




190




59.12




0.30




−0.183




0.149




−0.057




——— 0.217




1278.8






 47




ATGGAGGTTCTTTCTGATGT




191




64.58




0.30




0.618




0.149




0.440




——— 0.258




1616.0






 48




TGGAGGTTCTTTCTGATGTT




192




64.98




0.30




0.677




0.149




0.476




——— 0.270




1677.5






 49




GGAGGTTCTTTCTGATGTTT




193




65.49




0.30




0.751




0.149




0.522




——— 0.300




1963.1






 50




GAGGTTCTTTCTGATGTTTT




194




63.04




0.30




0.392




0.149




0.300




——— 0.301




2126.1






 51




AGGTTCTTTCTGATGTTTTT




195




61.97




0.30




0.235




0.149




0.202




——— 0.231




2143.3






 52




GGTTCTTTCTGATGTTTTTT




196




62.11




0.30




0.256




0.149




0.215




——— 0.180




3540.6






 53




GTTCTTTCTGATGTTTTTTG




197




59.21




0.30




−0.170




0.149




−0.049




——— 0.164




1728.7






 54




TTCTTTCTGATGTTTTTTGT




198




59.21




0.30




−0.170




0.149




−0.049




——— 0.151




1364.3






 55




TCTTTCTGATGTTTTTTGTC




199




60.35




0.50




−0.002




0.323




0.121




——— 0.183




1788.4






 56




CTTTCTGATGTTTTTTGTCT




200




60.96




1.20




0.086




0.931




0.407




——— 0.253




2670.9






 57




TTTCTGATGTTTTTTGTCTG




201




58.76




1.20




−0.235




0.931




0.208




——— 0.338




3336.2






 58




TTCTGATGTTTTTTGTCTGG




202




61.17




1.20




0.118




0.931




0.427




——— 0.440




6683.6






 59




TCTGATGTTTTTTGTCTGGT




203




64.20




1.20




0.562




0.931




0.702




——— 0.537




10227.0






 60




CTGATGTTTTTTGTCTGGTG




204




62.51




1.20




0.315




0.931




0.549




——— 0.625




10965.0






 61




TGATGTTTTTTGTCTGGTGT




205




63.80




1.20




0.504




0.931




0.666




——— 0.778




11133.0






 62




GATGTTTTTTGTCTGGTGTG




206




63.80




1.60




0.504




1.279




0.798







0.894






11503.0






 63




ATGTTTTTTGTCTGGTGTGG




207




65.18




1.90




0.705




1.540




1.023







0.894






9492.8






 64




TGTTTTTTGTCTGGTGTGGT




208




68.78




1.70




1.234




1.366




1.284







0.914






10704.0






 65




GTTTTTTGTCTGGTGTGGTA




209




68.28




1.70




1.161




1.366




1.239







0.933






10741.0






 66




TTTTTTGTCTGGTGTGGTAA




210




62.37




1.70




0.294




1.366




0.701







0.950






9187.5






 67




TTTTTGTCTGGTGTGGTAAG




211




62.23




1.70




0.273




1.366




0.689







0.941






7871.0






 68




TTTTGTCTGGTGTGGTAAGT




212




65.28




1.20




0.721




0.931




0.801







0.921






7209.1






 69




TTTGTCTGGTGTGGTAAGTC




213




66.56




1.20




0.908




0.931




0.917







0.959






8052.3






 70




TTGTCTGGTGTGGTAAGTCC




214




70.25




0.30




1.449




0.149




0.955







1.022






7230.6






 71




TGTCTGGTGTGGTAAGTCCC




215




73.77




−0.10




1.966




−0.199




1.143







0.998






6809.5






 72




GTCTGGTGTGGTAAGTCCCC




216




77.74




−0.10




2.549




−0.199




1.504







0.913






7442.8






 73




TCTGGTGTGGTAAGTCCCCA




217




75.28




−0.50




2.187




−0.547




1.148




——— 0.824




2627.7






 74




CTGGTGTGGTAAGTCCCCAC




218




74.18




−2.10




2.026




−1.938




0.519




——— 0.781




1315.0






 75




TGGTGTGGTAAGTCCCCACC




219




75.80




−3.50




2.263




−3.156




0.204




——— 0.680




4182.3






 76




GGTGTGGTAAGTCCCCACCT




220




77.89




−3.80




2.571




−3.417




0.296




——— 0.518




474.7






 77




GTGTGGTAAGTCCCCACCTC




221




77.05




−2.50




2.448




−2.286




0.649




——— 0.429




682.4






 78




TGTGGTAAGTCCCCACCTCA




222




74.71




−2.50




2.105




−2.286




0.436




——— 0.465




679.1






 79




GTGGTAAGTCCCCACCTCAA




223




72.54




−2.10




1.785




−1.938




0.370




——— 0.584




924.0






 80




TGGTAAGTCCCCACCTCAAC




224




69.94




−0.90




1.404




−0.895




0.531




——— 0.667




835.5






 81




GGTAAGTCCCCACCTCAACA




225




71.14




−0.50




1.580




−0.547




0.772




——— 0.687




1213.6






 82




GTAAGTCCCCACCTCAACAG




226




68.97




0.90




1.262




0.670




1.037




——— 0.763




1106.1






 83




TAAGTCCCCACCTCAACAGA




227




67.18




0.90




0.999




0.670




0.874







0.872






1009.0






 84




AAGTCCCCACCTCAACAGAT




228




67.68




0.50




1.073




0.323




0.788







0.908






1656.2






 85




AGTCCCCACCTCAACAGATG




229




69.68




0.50




1.366




0.323




0.970




——— 0.831




2178.3






 86




GTCCCCACCTCAACAGATGT




230




72.56




0.20




1.789




0.062




1.132




——— 0.679




2567.0






 87




TCCCCACCTCAACAGATGTT




231




69.77




−0.10




1.379




−0.199




0.779




——— 0.522




3000.5






 88




CCCCACCTCAACAGATGTTG




232




68.19




−1.30




1.148




−1.243




0.240




——— 0.354




2025.4






 89




CCCACCTCAACAGATGTTGT




233




67.78




−2.00




1.087




−1.851




−0.030




——— 0.164




429.2






 90




CCACCTCAACAGATGTTGTC




234




65.65




−2.00




0.775




−1.851




−0.223




———−0.041




157.9






 91




CACCTCAACAGATGTTGTCT




235




63.85




−2.00




0.511




−1.851




−0.387




———−0.244




135.3






 92




ACCTCAACAGATGTTGTCTC




236




64.11




−2.00




0.549




−1.851




−0.363




———−0.339




330.8






 93




CCTCAACAGATGTTGTCTCA




237




64.77




−2.00




0.646




−1.851




−0.303




———−0.370




900.0






 94




CTCAACAGATGTTGTCTCAG




238




61.08




−2.00




0.104




−1.851




−0.639




———−0.300




1177.0






 95




TCAACAGATGTTGTCTCAGC




239




63.40




−2.00




0.444




−1.851




−0.428




———−0.117




795.1






 96




CAACAGATGTTGTCTCAGCT




240




63.91




−1.60




0.520




−1.504




−0.249




——— 0.081




889.2






 97




AACAGATGTTGTCTCAGCTC




241




64.19




−0.10




0.560




−0.199




0.272




——— 0.287




1703.6






 98




ACAGATGTTGTCTCAGCTCC




242




70.61




0.00




1.503




−0.112




0.889




——— 0.598




3115.2






 99




CAGATGTTGTCTCAGCTCCT




243




72.08




0.00




1.719




−0.112




1.023







0.847






4445.0






100




AGATGTTGTCTCAGCTCCTC




244




72.66




0.20




1.803




0.062




1.141







1.070






6762.8






101




GATGTTGTCTCAGCTCCTCT




245




74.49




0.90




2.071




0.670




1.539







1.227






8845.0






102




ATGTTGTCTCAGCTCCTCTA




246




72.38




0.80




1.763




0.583




1.314







1.253






9010.6






103




TGTTGTCTCAGCTCCTCTAT




247




72.38




0.80




1.763




0.583




1.314







1.260






19941.0






104




GTTGTCTCAGCTCCTCTATT




248




72.97




0.80




1.849




0.583




1.368







1.257






12577.0






105




TTGTCTCAGCTCCTCTATTT




249




69.70




0.80




1.369




0.583




1.071







1.149






7503.3






106




TGTCTCAGCTCCTCTATTTT




250




69.70




0.80




1.369




0.583




1.071







1.098






7033.8






107




GTCTCAGCTCCTCTATTTTT




251




70.26




0.80




1.451




0.583




1.121







1.024






8276.7






108




TCTCAGCTCCTCTATTTTTG




252




66.57




0.80




0.910




0.583




0.786







0.942






2899.0






109




CTCAGCTCCTCTATTTTTGT




253




68.39




0.80




1.177




0.583




0.952







0.923






2935.0






110




TCAGCTCCTCTATTTTTGTT




254




66.69




0.80




0.927




0.583




0.796







0.930






1512.8






111




CAGCTCCTCTATTTTTGTTC




255




66.69




0.80




0.927




0.583




0.796







0.872






1708.8






112




AGCTCCTCTATTTTTGTTCT




256




67.52




1.00




1.050




0.757




0.939







0.833






1977.3






113




GCTCCTCTATTTTTGTTCTA




257




66.63




1.80




0.919




1.453




1.122




——— 0.809




2114.8






114




CTCCTCTATTTTTGTTCTAT




258




62.13




1.80




0.259




1.453




0.713




——— 0.766




1527.3






115




TCCTCTATTTTTGTTCTATG




259




59.97




1.80




0.058




1.453




0.516




——— 0.695




1536.8






116




CCTCTATTTTTGTTCTATGC




260




62.84




1.80




0.363




1.453




0.777




——— 0.642




1824.5






117




CTCTATTTTTGTTCTATGCT




261




60.87




1.50




0.074




1.192




0.499




——— 0.588




1169.2






118




TCTATTTTTGTTCTATGCTG




262




58.71




1.50




−0.244




1.192




0.302




——— 0.649




683.7






119




CTATTTTTGTTCTATGCTGC




263




61.60




1.50




0.181




1.192




0.565




——— 0.765




1306.8






120




TATTTTTGTTCTATGCTGCC




264




63.53




1.50




0.464




1.192




0.741




——— 0.831




2523.6






121




ATTTTTGTTCTATGCTGCCC




265




67.96




1.50




1.113




1.192




1.143







0.931






6682.0






122




TTTTTGTTCTATGCTGCCCT




266




69.96




1.50




1.407




1.192




1.325







1.060






9417.4






123




TTTTGTTCTATGCTGCCCTA




267




69.01




1.50




1.267




1.192




1.239







1.151






10339.0






124




TTTGTTCTATGCTGCCCTAT




268




68.62




1.50




1.210




1.192




1.203







1.254






10750.0






125




TTGTTCTATGCTGCCCTATT




269




68.62




1.50




1.210




1.192




1.203







1.282






11180.0






126




TGTTCTATGCTGCCCTATTT




270




68.62




1.50




1.210




1.192




1.203







1.271






11060.0






127




GTTCTATGCTGCCCTATTTC




271




70.37




1.80




1.468




1.453




1.462







1.221






16074.0






128




TTCTATGCTGCCCTATTTCT




272




69.00




1.80




1.266




1.453




1.337







1.144






9183.8






129




TCTATGCTGCCCTATTTCTA




273




68.05




1.80




1.127




1.453




1.251







1.082






8617.8






130




CTATGCTGCCCTATTTCTAA




274




64.38




1.70




0.589




1.366




0.884







1.040






7286.8






131




TATGCTGCCCTATTTCTAAG




275




62.71




1.50




0.344




1.192




0.666







0.978






3642.4






132




ATGCTGCCCTATTTCTAAGT




276




66.39




0.80




0.883




0.583




0.769







0.883






3799.7






133




TGCTGCCCTATTTCTAAGTC




277




67.95




0.80




1.112




0.583




0.911




——— 0.749




3408.3






134




GCTGCCCTATTTCTAAGTCA




278




69.25




0.80




1.303




0.583




1.030




——— 0.644




4017.4






135




CTGCCCTATTTCTAAGTCAG




279




65.26




0.80




0.718




0.583




0.667




——— 0.536




2197.2






136




TGCCCTATTTCTAAGTCAGA




280




64.63




−0.10




0.626




−0.199




0.312




——— 0.412




1125.0






137




GCCCTATTTCTAAGTCAGAT




281




64.73




−0.60




0.639




−0.634




0.156




——— 0.244




1306.3






138




CCCTATTTCTAAGTCAGATC




282




61.98




−0.60




0.236




−0.634




−0.094




——— 0.024




1019.5






139




CCTATTTCTAAGTCAGATCC




283




61.98




−0.60




0.236




−0.634




−0.094




———−0.129




1852.3






140




CTATTTCTAAGTCAGATCCT




284




60.05




−0.60




−0.046




−0.634




−0.270




———−0.214




3159.3






141




TATTTCTAAGTCAGATCCTA




285




57.43




−0.60




−0.430




−0.634




−0.508




———−0.281




2604.8






142




ATTTCTAAGTCAGATCCTAC




286




58.59




−0.60




−0.261




−0.634




−0.402




———−0.315




3986.1






143




TTTCTAAGTCAGATCCTACA




287




59.91




−0.60




−0.068




−0.634




−0.283




———−0.285




4500.7






144




TTCTAAGTCAGATCCTACAT




288




59.55




−0.60




−0.120




−0.634




−0.315




———−0.233




4754.5






145




TCTAAGTCAGATCCTACATA




289




58.62




−0.40




−0.257




−0.460




−0.334




———−0.165




3802.1






146




CTAAGTCAGATCCTACATAC




290




57.80




1.20




−0.377




0.931




0.120




———−0.111




5069.4






147




TAAGTCAGATCCTACATACA




291




57.13




1.30




−0.476




1.018




0.092




———−0.059




3965.2






148




AAGTCAGATCCTACATACAA




292




55.78




1.30




−0.673




1.018




−0.030




———−0.031




3862.3






149




AGTCAGATCCTACATACAAA




293




55.78




1.30




−0.673




1.018




−0.030




———−0.020




2868.9






150




GTCAGATCCTACATACAAAT




294




55.62




1.70




−0.697




1.366




0.087




———−0.089




3542.9






151




TCAGATCCTACATACAAATC




295




54.02




1.50




−0.932




1.192




−0.125




———−0.122




2477.1






152




CAGATCCTACATACAAATCA




296




54.07




1.10




−0.924




0.844




−0.252




———−0.091




2522.4






153




AGATCCTACATACAAATCAT




297




52.83




1.10




−1.106




0.844




−0.365




———−0.045




2554.6






154




GATCCTACATACAAATCATC




298




53.87




1.50




−0.953




1.192




−0.138




———−0.031




3580.0






155




ATCCTACATACAAATCATCC




299




56.33




1.80




−0.591




1.453




0.185




———−0.067




5937.7






156




TCCTACATACAAATCATCCA




300




57.54




1.80




−0.415




1.453




0.295




———−0.111




4606.7






157




CCTACATACAAATCATCCAT




301




56.32




1.80




−0.594




1.453




0.184




———−0.159




4877.2






158




CTACATACAAATCATCCATG




302




52.68




1.10




−1.128




0.844




−0.379




———−0.278




2608.6






159




TACATACAAATCATCCATGT




303




53.56




0.30




−0.999




0.149




−0.563




———−0.469




1491.7






160




ACATACAAATCATCCATGTA




304




53.56




−0.10




−0.999




−0.199




−0.695




———−0.644




1364.3






161




CATACAAATCATCCATGTAT




305




53.07




−0.80




−1.071




−0.808




−0.971






−0.751






1089.8






162




ATACAAATCATCCATGTATT




306




52.11




−1.10




−1.211




−1.069




−1.157






−0.818






1008.6






163




TACAAATCATCCATGTATTG




307




52.08




−0.40




−1.215




−0.460




−0.928






−0.891






624.8






164




ACAAATCATCCATGTATTGA




308




53.86




0.20




−0.955




0.062




−0.568






−0.921






535.8






165




CAAATCATCCATGTATTGAT




309




53.36




−0.50




−1.027




−0.547




−0.845






−0.860






3019.6






166




AAATCATCCATGTATTGATA




310




51.57




−0.70




−1.291




−0.721




−1.074






−0.753






214.0






167




AATCATCCATGTATTGATAG




311




53.47




−0.70




−1.012




−0.721




−0.901




———−0.685




212.7






168




ATCATCCATGTATTGATAGA




312




56.66




−0.50




−0.543




−0.547




−0.545




———−0.709




165.2






169




TCATCCATGTATTGATAGAT




313




56.66




−0.10




−0.543




−0.199




−0.412




———−0.686




166.0






170




CATCCATGTATTGATAGATA




314




54.80




0.30




−0.817




0.149




−0.450




———−0.622




151.0






171




ATCCATGTATTGATAGATAA




315




51.69




0.30




−1.273




0.149




−0.733




———−0.621




101.8






172




TCCATGTATTGATAGATAAC




316




52.19




0.30




−1.199




0.149




−0.687




———−0.721




84.0






173




CCATGTATTGATAGATAACT




317




52.89




0.30




−1.097




0.149




−0.623






−0.850






130.3






174




CATGTATTGATAGATAACTA




318




48.47




0.70




−1.746




0.496




−0.894






−0.937






67.8






175




ATGTATTGATAGATAACTAT




319




47.12




0.00




−1.944




−0.112




−1.248






−1.006






65.7






176




TGTATTGATAGATAACTATG




320




47.11




−0.20




−1.945




−0.286




−1.315






−1.048






90.0






177




GTATTGATAGATAACTATGT




321




49.90




−0.20




−1.536




−0.286




−1.061






−1.099






125.9






178




TATTGATAGATAACTATGTC




322




48.24




−0.20




−1.779




−0.286




−1.212






−1.083






132.6






179




ATTGATAGATAACTATGTCT




323




50.78




−0.20




−1.407




−0.286




−0.981






−0.998






167.4






180




TTGATAGATAACTATGTCTG




324




50.75




−0.20




−1.411




−0.286




−0.984






−0.916






219.0






181




TGATAGATAACTATGTCTGG




325




53.01




−0.20




−1.080




−0.286




−0.778






−0.866






722.6






182




GATAGATAACTATGTCTGGA




326




54.36




−0.20




−0.881




−0.286




−0.655






−0.774






825.1






183




ATAGATAACTATGTCTGGAT




327




53.04




−0.10




−1.074




−0.199




−0.742




———−0.679




844.4






184




TAGATAACTATGTCTGGATT




328




53.37




−0.10




−1.027




−0.199




−0.712




———−0.569




912.6






185




AGATAACTATGTCTGGATTT




329




54.27




0.10




−0.895




−0.025




−0.565




———−0.449




1301.8






186




GATAACTATGTCTGGATTTT




330




54.43




0.80




−0.870




0.583




−0.318




———−0.335




1367.4






187




ATAACTATGTCTGGATTTTG




331




53.08




1.50




−1.070




1.192




−0.210




———−0.177




1284.2






188




TAACTATGTCTGGATTTTGT




332




56.05




1.50




−0.634




1.192




0.060




———−0.026




1162.5






189




AACTATGTCTGGATTTTGTT




333




56.97




1.50




−0.499




1.192




0.144




——— 0.081




1396.7






190




ACTATGTCTGGATTTTGTTT




334




59.38




1.50




−0.145




1.192




0.363




——— 0.176




1348.3






191




CTATGTCTGGATTTTGTTTT




335




59.16




1.50




−0.177




1.192




0.343




——— 0.261




1092.8






192




TATGTCTGGATTTTGTTTTT




336




57.45




1.50




−0.428




1.192




0.188




——— 0.234




912.6






193




ATGTCTGGATTTTGTTTTTT




337




58.41




1.70




−0.287




1.368




0.341




——— 0.123




994.3






194




TGTCTGGATTTTGTTTTTTA




338




57.81




2.00




−0.375




1.627




0.386




———−0.079




840.7






195




GTCTGGATTTTGTTTTTTAA




339




55.82




1.00




−0.667




0.757




−0.126




———−0.311




941.9






196




TCTGGATTTTGTTTTTTAAA




340




50.98




0.80




−1.377




0.583




−0.632




———−0.488




84.9






197




CTGGATTTTGTTTTTTAAAA




341




48.16




0.30




−1.790




0.149




−1.054




———−0.670




78.6






198




TGGATTTTGTTTTTTAAAAG




342




46.41




0.10




−2.048




−0.025




−1.279






−0.851






93.2






199




GGATTTTGTTTTTTAAAAGG




343




48.87




0.10




−1.686




−0.025




−1.055






−0.933






56.0






200




GATTTTGTTTTTTAAAAGGC




344




50.22




0.10




−1.488




−0.025




−0.932






−0.912






49.9






201




ATTTTGTTTTTTAAAAGGCT




345




50.84




0.10




−1.397




−0.025




−0.876






−0.843






55.0






202




TTTTGTTTTTTAAAAGGCTC




346




52.03




0.30




−1.223




0.149




−0.702






−0.768






64.6






203




TTTGTTTTTTAAAAGGCTCT




347




53.64




0.50




−0.987




0.323




−0.489




———−0.724




162.8






204




TTGTTTTTTAAAAGGCTCTA




348




52.76




0.50




−1.115




0.323




−0.569




———−0.706




265.8






205




TGTTTTTTAAAAGGCTCTAA




349




50.71




0.50




−1.417




0.323




−0.756




———−0.677




288.5






206




GTTTTTTAAAAGGCTCTAAG




350




50.86




0.50




−1.395




0.323




−0.742




———−0.672




548.4






207




TTTTTTAAAAGGCTCTAAGA




351




49.40




0.70




−1.609




0.496




−0.809




———−0.698




524.7






208




TTTTTAAAAGGCTCTAAGAT




352




49.11




1.20




−1.651




0.931




−0.670






−0.746






937.9






209




TTTTAAAAGGCTCTAAGATT




353




49.11




1.20




−1.651




0.931




−0.670






−0.790






1440.3






210




TTTAAAAGGCTCTAAGATTT




354




49.11




1.20




−1.651




0.931




−0.670






−0.820






1633.3






211




TTAAAAGGCTCTAAGATTTT




355




49.11




0.50




−1.651




0.323




−0.901






−0.735






1987.4






212




TAAAAGGCTCTAAGATTTTT




356




49.11




0.00




−1.651




−0.112




−1.067




———−0.627




1792.3






213




AAAAGGCTCTAAGATTTTTG




357




49.63




0.20




−1.575




0.062




−0.953




———−0.495




2218.9






214




AAAGGCTCTAAGATTTTTGT




358




54.13




1.20




−0.914




0.931




−0.213




———−0.365




2371.4






215




AAGGCTCTAAGATTTTTGTC




359




57.38




1.20




−0.439




0.931




0.082




———−0.238




3308.9






216




AGGCTCTAAGATTTTTGTCA




360




60.78




0.80




0.061




0.583




0.260




———−0.087




4070.5






217




GGCTCTAAGATTTTTGTCAT




361




60.56




0.80




0.028




0.583




0.239




——— 0.048




5394.5






218




GCTCTAAGATTTTTGTCATG




362




57.81




0.80




−0.376




0.583




−0.011




——— 0.051




2025.5






219




CTCTAAGATTTTTGTCATGC




363




57.81




0.80




−0.376




0.583




−0.011




———−0.006




1741.9






220




TCTAAGATTTTTGTCATGCT




364




57.81




0.80




−0.376




0.583




−0.011




———−0.065




1707.6






221




CTAAGATTTTTGTCATGCTA




365




55.87




0.80




−0.660




0.583




−0.187




———−0.089




1783.0






222




TAAGATTTTTGTCATGCTAC




366




54.43




0.80




−0.872




0.583




−0.319




———−0.076




3131.4






223




AAGATTTTTGTCATGCTACT




367




56.99




0.60




−0.495




0.410




−0.151




———−0.082




4892.5






224




AGATTTTTGTCATGCTACTT




368




59.39




0.60




−0.144




0.410




0.067




———−0.053




5856.4






225




GATTTTTGTCATGCTACTTT




369




59.54




0.60




−0.122




0.410




0.080




——— 0.015




6439.0






226




ATTTTTGTCATGCTACTTTG




370




58.09




0.60




−0.334




0.410




−0.051




——— 0.069




5820.3






227




TTTTTGTCATGCTACTTTGG




371




60.78




0.60




0.060




0.410




0.193




——— 0.095




5189.6






228




TTTTGTCATGCTACTTTGGA




372




61.79




0.60




0.209




0.410




0.285




——— 0.079




4721.7






229




TTTGTCATGCTACTTTGGAA




373




59.35




0.60




−0.149




0.410




0.063




——— 0.075




4221.0






230




TTGTCATGCTACTTTGGAAT




374




59.00




0.60




−0.200




0.410




0.032




——— 0.056




4279.0






231




TGTCATGCTACTTTGGAATA




375




58.10




0.60




−0.333




0.410




−0.051




——— 0.004




4102.0






232




GTCATGCTACTTTGGAATAT




376




58.16




0.90




−0.324




0.670




0.054




———−0.022




5069.8






233




TCATGCTACTTTGGAATATT




377




55.52




0.90




−0.711




0.670




−0.186




———−0.015




2407.9






234




CATGCTACTTTGGAATATTG




378




54.23




1.30




−0.900




1.018




−0.171




——— 0.016




2443.0






235




ATGCTACTTTGGAATATTGC




379




56.90




1.40




−0.508




1.105




0.105




——— 0.058




2324.3






236




TGCTACTTTGGAATATTGCT




380




58.82




0.90




−0.227




0.670




0.114




——— 0.099




1894.1






237




GCTACTTTGGAATATTGCTG




381




58.82




1.30




−0.227




1.018




0.246




——— 0.180




2363.8






238




CTACTTTGGAATATTGCTGG




382




57.35




1.70




−0.443




1.366




0.244




——— 0.270




1363.0






239




TACTTTGGAATATTGCTGGT




383




58.39




1.70




−0.290




1.366




0.339




——— 0.299




1217.5






240




ACTTTGGAATATTGCTGGTG




384




58.88




1.70




−0.217




1.366




0.384




——— 0.340




1621.8






241




CTTTGGAATATTGCTGGTGA




385




59.64




1.70




−0.106




1.366




0.453




——— 0.346




1438.2






242




TTTGGAATATTGCTGGTGAT




386




57.72




1.80




−0.388




1.453




0.311




——— 0.345




1608.0






243




TTGGAATATTGCTGGTGATC




387




58.73




1.80




−0.241




1.453




0.403




——— 0.302




2334.6






244




TGGAATATTGCTGGTGATCC




388




62.18




0.50




0.266




0.323




0.288




——— 0.241




3776.7






245




GGAATATTGCTGGTGATCCT




389




64.19




−0.20




0.561




−0.286




0.239




——— 0.216




5648.7






246




GAATATTGCTGGTGATCCTT




390




61.99




−0.20




0.238




−0.286




0.039




——— 0.261




5358.8






247




AATATTGCTGGTGATCCTTT




391




61.03




−0.20




0.097




−0.286




−0.049




——— 0.316




5517.2






248




ATATTGCTGGTGATCCTTTC




392




64.63




−0.20




0.625




−0.286




0.279




——— 0.368




6246.4






249




TATTGCTGGTGATCCTTTCC




393




68.48




−0.20




1.190




−0.286




0.629




——— 0.444




9975.1






250




ATTGCTGGTGATCCTTTCCA




394




70.22




−0.20




1.446




−0.286




0.788




——— 0.599




11990.0






251




TTGCTGGTGATCCTTTCCAT




395




70.22




−0.60




1.446




−0.634




0.655




——— 0.756




11543.0






252




TGCTGGTGATCCTTTCCATC




396




71.48




−0.60




1.631




−0.634




0.770







0.862






14125.0






253




GCTGGTGATCCTTTCCATCC




397




75.32




−0.60




2.193




−0.634




1.119







0.936






23489.0






254




CTGGTGATCCTTTCCATCCC




398




74.58




−0.60




2.085




−0.634




1.052







1.022






15975.0






255




TGGTGATCCTTTCCATCCCT




399




74.58




−0.70




2.085




−0.721




1.019







1.082






16053.0






256




GGTGATCCTTTCCATCCCTG




400




74.58




−0.30




2.085




−0.373




1.151







1.136






19205.0






257




GTGATCCTTTCCATCCCTGT




401




75.40




0.20




2.206




0.062




1.391







1.080






17872.0






258




TGATCCTTTCCATCCCTGTG




402




71.89




0.20




1.691




0.062




1.072







0.955






12871.0






259




GATCCTTTCCATCCCTGTGG




403




74.58




−0.30




2.085




−0.373




1.151




——— 0.809




8792.7






260




ATCCTTTCCATCCCTGTGGA




404




74.58




−1.60




2.085




−1.504




0.721




——— 0.653




5609.6






261




TCCTTTCCATCCCTGTGGAA




405




72.27




−2.60




1.746




−2.373




0.181




——— 0.451




3018.0






262




CCTTTCCATCCCTGTGGAAG




406




71.00




−2.80




1.559




−2.547




−0.001




——— 0.308




1802.6






263




CTTTCCATCCCTGTGGAAGC




407




71.60




−2.80




1.648




−2.547




0.054




——— 0.205




1074.0






264




TTTCCATCCCTGTGGAAGCA




408




70.81




−2.80




1.532




−2.547




−0.018




——— 0.120




1132.5






265




TTCCATCCCTGTGGAAGCAC




409




71.02




−2.60




1.562




−2.373




0.067




——— 0.071




1454.5






266




TCCATCCCTGTGGAAGCACA




410




71.74




−1.70




1.669




−1.591




0.430




——— 0.032




1676.8






267




CCATCCCTGTGGAAGCACAT




411




70.20




−2.20




1.443




−2.025




0.125




——— 0.026




2268.9






268




CATCCCTGTGGAAGCACATT




412




67.07




−2.20




0.983




−2.025




−0.160




——— 0.004




1682.6






269




ATCCCTGTGGAAGCACATTG




413




65.82




−2.20




0.801




−2.025




−0.273




——— 0.070




1753.9






270




TCCCTGTGGAAGCACATTGT




414




68.98




−2.20




1.263




−2.025




0.014




———−0.220




1281.8






271




CCCTGTGGAAGCACATTGTA




415




66.92




−2.20




0.962




−2.025




−0.173




———−0.344




1227.8






272




CCTGTGGAAGCACATTGTAC




416




63.84




−2.20




0.509




−2.025




−0.454




———−0.337




700.3






273




CTGTGGAAGCACATTGTACT




417




62.01




−2.20




0.241




−2.025




−0.620




———−0.307




618.7






274




TGTGGAAGCACATTGTACTG




418




59.99




−2.00




−0.056




−1.851




−0.738




———−0.324




771.5






275




GTGGAAGCACATTGTACTGA




419




61.39




−0.50




0.149




−0.547




−0.115




———−0.347




1180.6






276




TGGAAGCACATTGTACTGAT




420




58.35




0.50




−0.296




0.323




−0.061




———−0.331




1160.5






277




GGAAGCACATTGTACTGATA




421




57.86




0.50




−0.368




0.323




−0.106




———−0.239




1314.7






278




GAAGCACATTGTACTGATAT




422




55.32




0.50




−0.740




0.323




−0.336




———−0.141




1102.5






279




AAGCACATTGTACTGATATC




423




55.30




0.50




−0.744




0.323




−0.339




———−0.209




1222.1






280




AGCACATTGTACTGATATCT




424




59.26




0.50




−0.162




0.323




0.022




———−0.302




1893.2






281




GCACATTGTACTGATATCTA




425




58.48




0.50




−0.277




0.323




−0.049




———−0.398




2097.7






282




CACATTGTACTGATATCTAA




426




52.51




0.50




−1.152




0.323




−0.592




———−0.446




1237.8






283




ACATTGTACTGATATCTAAT




427




51.20




0.50




−1.345




0.323




−0.711




———−0.443




959.5






284




CATTGTACTGATATCTAATC




428




51.89




0.10




−1.244




−0.025




−0.781




———−0.472




1149.1






285




ATTGTACTGATATCTAATCC




429




54.53




−0.30




−0.856




−0.373




−0.672




———−0.490




2351.3






286




TTGTACTGATATCTAATCCC




430




58.41




−0.30




−0.287




−0.373




−0.320




———−0.436




4191.6






287




TGTACTGATATCTAATCCCT




431




59.99




−0.30




−0.055




−0.373




−0.176




———−0.320




5565.8






288




GTACTGATATCTAATCCCTG




432




59.99




−0.30




−0.055




−0.373




−0.176




———−0.202




9980.2






289




TACTGATATCTAATCCCTGG




433




59.52




−0.30




−0.124




−0.373




−0.218




———−0.084




6318.9






290




ACTGATATCTAATCCCTGGT




434




63.07




−0.30




0.397




−0.373




0.104




——— 0.023




7749.5






291




CTGATATCTAATCCCTGGTG




435




62.43




−0.30




0.303




−0.373




0.046




——— 0.184




8165.3






292




TGATATCTAATCCCTGGTGT




436




63.60




−0.30




0.474




−0.373




0.152




——— 0.365




9107.6






293




GATATCTAATCCCTGGTGTC




437




65.19




0.10




0.707




−0.025




0.429




——— 0.566




13914.0






294




ATATCTAATCCCTGGTGTCT




438




65.82




1.50




0.800




1.192




0.949




——— 0.698




15093.0






295




TATCTAATCCCTGGTGTCTC




439




67.41




1.50




1.033




1.192




1.093




——— 0.822




18647.0






296




ATCTAATCCCTGGTGTCTCA




440




69.20




1.30




1.296




1.018




1.190







0.904






21810.0






297




TCTAATCCCTGGTGTCTCAT




441




69.20




0.80




1.296




0.583




1.025







0.996






20102.0






298




CTAATCCCTGGTGTCTCATT




442




67.98




0.80




1.117




0.583




0.914







1.052






20967.0






299




TAATCCCTGGTGTCTCATTG




443




65.90




0.80




0.811




0.583




0.725







1.092






18200.0






300




AATCCCTGGTGTCTCATTGT




444




69.78




0.80




1.380




0.583




1.077







1.088






19845.0






301




ATCCCTGGTGTCTCATTGTT




445




72.61




0.80




1.797




0.583




1.336







1.057






19231.0






302




TCCCTGGTGTCTCATTGTTT




446




73.04




0.80




1.860




0.583




1.375







0.981






17629.0






303




CCCTGGTGTCTCATTGTTTA




447




70.72




0.80




1.519




0.583




1.164







0.918






17009.0






304




CCTGGTGTCTCATTGTTTAT




448




66.82




0.80




0.946




0.583




0.808




——— 0.800




11580.0






305




CTGGTGTCTCATTGTTTATA




449




62.17




0.80




0.264




0.583




0.386




——— 0.600




8374.6






306




TGGTGTCTCATTGTTTATAC




450




60.65




0.90




0.042




0.670




0.281




——— 0.355




6153.3






307




GGTGTCTCATTGTTTATACT




451




62.88




0.20




0.369




0.062




0.252




——— 0.177




7134.0






308




GTGTCTCATTGTTTATACTA




452




59.43




0.20




−0.138




0.062




−0.062




——— 0.050




4435.2






309




TGTCTCATTGTTTATACTAG




453




56.35




0.20




−0.589




0.062




−0.342




———−0.043




2035.5






310




GTCTCATTGTTTATACTAGG




454




59.21




0.20




−0.170




0.062




−0.082




———−0.149




2466.6






311




TCTCATTGTTTATACTAGGT




455




59.21




0.20




−0.170




0.062




−0.082




———−0.268




1080.9






312




CTCATTGTTTATACTAGGTA




456




57.15




0.20




−0.472




0.062




−0.269




———−0.325




956.0






313




TCATTGTTTATACTAGGTAT




457




55.08




0.20




−0.776




0.062




−0.458




———−0.302




529.4






314




CATTGTTTATACTAGGTATG




458




53.70




0.20




−0.978




0.062




−0.583




———−0.328




471.4






315




ATTGTTTATACTAGGTATGG




459




55.01




0.20




−0.785




0.062




−0.463




———−0.389




510.4






316




TTGTTTATACTAGGTATGGT




460




58.17




0.20




−0.322




0.062




−0.176




———−0.486




531.0






317




TGTTTATACTAGGTATGGTA




461




57.21




0.20




−0.463




0.062




−0.264




———−0.560




613.3






318




GTTTATACTAGGTATGGTAA




462




55.23




0.00




−0.753




−0.112




−0.510




———−0.620




685.1






319




TTTATACTAGGTATGGTAAA




463




50.42




0.00




−1.459




−0.112




−0.947




———−0.639




300.0






320




TTATACTAGGTATGGTAAAT




464




50.12




0.00




−1.504




−0.112




−0.975




———−0.672




316.1






321




TATACTAGGTATGGTAAATG




465




49.79




0.00




−1.551




−0.112




−1.004




———−0.655




387.5






322




ATACTAGGTATGGTAAATGC




466




54.30




0.00




−0.889




−0.112




−0.594




———−0.557




685.7






323




TACTAGGTATGGTAAATGCA




467




55.59




0.20




−0.700




0.062




−0.411




———−0.430




759.6






324




ACTAGGTATGGTAAATGCAG




468




56.32




0.80




−0.593




0.583




−0.146




———−0.291




1050.2






325




CTAGGTATGGTAAATGCAGT




469




58.78




1.10




−0.232




0.844




0.177




———−0.157




1020.4






326




TAGGTATGGTAAATGCAGTA




470




56.24




1.10




−0.605




0.844




−0.054




———−0.109




742.6






327




AGGTATGGTAAATGCAGTAT




471




56.81




1.10




−0.521




0.844




−0.002




———−0.132




889.6






328




GGTATGGTAAATGCAGTATA




472




56.07




1.10




−0.631




0.844




−0.070




———−0.182




858.8






329




GTATGGTAAATGCAGTATAC




473




54.02




1.10




−0.931




0.844




−0.256




———−0.262




379.0






330




TATGGTAAATGCAGTATACT




474




53.06




0.40




−1.071




0.236




−0.575




———−0.257




166.7






331




ATGGTAAATGCAGTATACTT




475




53.94




0.40




−0.943




0.236




−0.495




———−0.249




215.3






332




TGGTAAATGCAGTATACTTC




476




55.21




0.40




−0.757




0.236




−0.380




———−0.303




103.2






333




GGTAAATGCAGTATACTTCC




477




59.15




0.40




−0.178




0.236




−0.021




———−0.326




246.3






334




GTAAATGCAGTATACTTCCT




478




58.53




0.80




−0.269




0.583




0.055




———−0.303




163.4






335




TAAATGCAGTATACTTCCTG




479




55.54




0.10




−0.708




−0.025




−0.448




———−0.264




294.1






336




AAATGCAGTATACTTCCTGA




480




57.36




−0.30




−0.441




−0.373




−0.415




———−0.229




531.4






337




AATGCAGTATACTTCCTGAA




481




57.36




−0.30




−0.441




−0.373




−0.415




———−0.233




1995.5






338




ATGCAGTATACTTCCTGAAG




482




59.50




−0.30




−0.128




−0.373




−0.221




———−0.279




510.1






339




TGCAGTATACTTCCTGAAGT




483




62.63




−0.90




0.332




−0.895




−0.134




———−0.264




555.4






340




GCAGTATACTTCCTGAAGTC




484




64.24




−1.10




0.568




−1.069




−0.054




———−0.238




1214.0






341




CAGTATACTTCCTGAAGTCT




485




61.94




−1.10




0.230




−1.069




−0.263




———−0.237




825.7






342




AGTATACTTCCTGAAGTCTT




486




61.00




−1.10




0.094




−1.069




−0.348




———−0.261




1582.6






343




GTATACTTCCTGAAGTCTTC




487




62.28




−1.10




0.281




−1.069




−0.232




———−0.278




2391.8






344




TATACTTCCTGAAGTCTTCA




488




60.34




−1.10




−0.004




−1.069




−0.409




———−0.273




2276.3






345




ATACTTCCTGAAGTCTTCAT




489




60.91




−1.20




0.080




−1.156




−0.389




———−0.252




2702.8






346




TACTTCCTGAAGTCTTCATC




490




62.40




−1.20




0.299




−1.156




−0.254




———−0.274




3781.7






347




ACTTCCTGAAGTCTTCATCT




491




65.05




−1.20




0.686




−1.156




−0.014




———−0.314




5343.4






348




CTTCCTGAAGTCTTCATCTA




492




63.86




−1.20




0.512




−1.156




−0.122




———−0.314




6309.0






349




TTCCTGAAGTCTTCATCTAA




493




59.70




−1.20




−0.098




−1.156




−0.500




———−0.332




6372.4






350




TCCTGAAGTCTTCATCTAAG




494




59.55




−1.20




−0.120




−1.156




−0.513




———−0.369




3835.3






351




CCTGAAGTCTTCATCTAAGG




495




60.76




−1.20




0.057




−1.156




−0.404




———−0.423




8925.5






352




CTGAAGTCTTCATCTAAGGG




496




59.48




−1.20




−0.130




−1.156




−0.520




———−0.472




1211.8






353




TGAAGTCTTCATCTAAGGGA




497




58.84




−1.00




−0.224




−0.982




−0.512




———−0.414




609.4






354




GAAGTCTTCATCTAAGGGAA




498




56.91




−0.10




−0.507




−0.199




−0.390




———−0.358




629.1






355




AAGTCTTCATCTAAGGGAAC




499




56.13




−0.10




−0.622




−0.199




−0.461




———−0.341




749.3






356




AGTCTTCATCTAAGGGAACT




500




60.12




−0.10




−0.036




−0.199




−0.098




———−0.371




805.6






357




GTCTTCATCTAAGGGAACTG




501




59.84




−0.10




−0.077




−0.199




−0.124




———−0.449




817.0






358




TCTTCATCTAAGGGAACTGA




502




58.11




−0.10




−0.331




−0.199




−0.281




———−0.536




327.1






359




CTTCATCTAAGGGAACTGAA




503




54.95




−0.60




−0.794




−0.634




−0.733




———−0.645




320.0






360




TTCATCTAAGGGAACTGAAA




504




51.39




−0.60




−1.316




−0.634




−1.057






−0.822






84.1






361




TCATCTAAGGGAACTGAAAA




505




49.50




0.10




−1.595




−0.025




−0.998






−1.002






67.7






362




CATCTAAGGGAACTGAAAAA




506




46.98




0.10




−1.963




−0.025




−1.227






−1.171






62.2






363




ATCTAAGGGAACTGAAAAAT




507




45.78




0.10




−2.140




−0.025




−1.336






−1.298






78.9






364




TCTAAGGGAACTGAAAAATA




508




45.27




0.10




−2.214




−0.025




−1.382






−1.328






43.2






365




CTAAGGGAACTGAAAAATAT




509




44.36




0.10




−2.349




−0.025




−1.466






−1.322






50.4






366




TAAGGGAACTGAAAAATATG




510




42.71




0.10




−2.591




−0.025




−1.616






−1.242






43.7






367




AAGGGAACTGAAAAATATGC




511




46.54




0.10




−2.028




−0.025




−1.267






−1.163






45.6






368




AGGGAACTGAAAAATATGCA




512




49.21




0.30




−1.637




0.149




−0.958






−1.119






49.8






369




GGGAACTGAAAAATATGCAT




513




49.11




1.20




−1.651




0.931




−0.670






−1.082






53.2






370




GGAACTGAAAAATATGCATC




514




47.87




1.20




−1.834




0.931




−0.783






−0.958






56.6






371




GAACTGAAAAATATGCATCA




515




46.82




0.60




−1.987




0.410




−1.076






−0.844






45.3






372




AACTGAAAAATATGCATCAC




516




46.12




0.40




−2.090




0.236




−1.206






−0.773






56.3






373




ACTGAAAAATATGCATCACC




517




51.18




0.40




−1.347




0.236




−0.746




———−0.702




61.7






374




CTGAAAAATATGCATCACCC




518




54.20




0.40




−0.905




0.236




−0.471




———−0.616




224.5






375




TGAAAAATATGCATCACCCA




519




53.65




0.60




−0.985




0.410




−0.455




———−0.476




413.0






376




GAAAAATATGCATCACCCAC




520




54.14




1.30




−0.913




1.018




−0.179




———−0.289




1584.0






377




AAAAATATGCATCACCCACA




521




54.14




1.30




−0.913




1.018




−0.179




———−0.097




1846.7






378




AAAATATGCATCACCCACAT




522




55.78




1.10




−0.673




0.844




−0.096




——— 0.096




2445.8






379




AAATATGCATCACCCACATC




523




58.72




0.90




−0.241




0.670




0.105




——— 0.291




3709.4






380




AATATGCATCACCCACATCC




524




64.13




0.90




0.552




0.670




0.597




——— 0.494




4548.4






381




ATATGCATCACCCACATCCA




525




67.27




0.90




1.013




0.670




0.883




——— 0.680




5254.1






382




TATGCATCACCCACATCCAG




526




67.53




0.90




1.051




0.670




0.906







0.864






5527.2






383




ATGCATCACCCACATCCAGT




527




71.21




0.90




1.590




0.670




1.241







0.991






6916.9






384




TGCATCACCCACATCCAGTA




528




70.68




0.70




1.513




0.496




1.127







1.030






5861.4






385




GCATCACCCACATCCAGTAC




529




71.39




0.70




1.617




0.496




1.191







1.043






8078.4






386




CATCACCCACATCCAGTACT




530




69.16




0.70




1.290




0.496




0.988







1.013






4148.8






387




ATCACCCACATCCAGTACTG




531




67.91




0.70




1.107




0.496




0.875







0.913






3317.1






388




TCACCCACATCCAGTACTGT




532




71.15




0.10




1.582




−0.025




0.971




——— 0.830




2486.4






389




CACCCACATCCAGTACTGTT




533




69.94




−0.40




1.404




−0.460




0.696




——— 0.714




2746.4






390




ACCCACATCCAGTACTGTTA




534




68.25




−0.40




1.157




−0.460




0.543




——— 0.506




2133.0






391




CCCACATCCAGTACTGTTAC




535




68.25




−0.40




1.157




−0.460




0.543




——— 0.297




2197.0






392




CCACATCCAGTACTGTTACT




536




66.50




−0.40




0.900




−0.460




0.383




——— 0.066




1824.0






393




CACATCCAGTACTGTTACTG




537




62.61




−1.90




0.329




−1.764




−0.467




———−0.137




1675.2






394




ACATCCAGTACTGTTACTGA




538




62.71




−2.30




0.344




−2.112




−0.590




———−0.313




1219.8






395




CATCCAGTACTGTTACTGAT




539




62.12




−2.30




0.258




−2.112




−0.643




———−0.504




1414.0






396




ATCCAGTACTGTTACTGATT




540




61.21




−2.30




0.124




−2.112




−0.726




———−0.700




1710.7






397




TCCAGTACTGTTACTGATTT




541




61.58




−2.30




0.178




−2.112




−0.692




———−0.713




2280.7






398




CCAGTACTGTTACTGATTTT




542




60.48




−2.30




0.017




−2.112




−0.792




———−0.659




2847.7






399




CAGTACTGTTACTGATTTTT




543




56.84




−1.90




−0.518




−1.764




−0.992




———−0.635




2830.2






400




AGTACTGTTACTGATTTTTT




544




55.82




−0.30




−0.666




−0.373




−0.555




———−0.588




4336.3






401




GTACTGTTACTGATTTTTTC




545




57.04




0.40




−0.488




0.236




−0.213




———−0.548




6581.1






402




TACTGTTACTGATTTTTTCT




546




55.95




−0.10




−0.649




−0.199




−0.478




———−0.516




5406.6






403




ACTGTTACTGATTTTTTCTT




547




56.89




−0.10




−0.510




−0.199




−0.392




———−0.450




6083.1






404




CTGTTACTGATTTTTTCTTT




548




56.67




−0.10




−0.542




−0.199




−0.412




———−0.482




6585.7






405




TGTTACTGATTTTTTCTTTT




549




54.96




−0.10




−0.793




−0.199




−0.567




———−0.575




3923.2






406




GTTACTGATTTTTTCTTTTT




550




55.36




−0.10




−0.734




−0.199




−0.531




———−0.646




4093.5






407




TTACTGATTTTTTCTTTTTT




551




52.62




−0.10




−1.136




−0.199




−0.780




———−0.730




1381.5






408




TACTGATTTTTTCTTTTTTA




552




51.70




−0.10




−1.272




−0.199




−0.864






−0.784






1194.3






409




ACTGATTTTTTCTTTTTTAA




553




50.45




−0.10




−1.454




−0.199




−0.977






−0.746






2371.3






410




CTGATTTTTTCTTTTTTAAC




554




50.45




−0.10




−1.454




−0.199




−0.977




———−0.682




395.9






411




TGATTTTTTCTTTTTTAACC




555




52.50




−0.10




−1.155




−0.199




−0.792




———−0.583




230.7






412




GATTTTTTCTTTTTTAACCC




556




56.43




0.30




−0.578




0.149




−0.302




———−0.423




314.9






413




ATTTTTTCTTTTTTAACCCT




557




57.05




0.80




−0.487




0.583




−0.080




———−0.246




276.1






414




TTTTTTCTTTTTTAACCCTG




558




56.99




0.80




−0.495




0.583




−0.085




———−0.046




273.3






415




TTTTTCTTTTTTAACCCTGC




559




60.68




0.80




0.045




0.583




0.250




——— 0.093




628.4






416




TTTTCTTTTTTAACCCTGCG




560




60.85




0.80




0.071




0.583




0.265




——— 0.155




4661.4






417




TTTCTTTTTTAACCCTGCGG




561




62.93




0.70




0.377




0.496




0.422




——— 0.167




411.2






418




TTCTTTTTTAACCCTGCGGG




562




65.01




−0.60




0.681




−0.634




0.181




——— 0.156




289.5






419




TCTTTTTTAACCCTGCGGGA




563




65.91




−1.00




0.813




−0.982




0.131




——— 0.130




244.8






420




CTTTTTTAACCCTGCGGGAT




564




64.52




−1.00




0.610




−0.982




0.005




——— 0.096




250.7






421




TTTTTTAACCCTGCGGGATG




565




62.66




−1.00




0.337




−0.982




−0.164




——— 0.067




207.8






422




TTTTTAACCCTGCGGGATGT




566




65.23




−1.00




0.713




−0.982




0.069




——— 0.106




255.8






423




TTTTAACCCTGCGGGATGTG




567




64.80




−1.00




0.651




−0.982




0.030




——— 0.142




356.8






424




TTTAACCCTGCGGGATGTGG




568




66.83




−1.00




0.949




−0.982




0.215




——— 0.201




497.8






425




TTAACCCTGCGGGATGTGGT




569




69.50




−1.00




1.339




−0.982




0.457




——— 0.318




754.3






426




TAACCCTGCGGGATGTGGTA




570




68.63




−1.00




1.212




−0.982




0.378




——— 0.434




902.4






427




AACCCTGCGGGATGTGGTAT




571




69.14




−1.00




1.286




−0.982




0.424




——— 0.555




1186.6






428




ACCCTGCGGGATGTGGTATT




572




71.66




−1.00




1.657




−0.982




0.654




——— 0.595




1514.9






429




CCCTGCGGGATGTGGTATTC




573




72.66




−0.60




1.804




−0.634




0.878




——— 0.569




2407.6






430




CCTGCGGGATGTGGTATTCC




574




72.66




−0.60




1.804




−0.634




0.878




——— 0.526




3019.4






431




CTGCGGGATGTGGTATTCCT




575




71.02




−1.30




1.563




−1.243




0.497




——— 0.426




3275.3






432




TGCGGGATGTGGTATTCCTA




576




68.54




−1.30




1.199




−1.243




0.271




——— 0.291




2830.8






433




GCGGGATGTGGTATTCCTAA




577




66.48




−1.30




0.896




−1.243




0.083




——— 0.108




2620.5






434




CGGGATGTGGTATTCCTAAT




578




62.46




−1.30




0.307




−1.243




−0.282




———−0.058




1827.8






435




GGGATGTGGTATTCCTAATT




579




62.37




−1.30




0.294




−1.243




−0.290




———−0.211




1957.4






436




GGATGTGGTATTCCTAATTG




580




59.71




−0.90




−0.097




−0.895




−0.400




———−0.330




1686.2






437




GATGTGGTATTCCTAATTGA




581




58.45




−0.20




−0.281




−0.286




−0.283




———−0.396




1395.0






438




ATGTGGTATTCCTAATTGAA




582




55.24




−0.20




−0.752




−0.286




−0.575




———−0.444




1245.7






439




TGTGGTATTCCTAATTGAAC




583




55.76




−0.30




−0.675




−0.373




−0.561




———−0.473




1314.0






440




GTGGTATTCCTAATTGAACT




584




57.73




−0.30




−0.387




−0.373




−0.382




———−0.470




1818.7






441




TGGTATTCCTAATTGAACTT




585




55.15




−0.30




−0.765




−0.373




−0.616




———−0.474




880.3






442




GGTATTCCTAATTGAACTTC




586




56.47




−0.30




−0.572




−0.373




−0.496




———−0.413




1419.0






443




GTATTCCTAATTGAACTTCC




587




57.76




−0.30




−0.383




−0.373




−0.379




———−0.343




1567.9






444




TATTCCTAATTGAACTTCCC




588




58.57




−0.30




−0.264




−0.373




−0.306




———−0.248




1959.4






445




ATTCCTAATTGAACTTCCCA




589




60.26




−0.30




−0.016




−0.373




−0.152




———−0.161




2971.8






446




TTCCTAATTGAACTTCCCAG




590




60.45




−0.10




0.013




−0.199




−0.068




———−0.200




1898.5






447




TCCTAATTGAACTTCCCAGA




591




61.36




0.70




0.146




0.496




0.279




———−0.300




1392.3






448




CCTAATTGAACTTCCCAGAA




592




58.27




0.70




−0.308




0.496




−0.002




———−0.397




1143.2






449




CTAATTGAACTTCCCAGAAG




593




54.92




−0.70




−0.800




−0.721




−0.770




———−0.467




427.7






450




TAATTGAACTTCCCAGAAGT




594




55.84




−1.90




−0.664




−1.764




−1.082




———−0.545




148.5






451




AATTGAACTTCCCAGAAGTC




595




57.61




−2.10




−0.404




−1.938




−0.987




———−0.677




259.1






452




ATTGAACTTCCCAGAAGTCT




596




61.42




−2.10




0.154




−1.938




−0.641






−0.751






241.9






453




TTGAACTTCCCAGAAGTCTT




597




61.76




−2.10




0.205




−1.938




−0.609






−0.730






808.1






454




TGAACTTCCCAGAAGTCTTG




598




61.34




−2.10




0.143




−1.938




−0.648




———−0.586




351.6






455




GAACTTCCCAGAAGTCTTGA




599




62.71




−2.10




0.344




−1.938




−0.523




———−0.415




499.7






456




AACTTCCCAGAAGTCTTGAG




600




61.63




−2.10




0.186




−1.938




−0.621




———−0.262




407.4






457




ACTTCCCAGAAGTCTTGAGT




601




66.97




−1.90




0.969




−1.764




−0.069




———−0.138




492.1






458




CTTCCCAGAAGTCTTGAGTT




602




66.75




−1.00




0.937




−0.982




0.208




———−0.019




736.1






459




TTCCCAGAAGTCTTGAGTTC




603




66.31




−0.20




0.872




−0.286




0.432




——— 0.058




815.2






460




TCCCAGAAGTCTTGAGTTCT




604




67.98




−1.20




1.116




−1.156




0.253




——— 0.101




888.8






461




CCCAGAAGTCTTGAGTTCTC




605




67.98




−1.40




1.116




−1.330




0.187




——— 0.049




2021.6






462




CCAGAAGTCTTGAGTTCTCT




606




66.10




−1.40




0.842




−1.330




0.017




———−0.013




1988.5






463




CAGAAGTCTTGAGTTCTCTT




607




62.41




−1.40




0.300




−1.330




−0.319




———−0.082




2008.8






464




AGAAGTCTTGAGTTCTCTTA




608




60.43




−1.20




0.009




−1.156




−0.434




———−0.105




2631.8






465




GAAGTCTTGAGTTCTCTTAT




609




60.20




−0.50




−0.025




−0.547




−0.223




———−0.151




3052.8






466




AAGTCTTGAGTTCTCTTATT




610




59.12




0.30




−0.183




0.149




−0.057




———−0.212




3509.3






467




AGTCTTGAGTTCTCTTATTA




611




60.75




0.30




0.056




0.149




0.091




———−0.211




3221.6






468




GTCTTGAGTTCTCTTATTAA




612




58.29




0.30




−0.305




0.149




−0.132




———−0.216




3677.1






469




TCTTGAGTTCTCTTATTAAG




613




55.25




0.30




−0.751




0.149




−0.409




———−0.238




1176.6






470




CTTGAGTTCTCTTATTAAGT




614




57.04




0.10




−0.488




−0.025




−0.312




———−0.255




1168.1






471




TTGAGTTCTCTTATTAAGTT




615




55.29




0.10




−0.745




−0.025




−0.471




———−0.292




666.3






472




TGAGTTCTCTTATTAAGTTC




616




56.35




0.10




−0.589




−0.025




−0.375




———−0.271




674.0






473




GAGTTCTCTTATTAAGTTCT




617




58.57




0.10




−0.263




−0.025




−0.173




———−0.256




1471.4






474




AGTTCTCTTATTAAGTTCTC




618




58.61




0.10




−0.257




−0.025




−0.169




———−0.240




1493.5






475




GTTCTCTTATTAAGTTCTCT




619




60.59




0.10




0.032




−0.025




0.011




———−0.247




2191.5






476




TTCTCTTATTAAGTTCTCTG




620




57.16




0.10




−0.471




−0.025




−0.301




———−0.317




1410.3






477




TCTCTTATTAAGTTCTCTGA




621




58.23




0.10




−0.314




−0.025




−0.204




———−0.413




1262.8






478




CTCTTATTAAGTTCTCTGAA




622




54.79




0.10




−0.817




−0.025




−0.516




———−0.519




1072.9






479




TCTTATTAAGTTCTCTGAAA




623




50.95




0.10




−1.382




−0.025




−0.866




———−0.629




540.9






480




CTTATTAAGTTCTCTGAAAT




624




49.77




0.50




−1.554




0.323




−0.841




———−0.695




539.2






481




TTATTAAGTTCTCTGAAATC




625




48.99




0.50




−1.668




0.323




−0.912






−0.768






709.0






482




TATTAAGTTCTCTGAAATCT




626




50.64




0.50




−1.427




0.323




−0.762






−0.775






978.1






483




ATTAAGTTCTCTGAAATCTA




627




50.64




0.50




−1.427




0.323




−0.762






−0.732






1217.7






484




TTAAGTTCTCTGAAATCTAC




628




51.15




0.50




−1.352




0.323




−0.716




———−0.693




1748.1






485




TAAGTTCTCTGAAATCTACT




629




52.79




0.50




−1.112




0.323




−0.567




———−0.646




2511.5






486




AAGTTCTCTGAAATCTACTA




630




52.79




0.50




−1.112




0.323




−0.567




———−0.643




2997.2






487




AGTTCTCTGAAATCTACTAA




631




52.79




0.50




−1.112




0.323




−0.567




———−0.663




2887.6






488




GTTCTCTGAAATCTACTAAT




632




52.65




0.50




−1.133




0.323




−0.580




———−0.725




4421.3






489




TTCTCTGAAATCTACTAATT




633




50.14




0.70




−1.500




0.496




−0.741






−0.832






1937.7






490




TCTCTGAAATCTACTAATTT




634




50.14




0.20




−1.500




0.062




−0.906






−0.962






1773.3






491




CTCTGAAATCTACTAATTTT




635




49.31




−0.30




−1.622




−0.373




−1.147






−1.102






1491.1






492




TCTGAAATCTACTAATTTTC




636




48.55




−0.60




−1.734




−0.634




−1.316






−1.171






376.6






493




CTGAAATCTACTAATTTTCT




637




49.31




−1.30




−1.622




−1.243




−1.478






−1.178






371.9






494




TGAAATCTACTAATTTTCTC




638




48.55




−1.30




−1.734




−1.243




−1.547






−1.092






415.2






495




GAAATCTACTAATTTTCTCC




639




52.45




−0.90




−1.161




−0.895




−1.060






−0.938






1097.9






496




AAATCTACTAATTTTCTCCA




640




52.47




−0.10




−1.158




−0.199




−0.794






−0.778






1429.1






497




AATCTACTAATTTTCTCCAT




641




54.25




0.90




−0.897




0.670




−0.301




———−0.620




1812.5






495




ATCTACTAATTTTCTCCATT




642




56.46




1.00




−0.572




0.757




−0.067




———−0.485




1943.4






499




TCTACTAATTTTCTCCATTT




643




56.80




0.50




−0.523




0.323




−0.202




———−0.421




1506.1






500




CTACTAATTTTCTCCATTTA




644




54.93




0.50




−0.797




0.323




−0.372




———−0.376




1694.7






501




TACTAATTTTCTCCATTTAG




645




53.14




0.30




−1.060




0.149




−0.600




———−0.396




946.7






502




ACTAATTTTCTCCATTTAGT




646




56.69




−0.70




−0.539




−0.721




−0.605




———−0.407




1114.3






503




CTAATTTTCTCCATTTAGTA




647




55.57




0.00




−0.704




−0.112




−0.479




———−0.369




963.9






504




TAATTTTCTCCATTTAGTAC




648




54.12




0.50




−0.917




0.323




−0.446




———−0.274




1347.9






505




AATTTTCTCCATTTAGTACT




649




56.69




0.70




−0.539




0.496




−0.145




———−0.130




2067.7






506




ATTTTCTCCATTTAGTACTG




650




58.66




0.80




−0.250




0.583




0.067




——— 0.037




2724.2






507




TTTTCTCCATTTAGTACTGT




651




61.92




0.60




0.228




0.410




0.297




——— 0.186




3367.9






508




TTTCTCCATTTAGTACTGTC




652




63.10




0.60




0.401




0.410




0.404




——— 0.314




5235.8






509




TTCTCCATTTAGTACTGTCT




653




64.84




0.60




0.656




0.410




0.562




——— 0.377




6423.5






510




TCTCCATTTAGTACTGTCTT




654




64.84




0.60




0.656




0.410




0.562




——— 0.396




7758.9






511




CTCCATTTAGTACTGTCTTT




655




63.63




0.60




0.479




0.410




0.453




——— 0.342




8001.5






512




TCCATTTAGTACTGTCTTTT




656




61.92




0.60




0.228




0.410




0.297




——— 0.273




5512.4






513




CCATTTAGTACTGTCTTTTT




657




60.78




0.60




0.061




0.410




0.194




——— 0.210




5300.0






514




CATTTAGTACTGTCTTTTTT




658




57.04




0.80




−0.489




0.583




−0.081




——— 0.147




3902.1






515




ATTTAGTACTGTCTTTTTTC




659




57.08




0.80




−0.482




0.583




−0.077




——— 0.099




4641.8






516




TTTAGTACTGTCTTTTTTCT




660




59.26




0.80




−0.162




0.583




0.121




——— 0.084




4888.4






517




TTAGTACTGTCTTTTTTCTT




661




59.26




0.80




−0.162




0.583




0.121




——— 0.160




5477.3






518




TAGTACTGTCTTTTTTCTTT




662




59.26




0.80




−0.162




0.583




0.121




——— 0.242




5064.9






519




AGTACTGTCTTTTTTCTTTA




663




59.26




1.00




−0.162




0.757




0.187




——— 0.310




5580.3






520




GTACTGTCTTTTTTCTTTAT




664




59.04




2.70




−0.195




2.236




0.729




——— 0.400




5478.3






521




TACTGTCTTTTTTCTTTATG




665




55.71




2.90




−0.683




2.410




0.492




——— 0.480




2275.5






522




ACTGTCTTTTTTCTTTATGG




666




59.07




1.70




−0.190




1.366




0.402




——— 0.524




1730.8






523




CTGTCTTTTTTCTTTATGGC




667




62.92




1.70




0.374




1.366




0.751




——— 0.449




2405.5






524




TGTCTTTTTTCTTTATGGCA




668




62.14




1.70




0.260




1.366




0.680




——— 0.258




1942.0






525




GTCTTTTTTCTTTATGGCAA




669




60.05




1.50




−0.047




1.192




0.424




——— 0.068




2085.6






526




TCTTTTTTCTTTATGGCAAA




670




54.99




0.60




−0.788




0.410




−0.333




———−0.106




493.2






527




CTTTTTTCTTTATGGCAAAT




671




53.75




0.10




−0.971




−0.025




−0.612




———−0.309




532.7






528




TTTTTTCTTTATGGCAAATA




672




51.30




0.10




−1.331




−0.025




−0.835




———−0.507




280.0






529




TTTTTCTTTATGGCAAATAC




673




51.49




0.10




−1.302




−0.025




−0.817




———−0.640




440.8






530




TTTTCTTTATGGCAAATACT




674




53.08




0.10




−1.069




−0.025




−0.672




———−0.652




463.1






531




TTTCTTTATGGCAAATACTG




675




52.74




0.10




−1.119




−0.025




−0.704




———−0.639




579.0






532




TTCTTTATGGCAAATACTGG




676




54.90




0.10




−0.802




−0.025




−0.507




———−0.572




673.7






533




TCTTTATGGCAAATACTGGA




677




55.85




0.10




−0.663




−0.025




−0.421




———−0.504




837.0






534




CTTTATGGCAAATACTGGAG




678




54.78




0.10




−0.820




−0.025




−0.518




———−0.490




1061.9






535




TTTATGGCAAATACTGGAGT




679




55.74




0.30




−0.679




0.149




−0.365




———−0.507




855.0






536




TTATGGCAAATACTGGAGTA




680




54.87




0.60




−0.806




0.410




−0.344




———−0.562




775.0






537




TATGGCAAATACTGGAGTAT




681




54.56




0.00




−0.852




−0.112




−0.571




———−0.591




773.6






538




ATGGCAAATACTGGAGTATT




682




55.42




−1.00




−0.726




−0.982




−0.823




———−0.647




702.5






539




TGGCAAATACTGGAGTATTG




683




55.37




−1.20




−0.733




−1.156




−0.893






−0.775






387.5






540




GGCAAATACTGGAGTATTGT




684




58.33




−1.20




−0.298




−1.156




−0.624






−0.924






435.3






541




GCAAATACTGGAGTATTGTA




685




55.24




−1.20




−0.753




−1.156




−0.906






−0.974






93.7






542




CAAATACTGGAGTATTGTAT




686




51.30




−1.20




−1.331




−1.156




−1.264






−0.913






50.0






543




AAATACTGGAGTATTGTATG




687




49.96




−1.20




−1.527




−1.156




−1.386






−0.809






50.4






544




AATACTGGAGTATTGTATGG




688




54.30




−1.00




−0.890




−0.982




−0.925




———−0.688




64.7






545




ATACTGGAGTATTGTATGGA




689




57.60




−0.30




−0.406




−0.373




−0.394




———−0.483




76.0






546




TACTGGAGTATTGTATGGAT




690




57.60




0.40




−0.406




0.236




−0.162




———−0.236




86.0






547




ACTGGAGTATTGTATGGATT




691




58.53




1.30




−0.269




1.018




0.220




———−0.009




123.4






548




CTGGAGTATTGTATGGATTC




692




59.39




2.00




−0.144




1.627




0.529




——— 0.135




121.5






549




TGGAGTATTGTATGGATTCT




693




59.39




1.80




−0.144




1.453




0.463




——— 0.210




641.3






550




GGAGTATTGTATGGATTCTC




694




60.95




0.60




0.086




0.410




0.209




——— 0.286




161.5






551




GAGTATTGTATGGATTCTCA




695




59.52




0.60




−0.124




0.410




0.079




——— 0.321




129.9






552




AGTATTGTATGGATTCTCAG




696




58.31




1.10




−0.302




0.844




0.134




——— 0.371




88.7






553




GTATTGTATGGATTCTCAGG




697




60.87




1.10




0.074




0.844




0.367




——— 0.462




112.5






554




TATTGTATGGATTCTCAGGC




698




61.97




1.10




0.236




0.844




0.467




——— 0.575




134.6






555




ATTGTATGGATTCTCAGGCC




699




66.52




1.10




0.902




0.844




0.880




——— 0.669




191.6






556




TTGTATGGATTCTCAGGCCC




700




70.34




0.70




1.463




0.496




1.096




——— 0.714




254.5






557




TGTATGGATTCTCAGGCCCA




701




71.11




0.20




1.577




0.062




1.001




——— 0.738




332.2






558




GTATGGATTCTCAGGCCCAA




702




68.95




0.00




1.259




−0.112




0.738




——— 0.761




415.6






559




TATGGATTCTCAGGCCCAAT




703




65.78




0.00




0.795




−0.112




0.450




——— 0.774




285.0






560




ATGGATTCTCAGGCCCAATT




704




66.68




0.00




0.925




−0.112




0.531




——— 0.737




464.0






561




TGGATTCTCAGGCCCAATTT




705




67.04




0.20




0.979




0.062




0.630




——— 0.663




492.5






562




GGATTCTCAGGCCCAATTTT




706




67.51




1.10




1.048




0.844




0.970




——— 0.624




639.7






563




GATTCTCAGGCCCAATTTTT




707




65.34




1.30




0.729




1.018




0.839




——— 0.595




512.4






564




ATTCTCAGGCCCAATTTTTG




708




63.94




0.60




0.524




0.410




0.481




——— 0.513




393.4






565




TTCTCAGGCCCAATTTTTGA




709




65.24




0.20




0.716




0.062




0.467




——— 0.394




334.3






566




TCTCAGGCCCAATTTTTGAA




710




62.85




0.20




0.364




0.062




0.249




——— 0.181




308.2






567




CTCAGGCCCAATTTTTGAAA




711




59.62




0.20




−0.109




0.062




−0.044




———−0.048




199.2






568




TCAGGCCCAATTTTTGAAAT




712




57.85




0.20




−0.369




0.062




−0.205




———−0.223




164.3






569




CAGGCCCAATTTTTGAAATT




713




56.95




−0.50




−0.501




−0.547




−0.518




———−0.412




125.6






570




AGGCCCAATTTTTGAAATTT




714




56.09




−1.00




−0.627




−0.982




−0.762




———−0.571




102.6






571




GGCCCAATTTTTGAAATTTT




715




56.23




−1.00




−0.606




−0.982




−0.749




———−0.688




91.6






572




GCCCAATTTTTGAAATTTTC




716




55.07




−1.00




−0.777




−0.982




−0.855






−0.806






76.2






573




CCCAATTTTTGAAATTTTCC




717




54.96




−1.00




−0.792




−0.982




−0.864






−0.881






78.8






574




CCAATTTTTGAAATTTTCCC




718




54.96




−1.00




−0.792




−0.982




−0.864






−0.841






84.8






575




CAATTTTTGAAATTTTCCCT




719




53.17




−1.00




−1.055




−0.982




−1.027






−0.755






162.0






576




AATTTTTGAAATTTTCCCTT




720




52.25




−0.80




−1.190




−0.808




−1.045




———−0.634




539.5






577




ATTTTTGAAATTTTCCCTTC




721




55.17




0.10




−0.762




−0.025




−0.482




———−0.511




1787.3






578




TTTTTGAAATTTTCCCTTCC




722




58.88




0.10




−0.219




−0.025




−0.145




———−0.389




6354.2






579




TTTTGAAATTTTCCCTTCCT




723




60.39




0.10




0.004




−0.025




−0.007




———−0.243




9513.6






580




TTTGAAATTTTCCCTTCCTT




724




60.39




0.10




0.004




−0.025




−0.007




———−0.062




10660.0






581




TTGAAATTTTCCCTTCCTTT




725




60.39




0.10




0.004




−0.025




−0.007




——— 0.107




11202.0






582




TGAAATTTTCCCTTCCTTTT




726




60.39




0.10




0.004




−0.025




−0.007




——— 0.293




11543.0






583




GAAATTTTCCCTTCCTTTTC




727




61.81




0.40




0.212




0.236




0.221




——— 0.596




14774.0






584




AAATTTTCCCTTCCTTTTCC




728




64.17




1.20




0.557




0.931




0.699







0.952






18197.0






585




AATTTTCCCTTCCTTTTCCA




729




67.39




1.70




1.030




1.366




1.158







1.307






21410.0






586




ATTTTCCCTTCCTTTTCCAT




730




69.58




4.00




1.351




3.366




2.117







1.679






22869.0






587




TTTTCCCTTCCTTTTCCATT




731




69.96




5.00




1.408




4.236




2.482







2.039






21818.0






588




TTTCCCTTCCTTTTCCATTT




732




69.96




5.00




1.408




4.236




2.482







2.113






21341.0






589




TTCCCTTCCTTTTCCATTTC




733




71.19




5.00




1.588




4.236




2.594







2.085






22063.0






590




TCCCTTCCTTTTCCATTTCT




734




72.77




5.00




1.820




4.236




2.738







1.863






22152.0






591




CCCTTCCTTTTCCATTTCTG




735




71.01




0.90




1.561




0.670




1.223







1.571






20764.0






592




CCTTCCTTTTCCATTTCTGT




736




70.68




0.20




1.513




0.062




0.961







1.289






12579.0






593




CTTCCTTTTCCATTTCTGTA




737




66.30




0.20




0.870




0.062




0.563







0.945






9036.3






594




TTCCTTTTCCATTTCTGTAC




738




64.87




0.20




0.660




0.062




0.433




——— 0.505




8251.8






595




TCCTTTTCCATTTCTGTACA




739




65.74




0.20




0.788




0.062




0.512




——— 0.257




20788.0






596




CCTTTTCCATTTCTGTACAA




740




62.11




0.20




0.256




0.062




0.182




——— 0.024




7073.9






597




CTTTTCCATTTCTGTACAAA




741




56.39




0.20




−0.583




0.062




−0.338




———−0.153




2932.4






598




TTTTCCATTTCTGTACAAAT




742




54.49




0.20




−0.862




0.062




−0.511




———−0.300




1897.3






599




TTTCCATTTCTGTACAAATT




743




54.49




−0.30




−0.862




−0.373




−0.676




———−0.449




2158.1






600




TTCCATTTCTGTACAAATTT




744




54.49




−0.30




−0.862




−0.373




−0.676




———−0.608




2215.9






601




TCCATTTCTGTACAAATTTC




745




55.43




−0.30




−0.724




−0.373




−0.591




———−0.695




2168.6






602




CCATTTCTGTACAAATTTCT




746




56.07




−0.30




−0.631




−0.373




−0.533




———−0.708




2025.8






603




CATTTCTGTACAAATTTCTA




747




51.65




−0.30




−1.278




−0.373




−0.934




———−0.708




1277.2






604




ATTTCTGTACAAATTTCTAC




748




50.83




−0.10




−1.398




−0.199




−0.943






−0.736






1944.8






605




TTTCTGTACAAATTTCTACT




749




52.78




0.40




−1.112




0.236




−0.600






−0.790






2504.3






606




TTCTGTACAAATTTCTACTA




750




51.90




0.40




−1.242




0.236




−0.681






−0.876






2941.5






607




TCTGTACAAATTTCTACTAA




751




49.84




0.40




−1.544




0.236




−0.868






−0.846






2694.8






608




CTGTACAAATTTCTACTAAT




752




48.73




0.40




−1.707




0.236




−0.969






−0.827






2610.7






609




TGTACAAATTTCTACTAATG




753




46.88




0.40




−1.979




0.236




−1.137






−0.845






1678.1






610




GTACAAATTTCTACTAATGC




754




50.66




0.60




−1.424




0.410




−0.727






−0.854






5877.3






611




TACAAATTTCTACTAATGCT




755




49.82




0.60




−1.547




0.410




−0.803






−0.849






4461.0






612




ACAAATTTCTACTAATGCTT




756




50.65




0.60




−1.425




0.410




−0.728






−0.816






5943.2






613




CAAATTTCTACTAATGCTTT




757




50.46




0.60




−1.453




0.410




−0.745






−0.753






6492.9






614




AAATTTCTACTAATGCTTTT




758




49.47




0.60




−1.599




0.410




−0.836






−0.745






6875.0






615




AATTTCTACTAATGCTTTTA




759




50.61




0.60




−1.431




0.410




−0.731




———−0.727




7950.3






616




ATTTCTACTAATGCTTTTAT




760




52.40




0.20




−1.169




0.062




−0.701




———−0.719




8314.8






617




TTTCTACTAATGCTTTTATT




761




52.72




0.20




−1.122




0.062




−0.672




———−0.720




6885.8






618




TTCTACTAATGCTTTTATTT




762




52.72




0.20




−1.122




0.062




−0.672




———−0.730




6443.2






619




TCTACTAATGCTTTTATTTT




763




52.72




0.20




−1.122




0.062




−0.672






−0.731






6331.0






620




CTACTAATGCTTTTATTTTT




764




51.81




0.20




−1.255




0.062




−0.755




———−0.718




5952.5






621




TACTAATGCTTTTATTTTTT




765




50.18




0.20




−1.494




0.062




−0.903




———−0.721




2662.8






622




ACTAATGCTTTTATTTTTTC




766




51.96




0.20




−1.233




0.062




−0.741




———−0.667




3034.0






623




CTAATGCTTTTATTTTTTCT




767




53.41




0.20




−1.021




0.062




−0.609




———−0.513




2198.5






624




TAATGCTTTTATTTTTTCTT




768




51.76




0.40




−1.263




0.236




−0.694




———−0.315




1670.1






625




AATGCTTTTATTTTTTCTTC




769




53.61




1.10




−0.992




0.844




−0.294




———−0.038




3039.4






626




ATGCTTTTATTTTTTCTTCT




770




57.66




2.10




−0.397




1.714




0.405




——— 0.177




3873.8






627




TGCTTTTATTTTTTCTTCTG




771




57.60




2.80




−0.406




2.323




0.631




——— 0.363




3609.7






628




GCTTTTATTTTTTCTTCTGT




772




60.96




3.10




0.087




2.583




1.036




——— 0.464




4891.4






629




CTTTTATTTTTTCTTCTGTC




773




57.96




3.10




−0.353




2.583




0.763




——— 0.480




3071.6






630




TTTTATTTTTTCTTCTGTCA




774




57.22




3.10




−0.461




2.583




0.696




——— 0.391




2667.2






631




TTTATTTTTTCTTCTGTCAA




775




54.81




1.70




−0.816




1.366




0.013




——— 0.312




2293.1






632




TTATTTTTTCTTCTGTCAAT




776




54.46




1.20




−0.866




0.931




−0.183




——— 0.232




2123.0






633




TATTTTTTCTTCTGTCAATG




777




54.08




1.20




−0.922




0.931




−0.218




——— 0.237




1914.7






634




ATTTTTTCTTCTGTCAATGG




778




57.36




1.20




−0.442




0.931




0.080




——— 0.263




2174.1






635




TTTTTTCTTCTGTCAATGGC




779




61.67




1.20




0.192




0.931




0.473




——— 0.372




3659.7






636




TTTTTCTTCTGTCAATGGCC




780




65.26




1.20




0.717




0.931




0.799




——— 0.509




5217.7






637




TTTTCTTCTGTCAATGGCCA




781




66.11




1.20




0.843




0.931




0.877




——— 0.569




4559.7






638




TTTCTTCTGTCAATGGCCAT




782




65.73




1.00




0.787




0.757




0.776




——— 0.576




4347.7






639




TTCTTCTGTCAATGGCCATT




783




65.73




1.00




0.787




0.757




0.776




——— 0.506




5267.4






640




TCTTCTGTCAATGGCCATTG




784




65.26




−0.60




0.718




−0.634




0.204




——— 0.389




3922.8






641




CTTCTGTCAATGGCCATTGT




785




66.97




−1.30




0.968




−1.243




0.128




——— 0.235




3608.6






642




TTCTGTCAATGGCCATTGTT




786




65.36




−1.30




0.733




−1.243




−0.018




——— 0.044




1881.6






643




TCTGTCAATGGCCATTGTTT




787




65.36




−1.30




0.733




−1.243




−0.018




———−0.139




1658.0






644




CTGTCAATGGCCATTGTTTA




788




63.32




−1.30




0.433




−1.243




−0.204




———−0.255




1369.8






645




TGTCAATGGCCATTGTTTAA




789




59.38




−1.30




−0.144




−1.243




−0.562




———−0.353




605.8






646




GTCAATGGCCATTGTTTAAC




790




59.99




−1.30




−0.055




−1.243




−0.506




———−0.357




933.2






647




TCAATGGCCATTGTTTAACT




791




58.93




−1.30




−0.211




−1.243




−0.603




———−0.331




441.8






648




CAATGGCCATTGTTTAACTT




792




57.97




−0.90




−0.352




−0.895




−0.558




———−0.281




545.6






649




AATGGCCATTGTTTAACTTT




793




57.07




0.90




−0.483




0.670




−0.045




———−0.173




781.4






650




ATGGCCATTGTTTAACTTTT




794




59.31




0.90




−0.156




0.670




0.158




———−0.092




1027.3






651




TGGCCATTGTTTAACTTTTG




795




59.24




0.90




−0.165




0.670




0.152




——— 0.021




1102.5






652




GGCCATTGTTTAACTTTTGG




796




61.84




0.30




0.216




0.149




0.190




——— 0.156




935.7






653




GCCATTGTTTAACTTTTGGG




797




61.84




−0.10




0.216




−0.199




0.058




——— 0.218




403.7






654




CCATTGTTTAACTTTTGGGC




798




61.84




0.30




0.216




0.149




0.190




——— 0.251




269.3






655




CATTGTTTAACTTTTGGGCC




799




61.84




0.90




0.216




0.670




0.389




——— 0.299




296.8






656




ATTGTTTAACTTTTGGGCCA




800




61.84




0.90




0.216




0.670




0.389




——— 0.367




449.4






657




TTGTTTAACTTTTGGGCCAT




801




61.84




0.90




0.216




0.670




0.389




——— 0.377




448.1






658




TGTTTAACTTTTGGGCCATC




802




62.91




0.90




0.373




0.670




0.486




——— 0.340




584.9






659




GTTTAACTTTTGGGCCATCC




803




66.73




0.40




0.934




0.236




0.669




——— 0.275




1032.4






660




TTTAACTTTTGGGCCATCCA




804




64.79




−0.70




0.649




−0.721




0.128




——— 0.235




737.8






661




TTAACTTTTGGGCCATCCAT




805




64.44




−1.20




0.598




−1.156




−0.069




——— 0.271




950.2






662




TAACTTTTGGGCCATCCATT




806




64.44




−1.20




0.598




−1.156




−0.069




——— 0.310




1308.0






663




AACTTTTGGGCCATCCATTC




807




66.42




−1.20




0.888




−1.156




0.111




——— 0.296




2360.1






664




ACTTTTGGGCCATCCATTCC




808




72.21




−1.20




1.738




−1.156




0.638




——— 0.387




4946.0






665




CTTTTGGGCCATCCATTCCT




809




73.53




−1.20




1.930




−1.156




0.758




——— 0.480




6789.2






666




TTTTGGGCCATCCATTCCTG




810




71.49




−1.20




1.632




−1.156




0.573




——— 0.560




8150.6






667




TTTGGGCCATCCATTCCTGG




811




73.62




−1.20




1.945




−1.156




0.766




——— 0.622




7589.0






668




TTGGGCCATCCATTCCTGGC




812




77.43




−2.80




2.504




−2.547




0.584




——— 0.580




13914.0






669




TGGGCCATCCATTCCTGGCT




813




78.94




−3.50




2.725




−3.156




0.490




——— 0.500




17513.0






670




GGGCCATCCATTCCTGGCTT




814




79.51




−3.50




2.809




−3.156




0.542




——— 0.449




19883.0






671




GGCCATCCATTCCTGGCTTT




815




77.37




−3.50




2.494




−3.156




0.347




——— 0.324




20103.0






672




GCCATCCATTCCTGGCTTTA




816




74.28




−3.10




2.040




−2.808




0.198




——— 0.214




18622.9






673




CCATCCATTCCTGGCTTTAA




817




67.92




−1.30




1.109




−1.243




0.215




——— 0.122




16915.0






674




CATCCATTCCTGGCTTTAAT




818




64.36




−1.30




0.585




−1.243




−0.109




——— 0.028




13910.0






675




ATCCATTCCTGGCTTTAATT




819




63.53




−1.30




0.464




−1.243




−0.185




———−0.009




12524.0






676




TCCATTCCTGGCTTTAATTT




820




63.88




−1.30




0.516




−1.243




−0.152




———−0.005




11890.0






677




CCATTCCTGGCTTTAATTTT




821




62.81




−0.90




0.359




−0.895




−0.118




——— 0.040




12839.0






678




CATTCCTGGCTTTAATTTTA




822




58.55




0.90




−0.266




0.670




0.090




——— 0.126




9726.8






679




ATTCCTGGCTTTAATTTTAC




823




57.84




1.50




−0.371




1.192




0.223




——— 0.238




8499.7






680




TTCCTGGCTTTAATTTTACT




824




59.78




1.90




−0.086




1.540




0.532




——— 0.336




6800.4






681




TCCTGGCTTTAATTTTACTG




825




59.37




1.90




−0.146




1.540




0.494




——— 0.396




5445.6






682




CCTGGCTTTAATTTTACTGG




826




60.53




1.90




0.024




1.540




0.600




——— 0.434




2901.6






683




CTGGCTTTAATTTTACTGGT




827




59.77




1.90




−0.087




1.540




0.531




——— 0.431




1174.2






684




TGGCTTTAATTTTACTGGTA




828




57.25




1.90




−0.458




1.540




0.301




——— 0.268




521.3






685




GGCTTTAATTTTACTGGTAC




829




57.86




1.90




−0.368




1.540




0.357




——— 0.066




611.1






686




GCTTTAATTTTACTGGTACA




830




56.55




1.80




−0.560




1.453




0.205




———−0.148




287.6






687




CTTTAATTTTACTGGTACAG




831




52.66




0.40




−1.130




0.236




−0.611




———−0.330




109.5






688




TTTAATTTTACTGGTACAGT




832




53.62




−0.80




−0.989




−0.808




−0.920




———−0.454




59.5






689




TTAATTTTACTGGTACAGTC




833




54.59




−1.00




−0.847




−0.982




−0.898




———−0.540




62.1






690




TAATTTTACTGGTACAGTCT




834




56.28




−1.00




−0.599




−0.982




−0.745




———−0.632




59.4






691




AATTTTACTGGTACAGTCTC




835




58.27




−1.00




−0.308




−0.982




−0.564




———−0.613




68.0






692




ATTTTACTGGTACAGTCTCA




836




61.78




−1.00




0.207




−0.982




−0.245




———−0.561




72.9






693




TTTTACTGGTACAGTCTCAA




837




59.61




−1.00




−0.111




−0.982




−0.442




———−0.515




62.2






694




TTTACTGGTACAGTCTCAAT




838




59.25




−1.00




−0.164




−0.982




−0.475




———−0.439




64.5






695




TTACTGGTACAGTCTCAATA




839




58.30




−1.00




−0.303




−0.982




−0.561




———−0.318




53.5






696




TACTGGTACAGTCTCAATAG




840




58.15




−1.00




−0.326




−0.982




−0.575




———−0.166




57.8






697




ACTGGTACAGTCTCAATAGG




841




61.44




−0.80




0.157




−0.808




−0.210




——— 0.034




341.0






698




CTGGTACAGTCTCAATAGGG




842




63.55




0.10




0.467




−0.025




0.280




——— 0.186




54.8






699




TGGTACAGTCTCAATAGGGC




843




65.89




1.10




0.810




0.844




0.823




——— 0.279




47.1






700




GGTACAGTCTCAATAGGGCT




844




68.08




0.90




1.131




0.670




0.956




——— 0.383




59.7






701




GTACAGTCTCAATAGGGCTA




845




64.73




0.70




0.640




0.496




0.586




——— 0.425




47.0






702




TACAGTCTCAATAGGGCTAA




846




59.35




0.70




−0.149




0.496




0.096




——— 0.425




49.3






703




ACAGTCTCAATAGGGCTAAT




847




59.91




0.70




−0.067




0.496




0.147




——— 0.388




55.0






704




CAGTCTCAATAGGGCTAATG




848




59.29




0.70




−0.158




0.496




0.091




——— 0.275




49.0






705




AGTCTCAATAGGGCTAATGG




849




60.62




0.90




0.037




0.670




0.278




——— 0.220




45.7






706




GTCTCAATAGGGCTAATGGG




850




63.00




1.10




0.386




0.844




0.560




——— 0.189




115.6






707




TCTCAATAGGGCTAATGGGA




851




61.22




0.40




0.125




0.236




0.167




——— 0.133




50.6






708




CTCAATAGGGCTAATGGGAA




852




57.97




1.40




−0.352




1.105




0.202




——— 0.075




48.0






709




TCAATAGGGCTAATGGGAAA




853




54.39




1.40




−0.877




1.105




−0.124




———−0.028




50.5






710




CAATAGGGCTAATGGGAAAA




854




51.64




1.80




−1.281




1.453




−0.242




———−0.191




44.1






711




AATAGGGCTAATGGGAAAAT




855




50.45




1.90




−1.454




1.540




−0.316




———−0.298




43.1






712




ATAGGGCTAATGGGAAAATT




856




52.34




1.00




−1.178




0.757




−0.442




———−0.432




45.2






713




TAGGGCTAATGGGAAAATTT




857




52.63




0.50




−1.135




0.323




−0.581




———−0.569




47.4






714




AGGGCTAATGGGAAAATTTA




858




52.63




0.50




−1.135




0.323




−0.581




———−0.717




50.0






715




GGGCTAATGGGAAAATTTAA




859




50.89




0.50




−1.390




0.323




−0.739






−0.867






47.8






716




GGCTAATGGGAAAATTTAAA




860




47.14




0.50




−1.940




0.323




−1.080






−1.022






50.2






717




GCTAATGGGAAAATTTAAAG




861




45.00




0.50




−2.254




0.323




−1.275






−1.096






43.0






718




CTAATGGGAAAATTTAAAGT




862




43.95




0.50




−2.408




0.323




−1.371






−1.088






57.0






719




TAATGGGAAAATTTAAAGTG




863




42.27




0.50




−2.655




0.323




−1.524






−1.072






58.7






720




AATGGGAAAATTTAAAGTGC




864




46.18




0.70




−2.081




0.496




−1.102






−1.011






183.6






721




ATGGGAAAATTTAAAGTGCA




865




48.90




1.70




−1.682




1.366




−0.524






−0.924






303.4






722




TGGGAAAATTTAAAGTGCAA




866




47.39




1.80




−1.903




1.453




−0.628






−0.837






135.7






723




GGGAAAATTTAAAGTGCAAC




867




47.84




1.60




−1.838




1.279




−0.653






−0.766






241.7






724




GGAAAATTTAAAGTGCAACC




868




49.12




1.20




−1.649




0.931




−0.669






−0.737






132.5






725




GAAAATTTAAAGTGCAACCA




869




48.09




1.20




−1.801




0.931




−0.763






−0.758






128.8






726




AAAATTTAAAGTGCAACCAA




870




45.57




1.10




−2.171




0.844




−1.025




———−0.720




141.0






727




AAATTTAAAGTGCAACCAAT




871




46.97




1.10




−1.965




0.844




−0.897




———−0.679




282.0






728




AATTTAAAGTGCAACCAATC




872




49.46




1.10




−1.599




0.844




−0.671




———−0.629




948.6






729




ATTTAAAGTGCAACCAATCT




873




52.84




1.10




−1.104




0.844




−0.363




———−0.567




1815.1






730




TTTAAAGTGCAACCAATCTG




874




52.81




1.10




−1.109




0.844




−0.366




———−0.426




3188.2






731




TTAAAGTGCAACCAATCTGA




875




53.71




1.00




−0.976




0.757




−0.317




———−0.262




3566.1






732




TAAAGTGCAACCAATCTGAG




876




53.56




1.00




−0.999




0.757




−0.331




———−0.087




2925.1






733




AAAGTGCAACCAATCTGAGT




877




56.81




1.00




−0.522




0.757




−0.036




——— 0.014




3233.2






734




AAGTGCAACCAATCTGAGTC




878




59.99




1.00




−0.055




0.757




0.254




——— 0.085




3615.6






735




AGTGCAACCAATCTGAGTCA




879




63.25




1.00




0.422




0.757




0.550




——— 0.165




3994.8






736




GTGCAACCAATCTGAGTCAA




880




61.00




1.00




0.093




0.757




0.345




——— 0.138




4033.0






737




TGCAACCAATCTGAGTCAAC




881




58.62




1.00




−0.257




0.757




0.128




——— 0.008




3380.2






738




GCAACCAATCTGAGTCAACA




882




59.87




1.00




−0.073




0.757




0.242




———−0.173




4288.7






739




CAACCAATCTGAGTCAACAG




883




56.22




−0.30




−0.608




−0.373




−0.519




———−0.445




744.1






740




AACCAATCTGAGTCAACAGA




884




56.24




−1.60




−0.605




−1.504




−0.946






−0.757






392.2






741




ACCAATCTGAGTCAACAGAT




885




58.10




−2.30




−0.332




−2.112




−1.009






−1.030






158.1






742




CCAATCTGAGTCAACAGATT




886




57.90




−3.30




−0.362




−2.982




−1.357






−1.219






70.8






743




CAATCTGAGTCAACAGATTT




887




54.41




−3.80




−0.874




−3.417




−1.840






−1.262






190.0






744




AATCTGAGTCAACAGATTTC




888




54.37




−3.60




−0.880




−3.243




−1.778






−1.168






87.7






745




ATCTGAGTCAACAGATTTCT




889




58.37




−2.60




−0.293




−2.373




−1.084






−1.017






152.7






746




TCTGAGTCAACAGATTTCTT




890




58.73




−1.90




−0.241




−1.764




−0.820






−0.797






270.5






747




CTGAGTCAACAGATTTCTTC




891




58.73




−0.30




−0.241




−0.373




−0.291




———−0.553




498.7






748




TGAGTCAACAGATTTCTTCC




892




60.70




0.20




0.049




0.062




0.054




———−−0.321




891.0






749




GAGTCAACAGATTTCTTCCA




893




62.06




0.20




0.248




0.062




0.177




———−0.221




1509.8






750




AGTCAACAGATTTCTTCCAA




894




58.66




0.20




−0.250




0.062




−0.132




———−0.182




1009.3






751




GTCAACAGATTTCTTCCAAT




895




58.47




0.20




−0.279




0.062




−0.149




———−0.235




1198.0






752




TCAACAGATTTCTTCCAATT




896




55.86




0.20




−0.661




0.062




−0.387




———−0.315




680.5






753




CAACAGATTTCTTCCAATTA




897




54.08




0.20




−0.922




0.062




−0.548




———−0.381




762.5






754




AACAGATTTCTTCCAATTAT




898




52.82




0.20




−1.107




0.062




−0.663




———−0.415




689.8






755




ACAGATTTCTTCCAATTATG




899




54.58




0.20




−0.849




0.062




−0.503




———−0.445




715.1






756




CAGATTTCTTCCAATTATGT




900




56.99




0.20




−0.496




0.062




−0.284




———−0.460




833.8






757




AGATTTCTTCCAATTATGTT




901




56.02




0.20




−0.638




0.062




−0.372




———−0.445




1067.7






758




GATTTCTTCCAATTATGTTG




902




55.80




0.30




−0.670




0.149




−0.359




———−0.401




1225.9






759




ATTTCTTCCAATTATGTTGA




903




55.80




−0.10




−0.670




−0.199




−0.491




———−0.382




1028.7






760




TTTCTTCCAATTATGTTGAC




904




56.34




−0.10




−0.591




−0.199




−0.442




———−0.378




1419.0






761




TTCTTCCAATTATGTTGACA




905




57.29




−0.10




−0.452




−0.199




−0.356




———−0.348




1437.4






762




TCTTCCAATTATGTTGACAG




906




57.14




−0.10




−0.474




−0.199




−0.369




———−0.325




1518.3






763




CTTCCAATTATGTTGACAGG




907




58.36




−0.10




−0.295




−0.199




−0.259




———−0.262




1560.3






764




TTCCAATTATGTTGACAGGT




908




59.43




−0.10




−0.138




−0.199




−0.161




———−0.244




1100.0






765




TCCAATTATGTTGACAGGTG




909




59.02




−0.10




−0.198




−0.199




−0.198




———−0.216




1096.4






766




CCAATTATGTTGACAGGTGT




910




60.68




−0.10




0.046




−0.199




−0.047




———−0.124




1103.4






767




CAATTATGTTGACAGGTGTA




911




56.24




0.30




−0.605




0.149




−0.319




———−0.005




738.1






768




AATTATGTTGACAGGTGTAG




912




55.09




1.10




−0.774




0.844




−0.159




——— 0.054




596.7






769




ATTATGTTGACAGGTGTAGG




913




59.83




1.10




−0.079




0.844




0.272




——— 0.161




548.1






770




TTATGTTGACAGGTGTAGGT




914




63.16




1.10




0.409




0.844




0.575




——— 0.274




701.1






771




TATGTTGACAGGTGTAGGTC




915




64.38




−0.20




0.588




−0.286




0.256




——— 0.420




724.7






772




ATGTTGACAGGTGTAGGTCC




916




69.08




−0.60




1.278




−0.634




0.551




——— 0.506




1129.8






773




TGTTGACAGGTGTAGGTCCT




917




71.21




−0.60




1.591




−0.634




0.745




——— 0.537




1214.0






774




GTTGACAGGTGTAGGTCCTA




918




70.75




−0.60




1.523




−0.634




0.703




——— 0.520




1425.4






775




TTGACAGGTGTAGGTCCTAC




919




67.83




−0.60




1.095




−0.634




0.438




——— 0.499




838.8






776




TGACAGGTGTAGGTCCTACT




920




69.52




−0.90




1.343




−0.895




0.493




——— 0.427




1173.1






777




GACAGGTGTAGGTCCTACTA




921




69.06




−0.90




1.275




−0.895




0.450




——— 0.304




1367.0






778




ACAGGTGTAGGTCCTACTAA




922




65.30




−0.90




0.723




−0.895




0.108




——— 0.192




872.0






779




CAGGTGTAGGTCCTACTAAT




923




64.69




−0.90




0.634




−0.895




0.053




——— 0.109




897.6






780




AGGTGTAGGTCCTACTAATA




924




62.84




−0.90




0.362




−0.895




−0.115




———−0.024




962.2






781




GGTGTAGGTCCTACTAATAC




925




63.19




−0.90




0.414




−0.895




−0.083




———−0.090




1382.6






782




GTGTAGGTCCTACTAATACT




926




62.53




−0.90




0.317




−0.895




−0.143




———−0.099




1132.9






783




TGTAGGTCCTACTAATACTG




927




59.27




−0.90




−0.160




−0.895




−0.439




———−0.095




1180.7






784




GTAGGTCCTACTAATACTGT




928




62.53




−0.50




0.317




−0.547




−0.011




———−0.020




1932.9






785




TAGGTCCTACTAATACTGTA




929




58.77




0.70




−0.234




0.496




0.043




——— 0.042




1634.4






786




AGGTCCTACTAATACTGTAC




930




59.91




0.50




−0.067




0.323




0.081




——— 0.067




2488.1






787




GGTCCTACTAATACTGTACC




931




63.54




0.50




0.466




0.323




0.411




——— 0.116




3560.9






788




GTCCTACTAATACTGTACCT




932




62.91




0.50




0.373




0.323




0.354




——— 0.048




3850.1






789




TCCTACTAATACTGTACCTA




933




59.31




0.50




−0.155




0.323




0.026




———−0.041




1879.0






790




CCTACTAATACTGTACCTAT




934




57.99




0.50




−0.348




0.323




−0.093




———−0.053




1920.4






791




CTACTAATACTGTACCTATA




935




53.68




0.50




−0.981




0.323




−0.486




———−0.094




1131.2






792




TACTAATACTGTACCTATAG




936




51.92




0.70




−1.240




0.496




−0.580




———−0.147




756.5






793




ACTAATACTGTACCTATAGC




937




56.45




1.20




−0.574




0.931




−0.002




———−0.142




1881.3






794




CTAATACTGTACCTATAGCT




938




57.85




1.20




−0.369




0.931




0.125




———−0.102




2033.6






795




TAATACTGTACCTATAGCTT




939




56.25




1.20




−0.604




0.931




−0.021




———−0.006




1853.9






796




AATACTGTACCTATAGCTTT




940




57.14




1.20




−0.473




0.931




0.060




——— 0.111




2462.6






797




ATACTGTACCTATAGCTTTA




941




58.55




1.20




−0.266




0.931




0.189




——— 0.183




2436.8






798




TACTGTACCTATAGCTTTAT




942




58.55




1.20




−0.266




0.931




0.189




——— 0.220




1865.2






799




ACTGTACCTATAGCTTTATG




943




59.06




1.20




−0.192




0.931




0.235




——— 0.331




1682.1






800




CTGTACCTATAGCTTTATGT




944




61.64




1.30




0.187




1.018




0.503




——— 0.405




1551.3






801




TGTACCTATAGCTTTATGTC




945




61.08




1.10




0.105




0.844




0.386




——— 0.484




1600.1






802




GTACCTATAGCTTTATGTCC




946




65.16




1.10




0.703




0.844




0.757




——— 0.572




4094.6






803




TACCTATAGCTTTATGTCCA




947




63.16




1.10




0.409




0.844




0.575




——— 0.597




2794.2






804




ACCTATAGCTTTATGTCCAC




948




64.30




1.30




0.577




1.018




0.745




——— 0.575




4754.9






805




CCTATAGCTTTATGTCCACA




949




64.94




1.30




0.671




1.018




0.803




——— 0.554




4185.4






806




CTATAGCTTTATGTCCACAG




950




61.34




1.10




0.143




0.844




0.409




——— 0.484




3284.3






807




TATAGCTTTATGTCCACAGA




951




60.70




1.10




0.048




0.844




0.351




——— 0.453




2819.7






808




ATAGCTTTATGTCCACAGAT




952




61.27




0.60




0.132




0.410




0.238




——— 0.414




3545.1






809




TAGCTTTATGTCCACAGATT




953




61.63




0.60




0.186




0.410




0.271




——— 0.337




4232.6






810




AGCTTTATGTCCACAGATTT




954




62.57




0.60




0.324




0.410




0.356




——— 0.283




5252.8






811




GCTTTATGTCCACAGATTTC




955




63.85




0.60




0.511




0.410




0.472




——— 0.232




6823.9






812




CTTTATGTCCACAGATTTCT




956




61.56




0.60




0.176




0.410




0.265




——— 0.193




4829.8






813




TTTATGTCCACAGATTTCTA




957




58.97




0.60




−0.205




0.410




0.029




——— 0.173




4333.7






814




TTATGTCCACAGATTTCTAT




958




58.62




0.60




−0.257




0.410




−0.004




——— 0.144




3801.0






815




TATGTCCACAGATTTCTATG




959




58.20




0.60




−0.318




0.410




−0.041




——— 0.142




3528.2






816




ATGTCCACAGATTTCTATGA




960




60.12




0.60




−0.036




0.410




0.134




——— 0.129




2080.0






817




TGTCCACAGATTTCTATGAG




961




60.34




0.60




−0.004




0.410




0.153




——— 0.145




913.8






818




GTCCACAGATTTCTATGAGT




962




63.68




0.60




0.486




0.410




0.457




——— 0.122




1228.3






819




TCCACAGATTTCTATGAGTA




963




59.83




0.80




−0.078




0.583




0.173




——— 0.067




238.1






820




CCACAGATTTCTATGAGTAT




964




58.43




1.10




−0.285




0.844




0.144




———−0.078




219.4






821




CACAGATTTCTATGAGTATC




965




55.78




0.90




−0.673




0.670




−0.162




———−0.169




138.6






822




ACAGATTTCTATGAGTATCT




966




56.48




−0.10




−0.571




−0.199




−0.430




———−0.273




112.7






823




CAGATTTCTATGAGTATCTG




967




55.85




−1.30




−0.663




−1.243




−0.883




———−0.327




133.8






824




AGATTTCTATGAGTATCTGA




968




55.87




−0.10




−0.659




−0.199




−0.485




———−0.387




296.8






825




GATTTCTATGAGTATCTGAT




969




55.69




0.60




−0.686




0.410




−0.270




———−0.442




279.7






826




ATTTCTATGAGTATCTGATC




970




55.67




0.80




−0.689




0.583




−0.206




———−0.498




484.4






827




TTTCTATGAGTATCTGATCA




971




57.06




0.20




−0.485




0.062




−0.277




———−0.510




502.0






828




TTCTATGAGTATCTGATCAT




972




56.70




−0.50




−0.538




−0.547




−0.541




———−0.569




637.3






829




TCTATGAGTATCTGATCATA




973




55.75




−1.10




−0.678




−1.069




−0.826




———−0.657




489.0






830




CTATGAGTATCTGATCATAC




974




54.95




−1.30




−0.794




−1.243




−0.965




———−0.712




808.7






831




TATGAGTATCTGATCATACT




975




54.95




−1.10




−0.794




−1.069




−0.899




———


−0.738






903.2






832




ATGAGTATCTGATCATACTG




976




55.49




−1.20




−0.715




−1.156




−0.883




———−0.707




1709.3






833




TGAGTATCTGATCATACTGT




977




58.64




−1.20




−0.254




−1.156




−0.597




———−0.601




2103.9






834




GAGTATCTGATCATACTGTC




978




60.20




−1.20




−0.025




−1.156




−0.455




———−0.468




3973.4






835




AGTATCTGATCATACTGTCT




979




60.88




−1.00




0.076




−0.982




−0.326




———−0.330




6462.3






836




GTATCTGATCATACTGTCTT




980




61.03




−0.30




0.097




−0.373




−0.081




———−0.167




9749.0






837




TATCTGATCATACTGTCTTA




981




57.16




0.90




−0.470




0.670




−0.037




———−0.059




7817.2






838




ATCTGATCATACTGTCTTAC




982




58.34




0.90




−0.298




0.670




0.070




——— 0.007




9683.1






539




TCTGATCATACTGTCTTACT




983




60.42




0.90




0.008




0.670




0.259




——— 0.055




8089.0






840




CTGATCATACTGTCTTACTT




984




59.32




0.90




−0.154




0.670




0.159




——— 0.067




8696.8






841




TGATCATACTGTCTTACTTT




985




57.63




0.90




−0.401




0.670




0.006




——— 0.064




6880.5






842




GATCATACTGTCTTACTTTG




986




57.63




0.90




−0.401




0.670




0.006




——— 0.020




7033.7






843




ATCATACTGTCTTACTTTGA




987




57.63




0.90




−0.401




0.670




0.006




———−0.093




5406.5






844




TCATACTGTCTTACTTTGAT




988




57.63




0.70




−0.401




0.496




−0.060




———−0.215




4239.4






845




CATACTGTCTTACTTTGATA




989




55.68




0.70




−0.688




0.496




−0.238




———−0.378




3727.4






846




ATACTGTCTTACTTTGATAA




990




52.44




0.70




−1.163




0.496




−0.533




———−0.550




2665.5






847




TACTGTCTTACTTTGATAAA




991




50.65




0.70




−1.426




0.496




−0.696




———−0.696




1817.8






848




ACTGTCTTACTTTGATAAAA




992




49.49




−0.30




−1.595




−0.373




−1.131






−0.809






1335.9






849




CTGTCTTACTTTGATAAAAC




993




49.49




−0.50




−1.595




−0.547




−1.197






−0.916






1526.2






850




TGTCTTACTTTGATAAAACC




994




51.45




−0.50




−1.309




−0.547




−1.019






−0.949






822.7






851




GTCTTACTTTGATAAAACCT




995




53.32




−0.50




−1.034




−0.547




−0.849






−0.966






1227.4






852




TCTTACTTTGATAAAACCTC




996




51.75




−0.50




−1.264




−0.547




−0.991






−0.946






503.0






853




CTTACTTTGATAAAACCTCC




997




54.28




−0.50




−0.894




−0.547




−0.762






−0.910






1174.3






854




TTACTTTGATAAAACCTCCA




998




53.70




−0.50




−0.978




−0.547




−0.814







−0.901






885.5






855




TACTTTGATAAAACCTCCAA




999




51.79




−0.50




−1.259




−0.547




−0.988






−0.916






650.6






856




ACTTTGATAAAACCTCCAAT




1000 




52.29




−0.50




−1.185




−0.547




−0.943






−0.826






615.4






857




CTTTGATAAAACCTCCAATT




1001 




52.11




−0.50




−1.212




−0.547




−0.959




———−0.728




563.4






858




TTTGATAAAACCTCCAATTC




1002 




51.46




−0.30




−1.307




−0.373




−0.952




———−0.561




420.9






859




TTGATAAAACCTCCAATTCC




1003 




54.68




0.60




−0.834




0.410




−0.362




———−0.298




536.6






860




TGATAAAACCTCCAATTCCC




1004 




57.79




0.60




−0.378




0.410




−0.079




———−0.022




1417.8






861




GATAAAACCTCCAATTCCCC




1005 




61.15




1.00




0.114




0.757




0.359




——— 0.258




4351.2






862




ATAAAACCTCCAATTCCCCC




1006 




63.24




1.90




0.421




1.540




0.846




——— 0.560




7738.7






863




TAAAACCTCCAATTCcCCCT




1007 




64.88




1.90




0.663




1.540




0.996




——— 0.817




11136.0






864




AAAACCTCCAATTCCCCCTA




1008 




64.88




1.90




0.663




1.540




0.996







1.074






14811.0






865




AAACCTCCAATTCCCCCTAT




1009 




66.73




1.90




0.933




1.540




1.164







1.261






15751.0






866




AACCTCCAATTCCCCCTATC




1010 




70.07




1.80




1.424




1.453




1.435







1.330






19661.0






867




ACCTCCAATTCCCCCTATCA




1011 




73.21




1.80




1.883




1.453




1.720







1.335






20301.0






868




CCTCCAATTCCCCCTATCAT




1012 




72.64




1.80




1.801




1.453




1.669







1.327






19376.0






869




CTCCAATTCCCCCTATCATT




1013 




69.66




1.60




1.364




1.279




1.332







1.254






17642.0






870




TCCAATTCCCCCTATCATTT




1014 




68.21




1.10




1.150




0.844




1.034







1.093






13751.0






871




CCAATTCCCCCTATCATTTT




1015 




67.12




1.10




0.991




0.844




0.935







0.931






12669.0






872




CAATTCCCCCTATCATTTTT




1016 




64.02




1.10




0.536




0.844




0.653




——— 0.818




9255.9






873




AATTCCCCCTATCATTTTTG




1017 




62.80




0.40




0.357




0.236




0.311




——— 0.753




8929.1






874




ATTCCCCCTATCATTTTTGG




1018 




67.28




0.00




1.014




−0.112




0.586




——— 0.715




6148.2






875




TTCCCCCTATCATTTTTGGT




1019 




70.46




0.00




1.480




−0.112




0.875




——— 0.664




5468.0






876




TCCCCCTATCATTTTTGGTT




1020 




70.46




0.00




1.480




−0.112




0.875




——— 0.653




5803.7






877




CCCCCTATCATTTTTGGTTT




1021 




69.27




0.00




1.307




−0.112




0.768




——— 0.658




5192.0






878




CCCCTATCATTTTTGGTTTC




1022 




67.18




0.00




1.000




−0.112




0.577




——— 0.549




3557.4






879




CCCTATCATTTTTGGTTTCC




1023 




67.18




0.00




1.000




−0.112




0.577




——— 0.392




5274.3






880




CCTATCATTTTTGGTTTCCA




1024 




64.63




0.00




0.625




−0.112




0.345




——— 0.270




3787.9






881




CTATCATTTTTGGTTTCCAT




1025 




60.77




−0.50




0.059




−0.547




−0.171




——— 0.167




2726.8






882




TATCATTTTTGGTTTCCATC




1026 




60.20




−0.50




−0.025




−0.547




−0.223




——— 0.092




3249.9






883




ATCATTTTTGGTTTCCATCT




1027 




62.83




−0.50




0.361




−0.547




0.016




——— 0.051




5548.9






884




TCATTTTTGGTTTCCATCTT




1028 




63.21




−0.50




0.416




−0.547




0.050




——— 0.071




5290.0






885




CATTTTTGGTTTCCATCTTC




1029 




63.21




−0.50




0.416




−0.547




0.050




——— 0.157




7451.0






886




ATTTTTGGTTTCCATCTTCC




1030 




65.88




−0.50




0.809




−0.547




0.293




——— 0.262




11578.0






887




TTTTTGGTTTCCATCTTCCT




1031 




67.93




−0.50




1.109




−0.547




0.480




——— 0.366




13722.0






888




TTTTGGTTTCCATCTTCCTG




1032 




67.42




−0.50




1.035




−0.547




0.434




——— 0.475




15064.0






889




TTTGGTTTCCATCTTCCTGG




1033 




69.71




−0.90




1.370




−0.895




0.509




——— 0.554




10869.0






890




TTGGTTTCCATCTTCCTGGC




1034 




73.74




−1.30




1.962




−1.243




0.744




——— 0.535




16035.0






891




TGGTTTCCATCTTCCTGGCA




1035 




74.48




−1.30




2.071




−1.243




0.812




——— 0.457




16304.0






892




GGTTTCCATCTTCCTGGCAA




1036 




72.21




−1.30




1.737




−1.243




0.605




——— 0.406




14885.0






893




GTTTCCATCTTCCTGGCAAA




1037 




67.37




−1.30




1.027




−1.243




0.165




——— 0.358




11910.0






894




TTTCCATCTTCCTGGCAAAC




1038 




64.82




−1.30




0.653




−1.243




−0.067




——— 0.290




11929.0






895




TTCCATCTTCCTGGCAAACT




1039 




66.34




−1.30




0.877




−1.243




0.071




——— 0.252




11517.0






896




TCCATCTTCCTGGCAAACTC




1040 




67.47




−1.30




1.042




−1.243




0.174




——— 0.237




11822.0






897




CCATCTTCCTGGCAAACTCA




1041 




67.12




−0.90




0.991




−0.895




0.274




——— 0.285




11710.0






898




CATCTTCCTGGCAAACTCAT




1042 




63.55




0.90




0.466




0.670




0.544




——— 0.357




7635.3






899




ATCTTCCTGGCAAACTCATT




1043 




62.71




1.00




0.343




0.757




0.501




——— 0.409




8378.2






900




TCTTCCTGGCAAACTCATTT




1044 




63.06




0.90




0.395




0.670




0.500




——— 0.446




6321.4






901




CTTCCTGGCAAACTCATTTC




1045 




63.06




0.70




0.395




0.496




0.434




——— 0.468




7659.0






902




TTCCTGGCAAACTCATTTCT




1046 




63.06




0.70




0.395




0.496




0.434




——— 0.429




11621.0






903




TCCTGGCAAACTCATTTCTT




1047 




63.06




0.70




0.395




0.496




0.434




——— 0.363




3389.0






904




CCTGGCAAACTCATTTCTTC




1048 




63.06




0.70




0.395




0.496




0.434




——— 0.273




3870.6






905




CTGGCAAACTCATTTCTTCT




1049 




61.24




0.70




0.127




0.496




0.268




——— 0.160




1992.7






906




TGGCAAACTCATTTCTTCTA




1050 




58.74




0.70




−0.239




0.496




0.040




———−0.015




698.3






907




GGCAAACTCATTTCTTCTAA




1051 




56.86




0.70




−0.514




0.496




−0.130




———−0.201




718.3






908




GCAAACTCATTTCTTCTAAT




1052 




54.36




0.70




−0.882




0.496




−0.358




———−0.339




372.3






909




CAAACTCATTTCTTCTAATA




1053 




49.93




0.60




−1.530




0.410




−0.793




———−0.430




180.6






910




AAACTCATTTCTTCTAATAC




1054 




49.11




0.60




−1.651




0.410




−0.868




———−0.455




430.0






911




AACTCATTTCTTCTAATACT




1055 




52.79




0.60




−1.111




0.410




−0.533




———−0.491




904.3






912




ACTCATTTCTTCTAATACTG




1056 




54.63




0.60




−0.842




0.410




−0.366




———−0.510




1663.5






913




CTCATTTCTTCTAATACTGT




1057 




57.14




0.60




−0.474




0.410




−0.138




———−0.459




2694.2






914




TCATTTCTTCTAATACTGTA




1058 




54.51




0.60




−0.859




0.410




−0.377




———−0.361




3222.9






915




CATTTCTTCTAATACTGTAT




1059 




53.21




0.60




−1.049




0.410




−0.495




———−0.310




3142.8






916




ATTTCTTCTAATACTGTATC




1060 




53.13




0.80




−1.061




0.583




−0.436




———−0.270




5867.0






917




TTTCTTCTAATACTGTATCA




1061 




54.51




1.20




−0.859




0.931




−0.179




———−0.253




6641.4






918




TTCTTCTAATACTGTATCAT




1062 




54.17




1.30




−0.908




1.018




−0.176




———−0.229




7151.9






919




TCTTCTAATACTGTATCATC




1063 




55.17




1.30




−0.762




1.018




−0.086




———−0.139




8134.9






920




CTTCTAATACTGTATCATCT




1064 




55.86




1.30




−0.661




1.018




−0.023




———−0.048




8551.4






921




TTCTAATACTGTATCATCTG




1065 




53.80




1.30




−0.964




1.018




−0.211




———−0.003




5741.7






922




TCTAATACTGTATCATCTGC




1066 




57.65




1.30




−0.398




1.018




0.140




——— 0.101




8575.9






923




CTAATACTGTATCATCTGCT




1067 




58.28




1.30




−0.307




1.018




0.197




——— 0.248




8980.3






924




TAATACTGTATCATCTGCTC




1068 




57.65




1.30




−0.398




1.018




0.140




——— 0.384




10762.0






925




AATACTGTATCATCTGCTCC




1069 




62.19




1.30




0.268




1.018




0.553




——— 0.566




17037.0






926




ATACTGTATCATCTGCTCCT




1070 




66.43




1.30




0.889




1.018




0.938




——— 0.682




20970.0






927




TACTGTATCATCTGCTCCTG




1071 




66.32




1.30




0.874




1.018




0.929




——— 0.763




23084.0






928




ACTGTATCATCTGCTCCTGT




1072 




70.36




0.60




1.466




0.410




1.065







0.875






24474.0






929




CTGTATCATCTGCTCCTGTA




1073 




69.13




0.60




1.286




0.410




0.953







0.910






22217.0






930




TGTATCATCTGCTCCTGTAT




1074 




67.04




0.60




0.979




0.410




0.763







0.890






19829.0






931




GTATCATCTGCTCCTGTATC




1075 




68.85




0.60




1.244




0.410




0.927







0.842






23548.0






932




TATCATCTGCTCCTGTATCT




1076 




67.44




0.60




1.037




0.410




0.799




——— 0.773




21759.0






933




ATCATCTGCTCCTGTATCTA




1077 




67.44




0.60




1.037




0.410




0.799




——— 0.725




22711.0






934




TCATCTGCTCCTGTATCTAA




1078 




65.13




0.60




0.699




0.410




0.589




——— 0.706




18134.0






935




CATCTGCTCCTGTATCTAAT




1079 




63.60




1.00




0.475




0.757




0.582




——— 0.611




17772.0






936




ATCTGCTCCTGTATCTAATA




1080 




61.77




1.60




0.207




1.279




0.614




——— 0.502




17134.0






937




TCTGCTCCTGTATCTAATAG




1081 




62.01




1.60




0.241




1.279




0.635




——— 0.389




10969.0






938




CTGCTCCTGTATCTAATAGA




1082 




61.90




0.50




0.225




0.323




0.262




——— 0.336




9556.3






939




TGCTCCTGTATCTAATAGAG




1083 




60.12




0.30




−0.036




0.149




0.034




——— 0.264




3739.9






940




GCTCCTGTATCTAATAGAGC




1084 




64.50




−1.00




0.607




−0.982




0.003




——— 0.187




4088.3






941




CTCCTGTATCTAATAGAGCT




1085 




62.21




0.30




0.271




0.149




0.224




——— 0.106




2263.0






942




TCCTGTATCTAATAGAGCTT




1086 




60.56




0.30




0.028




0.149




0.074




——— 0.080




1018.0






943




CCTGTATCTAATAGAGCTTC




1087 




60.56




0.30




0.028




0.149




0.074




——— 0.091




1319.1






944




CTGTATCTAATAGAGCTTCC




1088 




60.56




0.30




0.028




0.149




0.074




——— 0.070




2347.8






945




TGTATCTAATAGAGCTTCCT




1089 




60.56




0.30




0.028




0.149




0.074




——— 0.018




1871.6






946




GTATCTAATAGAGCTTCCTT




1090 




61.00




0.30




0.092




0.149




0.114




———−0.010




3469.1






947




TATCTAATAGAGCTTCCTTT




1091 




58.20




0.30




−0.318




0.149




−0.141




———−0.030




1114.6






948




ATCTAATAGAGCTTCCTTTA




1092 




58.20




0.30




−0.318




0.149




−0.141




———−0.057




1358.4






949




TCTAATAGAGCTTCCTTTAG




1093 




58.39




0.30




−0.289




0.149




−0.123




———−0.078




665.4






950




CTAATAGAGCTTCCTTTAGT




1094 




60.12




0.00




−0.036




−0.112




−0.065




———−0.019




807.4






951




TAATAGAGCTTCCTTTAGTT




1095 




58.46




0.30




−0.280




0.149




−0.117




——— 0.128




608.7






952




AATAGAGCTTCCTTTAGTTG




1096 




58.97




0.30




−0.205




0.149




−0.070




——— 0.332




623.8






953




ATAGAGCTTCCTTTAGTTGC




1097 




65.53




0.30




0.758




0.149




0.526




——— 0.576




674.5






954




TAGAGCTTCCTTTAGTTGCC




1098 




69.50




0.30




1.340




0.149




0.887







0.841






814.3






955




AGAGCTTCCTTTAGTTGCCC




1099 




73.89




0.30




1.983




0.149




1.286







1.157






1183.8






956




GAGCTTCCTTTAGTTGCCCC




1100 




77.20




0.30




2.470




0.149




1.588







1.454






2219.4






957




AGCTTCCTTTAGTTGCCCCC




1101 




79.38




0.30




2.789




0.149




1.785







1.650






4642.2






958




GCTTCCTTTAGTTGCCCCCC




1102 




82.41




0.40




3.234




0.236




2.095







1.765






8804.8






959




CTTCCTTTAGTTGCCCCCCT




1103 




80.06




0.80




2.889




0.583




2.013







1.823






11331.0






960




TTCCTTTAGTTGCCCCCCTA




1104 




77.67




1.10




2.539




0.844




1.895







1.818






12976.0






961




TCCTTTAGTTGCCCCCCTAT




1105 




77.27




0.60




2.480




0.410




1.693







1.765






12369.0






962




CCTTTAGTTGCCCCCCTATC




1106 




77.27




0.60




2.480




0.410




1.693







1.669






15090.0






963




CTTTAGTTGCCCCCCTATCT




1107 




75.74




0.60




2.255




0.410




1.554







1.581






16130.0






964




TTTAGTTGCCCCCCTATCTT




1108 




74.23




0.60




2.033




0.410




1.416







1.545






15304.0






965




TTAGTTGCCCCCCTATCTTT




1109 




74.23




0.60




2.033




0.410




1.416







1.539






14829.0






966




TAGTTGCCCCCCTATCTTTA




1110 




73.31




0.80




1.899




0.583




1.399







1.490






15309.0






967




AGTTGCCCCCCTATCTTTAT




1111 




73.83




1.40




1.976




1.105




1.645







1.498






15205.0






968




GTTGCCCCCCTATCTTTATT




1112 




73.91




1.40




1.986




1.105




1.652







1.524






14192.0






969




TTGCCCCCCTATCTTTATTG




1113 




70.59




1.40




1.500




1.105




1.350







1.515






8699.5






970




TGCCCCCCTATCTTTATTGT




1114 




73.39




1.40




1.911




1.105




1.605







1.461






7786.6






971




GCCCCCCTATCTTTATTGTG




1115 




73.39




1.40




1.911




1.105




1.605







1.328






6709.1






972




CCCCCCTATCTTTATTGTGA




1116 




70.61




1.40




1.502




1.105




1.351







1.165






6198.4






973




CCCCCTATCTTTATTGTGAC




1117 




67.66




1.20




1.070




0.931




1.017







0.999






4910.2






974




CCCCTATCTTTATTGTGACG




1118 




64.37




1.20




0.587




0.931




0.718




——— 0.780




850.0






975




CCCTATCTTTATTGTGACGA




1119 




62.05




1.20




0.248




0.931




0.507




——— 0.570




404.9






976




CCTATCTTTATTGTGACGAG




1120 




58.56




1.20




−0.265




0.931




0.190




——— 0.436




166.6






977




CTATCTTTATTGTGACGAGG




1121 




57.28




1.20




−0.452




0.931




0.073




——— 0.376




126.9






978




TATCTTTATTGTGACGAGGG




1122 




57.91




1.20




−0.361




0.931




0.130




——— 0.279




92.6






979




ATCTTTATTGTGACGAGGGG




1123 




61.03




1.20




0.097




0.931




0.414




——— 0.173




97.9






980




TCTTTATTGTGACGAGGGGT




1124 




64.18




0.90




0.559




0.670




0.601




——— 0.097




122.3






981




CTTTATTGTGACGAGGGGTC




1125 




64.18




−0.80




0.559




−0.808




0.039




——— 0.013




267.0






982




TTTATTGTGACGAGGGGTCG




1126 




62.63




−1.20




0.332




−1.156




−0.233




———−0.073




396.0






983




TTATTGTGACGAGGGGTCGT




1127 




65.37




−2.30




0.734




−2.112




−0.348




———−0.145




446.0






984




TATTGTGACGAGGGGTCGTT




1128 




65.37




−2.80




0.734




−2.547




−0.513




———−0.202




661.9






985




ATTGTGACGAGGGGTCGTTG




1129 




65.82




−2.80




0.800




−2.547




−0.472




———−0.163




864.5






986




TTGTGACGAGGGGTCGTTGC




1130 




70.01




−2.80




1.414




−2.547




−0.091




———−0.156




1465.7






987




TGTGACGAGGGGTCGTTGCC




1131 




73.21




−2.80




1.884




−2.547




0.200




———−0.157




2836.9






988




GTGACGAGGGGTCGTTGCCA




1132 




74.44




−2.80




2.065




−2.547




0.312




———−0.137




3589.7






989




TGACGAGGGGTCGTTGCCAA




1133 




69.05




−2.80




1.274




−2.547




−0.178




———−0.058




2100.4






990




GACGAGGGGTCGTTGCCAAA




1134 




67.10




−2.80




0.988




−2.547




−0.355




——— 0.042




1948.7






991




ACGAGGGGTCGTTGCCAAAG




1135 




66.13




−2.60




0.845




−2.373




−0.378




——— 0.125




1384.3






992




CGAGGGGTCGTTGCCAAAGA




1136 




66.81




−1.40




0.945




−1.330




0.081




——— 0.187




1192.0






993




GAGGGGTCGTTGCCAAAGAG




1137 




66.84




0.20




0.950




0.062




0.612




——— 0.304




1221.0






994




AGGGGTCGTTGCCAAAGAGT




1138 




68.70




0.20




1.223




0.062




0.782




——— 0.427




953.2






995




GGGGTCGTTGCCAAAGAGTG




1139 




68.32




0.20




1.167




0.062




0.747




——— 0.515




988.6






996




GGGTCGTTGCCAAAGAGTGA




1140 




67.11




0.20




0.989




0.062




0.636




——— 0.476




937.8






997




GGTCGTTGCCAAAGAGTGAT




1141 




64.59




0.50




0.620




0.323




0.507




——— 0.333




852.1






998




GTCGTTGCCAAAGAGTGATC




1142 




63.51




0.00




0.461




−0.112




0.243




——— 0.176




1189.4






999




TCGTTGCCAAAGAGTGATCT




1143 




62.35




−1.00




0.291




−0.982




−0.192




———−0.012




1501.7






1000 




CGTTGCCAAAGAGTGATCTG




1144 




60.92




−1.20




0.081




−1.156




−0.389




———−0.156




1360.9






1001 




GTTGCCAAAGAGTGATCTGA




1145 




61.71




−1.20




0.198




−1.156




−0.317




———−0.263




1112.9






1002 




TTGCCAAAGAGTGATCTGAG




1146 




58.90




−1.20




−0.215




−1.156




−0.572




———−0.353




468.3






1003 




TGCCAAAGAGTGATCTGAGG




1147 




61.08




−1.20




0.104




−1.156




−0.375




———−0.454




400.1






1004 




GCCAAAGAGTGATCTGAGGG




1148 




63.68




−1.50




0.485




−1.417




−0.237




———−0.541




401.6






1005 




CCAAAGAGTGATCTGAGGGA




1149 




60.94




−1.20




0.084




−1.156




−0.387




———−0.575




199.9






1006 




CAAAGAGTGATCTGAGGGAA




1150 




55.32




−1.20




−0.741




−1.156




−0.899




———−0.530




202.1






1007 




AAAGAGTGATCTGAGGGAAG




1151 




54.21




−1.20




−0.903




−1.156




−0.999




———−0.491




258.7






1008 




AAGAGTGATCTGAGGGAAGT




1152 




59.12




−1.20




−0.183




−1.156




−0.552




———−0.475




274.7






1009 




AGAGTGATCTGAGGGAAGTT




1153 




61.60




−1.00




0.181




−0.982




−0.261




———−0.463




297.2






1010 




GAGTGATCTGAGGGAAGTTA




1154 




60.78




−0.30




0.061




−0.373




−0.104




———−0.414




250.6






1011 




AGTGATCTGAGGGAAGTTAA




1155 




57.35




0.60




−0.443




0.410




−0.119




———−0.318




231.3






1012 




GTGATCTGAGGGAAGTTAAA




1156 




55.25




0.60




−0.751




0.410




−0.310




———−0.286




214.5






1013 




TGATCTGAGGGAAGTTAAAG




1157 




52.55




0.60




−1.147




0.410




−0.556




———−0.295




102.3






1014 




GATCTGAGGGAAGTTAAAGG




1158 




55.09




0.60




−0.774




0.410




−0.324




———−0.330




102.3






1015 




ATCTGAGGGAAGTTAAAGGA




1159 




55.09




0.60




−0.774




0.410




−0.324




———−0.367




49.4






1016 




TCTGAGGGAAGTTAAAGGAT




1160 




55.09




0.60




−0.774




0.410




−0.324




———−0.379




104.3






1017 




CTGAGGGAAGTTAAAGGATA




1161 




53.32




1.00




−1.034




0.757




−0.353




———−0.370




46.3






1018 




TGAGGGAAGTTAAAGGATAC




1162 




51.95




1.30




−1.235




1.018




−0.378




———−0.360




50.9






1019 




GAGGGAAGTTAAAGGATACA




1163 




53.26




0.90




−1.043




0.670




−0.392





58.2






1020 




AGGGAAGTTAAAGGATACAG




1164 




52.14




0.90




−1.207




0.670




−0.494





50.5






1021 




GGGAAGTTAAAGGATACAGT




1165 




54.81




0.90




−0.815




0.670




−0.251





53.1














Example 3




Synopsis:




The method of the present invention is particularly useful as a guide to the iterative refinement of probes. One of the specific predictions made for rabbit β-globin in Example 1 is used to provide an example of such a refinement.




Materials and Methods:




The contig spanning positions 5-11 of a portion of the rabbit β-globin gene (Example 1, Table 3) was analyzed, using the experimentally measured data to simulate the results of successive experimental measurements. The iterative refinement was performed using a rule-based algorithm, outlined below. This algorithm is used by way of example only; other algorithms for efficiently finding local maxima are well known to the art and could be employed to perform this task.




Given experimental data for probes from the 1


st


quartile, median and 3


rd


quartile of a contig, as well as a user-set signal threshold for further consideration of a probe,




1) If all 3 measurements are below the user-specified signal threshold, discard the prediction.




2) If at least one of the measurements is above the user-specified threshold, determine which point yields the maximum signal.




a) If the maximum point is the 1


st


quartile probe, then make three new measurements for probes with the same spacing as that used in the preceding iteration, but displaced so that the third probe is identical to the original 1


st


quartile probe. In other words, repeat the search with the same pattern and spacing, but displace the pattern in the direction of increasing signal found in the first experiment.




b) If the maximum point is the 3


rd


quartile probe, then make three new measurements for probes with the same spacing as that used in the preceding iteration, but displaced so that the first probe is identical to the original 3


rd


quartile probe. In other words, repeat the search with the same pattern and spacing, but displace the pattern in the direction of increasing signal found in the first experiment.




c) If the maximum point is the median probe, then repeat the experiment, keeping the median point the same, but shrinking the spacing between probes by a factor of 2.




3) Continue iteration until a maximum is found, or the user judges the signal level observed to be acceptable. Use the experimental value measured for the probe duplicated in successive iterations to tie together the successive data sets, via a simple normalization procedure, described below. Where appropriate, consider all of the data (i.e. all of the iterations) when deciding how to proceed, or whether the peak hybridization intensity has been found.




Results:




Iterative refinement of the contig spanning positions 5-11 in Table 3 proceeds as follows:




Iteration 1: Probes are synthesized at positions 6, 8 and 10, yielding the experimental hybridization intensities 180, 220 and 310, respectively.




Iteration 2: Following rule 2b), probes are synthesized at positions 10, 12 and 14. Note that the redundant measurement at position 10 serves as a bridge between experiments, and allows comparison of the two sets by normalizing the intensities by multiplying the second iteration measurements by the ratio of the intensity observed for the probe at position 10 in the first iteration to the value observed in the second iteration. In the simplest case, the ratio is 1; in any case, the second iteration yields the normalized values 310, 390, 240 for probe positions 10, 12 and 14, respectively.




Iteration 3: By rule 2c), measurements are performed for probes at positions 11, 12 and 13; after normalization, these yield the normalized hybridization intensities 320, 390 and 410, respectively. Combination of these results with the results from iteration 2, probe position 14, yields the conclusion that the best probe for this intensity peak is the probe that starts at sequence position 13. The overall result is that iterative improvement converges in three iterations, and requires the synthesis of seven test probes, one of which is the local optimal probe. In addition, the first and second iterations yield probes that exhibit 75% and 95% of the local maximum hybridization intensities, respectively. In many applications, either of these probes would be considered acceptable.




The above examples 1 and 2 demonstrate that two different implementations of the method of the present invention are capable of efficiently predicting regions of high hybridization efficiency in a variety of polynucleotide targets. Many of the predictions yield acceptable probe sequences on the first design iteration, and all would yield optimized probe sets after 2-4 rounds of iterative refinement, as demonstrated in Example 3. The performance demonstrated in these examples greatly exceeds the performance of current methods. Finally, the examples demonstrate that the predictions can be performed by a software application that has been implemented and installed on a Pentium®-based computer workstation.




All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.




Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.







1165





24 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided




stem_loop


2..21




1
ACTGGCAATC ACAATTGCCA GTAA 24






75 base pairs


nucleic acid


single


linear




tRNA



NO


NO



Saccharomyces cerevisiae




tRNA


1..75


experimental



/function= “transfer RNA”
/product= “tRNA-Ala”
/evidence= EXPERIMENTAL
/anticodon= (pos 34 .. 36, aa Ala)
/citation= ([1][2])





modified_base


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= m1g
/citation= ([1][2])





modified_base


16


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= d
/citation= ([1][2])





modified_base


20


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= d
/citation= ([1][2])





modified_base


26


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= m22g
/citation= ([1][2])





modified_base


34


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= i
/citation= ([1][2])





modified_base


37


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= m1i
/citation= ([1][2])





modified_base


38


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= p
/citation= ([1][2])





modified_base


46


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= d
/citation= ([1][2])





modified_base


53


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= t
/citation= ([1][2])





modified_base


54


experimental



/evidence= EXPERIMENTAL
/frequency= 0.9999
/mod_base= p
/citation= ([1][2])







R. W.
Apgar, J.
Everett, G. A.
Madison, J. T.
Marquisee, M.
Merrill, S. H.
Penswick, J. R.
Zamir, A.




Holley






Structure of a ribonucleic acid



Science


147


1462-1465


1965



2 FROM 1 TO 75






J. R.
Martin, R.
Dirheimer, G.




Penswick






Evidence supporting a revised sequence for
yeast alanine tRNA




FEBS Lett.


50


28-31


1975



2 FROM 1 TO 75



2
GGGCGUGUGG CGUAGUCGGU AGCGCGCUCC CUUGGCGUGG GAGAGUCUCC GGUUCGAUUC 60
CGGACUCGUC CACCA 75






16 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



3
ATGGACTTAG CATTCG 16






12 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



4
ATGGACTTAG CA 12






12 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



5
TGGACTTAGC AT 12






12 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



6
GGACTTAGCA TT 12






12 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



7
GACTTAGCAT TC 12






12 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



8
ACTTAGCATT CG 12






50 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



9
GTCCAAAAAG GGTCAGTCTA CCTCCCGCCA TAAAAAACTC ATGTTCAAGA 50






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



10
GTCCAAAAAG GGTCAGTCTA CCTCC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



11
TCCAAAAAGG GTCAGTCTAC CTCCC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



12
CCAAAAAGGG TCAGTCTACC TCCCG 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



13
CAAAAAGGGT CAGTCTACCT CCCGC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



14
AAAAAGGGTC AGTCTACCTC CCGCC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



15
AAAAGGGTCA GTCTACCTCC CGCCA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



16
AAAGGGTCAG TCTACCTCCC GCCAT 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



17
AAGGGTCAGT CTACCTCCCG CCATA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



18
AGGGTCAGTC TACCTCCCGC CATAA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



19
GGGTCAGTCT ACCTCCCGCC ATAAA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



20
GGTCAGTCTA CCTCCCGCCA TAAAA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



21
GTCAGTCTAC CTCCCGCCAT AAAAA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



22
TCAGTCTACC TCCCGCCATA AAAAA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



23
CAGTCTACCT CCCGCCATAA AAAAC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



24
AGTCTACCTC CCGCCATAAA AAACT 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



25
GTCTACCTCC CGCCATAAAA AACTC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



26
TCTACCTCCC GCCATAAAAA ACTCA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



27
CTACCTCCCG CCATAAAAAA CTCAT 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



28
TACCTCCCGC CATAAAAAAC TCATG 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



29
ACCTCCCGCC ATAAAAAACT CATGT 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



30
CCTCCCGCCA TAAAAAACTC ATGTT 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



31
CTCCCGCCAT AAAAAACTCA TGTTC 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



32
TCCCGCCATA AAAAACTCAT GTTCA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



33
CCCGCCATAA AAAACTCATG TTCAA 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



34
CCGCCATAAA AAACTCATGT TCAAG 25






25 base pairs


nucleic acid


single


linear




cDNA



YES


NO



not provided



35
CGCCATAAAA AACTCATGTT CAAGA 25






122 base pairs


nucleic acid


single


linear




cDNA



NO


NO



Oryctolagus cuniculus




5′UTR


1..53





CDS


54..122


/codon_start= 54
/product= “rabbit beta1 globin, N-terminus”
/citation= ([1])







M. L.
III Johnson, J. E.
James, M. D.
Hardison, R. C.




Rohrbaugh






Transcriptional unit of the rabbit beta1
globin gene




Mol. Cell. Biol.


5


147-160


1985



36 FROM 1 TO 122



36
ACACTTGCTT TTGACACAAC TGTGTTTACT TGCAATCCCC CAAAACAGAC AGA ATG 56
Met
1
GTG CAT CTG TCC AGT GAG GAG AAG TCT GCG GTC ACT GCC CTG TGG GGC 104
Val His Leu Ser Ser Glu Glu Lys Ser Ala Val Thr Ala Leu Trp Gly
5 10 15
AAG GTG AAT GTG GAA GAA 122
Lys Val Asn Val Glu Glu
20






1040 base pairs


nucleic acid


single


linear




cDNA



NO


NO



Human immunodefficiency virus


type I



BH10




misc_RNA


1..1040


experimental



/partial
/function= “protease & reverse transcriptase
regions”
/product= “pol polyprotein (partial)”
/evidence= EXPERIMENTAL
/citation= ([1])







F.
Gallo, R. C.
Chang, N. T.
Ghrayeb, J.
Papas, T. S.
Lautenberger, J. A.
Pearson, M. L.
Jr. Petteway, S. R.
Ivanoff, L.
Baumeister, K.




Wong-Stahl






Complete nucleotide sequence of the AIDS
virus, HTLV-III




Nature


313


277-284


1985



37 FROM 1 TO 1040



37
TGTACTGTCC ATTTATCAGG ATGGAGTTCA TAACCCATCC AAAGGAATGG AGGTTCTTTC 60
TGATGTTTTT TGTCTGGTGT GGTAAGTCCC CACCTCAACA GATGTTGTCT CAGCTCCTCT 120
ATTTTTGTTC TATGCTGCCC TATTTCTAAG TCAGATCCTA CATACAAATC ATCCATGTAT 180
TGATAGATAA CTATGTCTGG ATTTTGTTTT TTAAAAGGCT CTAAGATTTT TGTCATGCTA 240
CTTTGGAATA TTGCTGGTGA TCCTTTCCAT CCCTGTGGAA GCACATTGTA CTGATATCTA 300
ATCCCTGGTG TCTCATTGTT TATACTAGGT ATGGTAAATG CAGTATACTT CCTGAAGTCT 360
TCATCTAAGG GAACTGAAAA ATATGCATCA CCCACATCCA GTACTGTTAC TGATTTTTTC 420
TTTTTTAACC CTGCGGGATG TGGTATTCCT AATTGAACTT CCCAGAAGTC TTGAGTTCTC 480
TTATTAAGTT CTCTGAAATC TACTAATTTT CTCCATTTAG TACTGTCTTT TTTCTTTATG 540
GCAAATACTG GAGTATTGTA TGGATTCTCA GGCCCAATTT TTGAAATTTT CCCTTCCTTT 600
TCCATTTCTG TACAAATTTC TACTAATGCT TTTATTTTTT CTTCTGTCAA TGGCCATTGT 660
TTAACTTTTG GGCCATCCAT TCCTGGCTTT AATTTTACTG GTACAGTCTC AATAGGGCTA 720
ATGGGAAAAT TTAAAGTGCA ACCAATCTGA GTCAACAGAT TTCTTCCAAT TATGTTGACA 780
GGTGTAGGTC CTACTAATAC TGTACCTATA GCTTTATGTC CACAGATTTC TATGAGTATC 840
TGATCATACT GTCTTACTTT GATAAAACCT CCAATTCCCC CTATCATTTT TGGTTTCCAT 900
CTTCCTGGCA AACTCATTTC TTCTAATACT GTATCATCTG CTCCTGTATC TAATAGAGCT 960
TCCTTTAGTT GCCCCCCTAT CTTTATTGTG ACGAGGGGTC GTTGCCAAAG AGTGATCTGA 1020
GGGAAGTTAA AGGATACAGT 1040






999 base pairs


nucleic acid


single


linear




cDNA



NO


NO



Homo sapiens




CDS


1..982


experimental



/partial
/codon_start= 2
/function= “glycolysis”
/product= “Glyceraldehydephosphate Dehydrogenase”
/evidence= EXPERIMENTAL
/standard_name= “G3PDH”
/citation= ([1])





promoter


983..999


/function= “promoter for T7 RNA
polymerase”







P.
Martinelli, R.
Salvatore, F.




Arcari






The complete sequence of a full length cDNA
for human liver glyceraldehyde-3-phosphate
dehydrogenase evidence for multiple mRNA species




Nucleic Acids Res.


12


23


9179-9189


1984



38 FROM 1 TO 999



38
G AAG GTC GGA GTC AAC GGA TTT GGT CGT ATT GGG CGC CTG GTC ACC 46
Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg Leu Val Thr
1 5 10 15
AGG GCT GCT TTT AAC TCT GGT AAA GTG GAT ATT GTT GCC ATC AAT GAC 94
Arg Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala Ile Asn Asp
20 25 30
CCC TTC ATT GAC CTC AAC TAC ATG GTT TAC ATG TTC CAA TAT GAT TCC 142
Pro Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln Tyr Asp Ser
35 40 45
ACC CAT GGC AAA TTC CAT GGC ACC GTC AAG GCT GAG AAC GGG AAG CTT 190
Thr His Gly Lys Phe His Gly Thr Val Lys Ala Glu Asn Gly Lys Leu
50 55 60
GTC ATC AAT GGA AAT CCC ATC ACC ATC TTC CAG GAG CGA GAT CCC TCC 238
Val Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg Asp Pro Ser
65 70 75
AAA ATC AAG TGG GGC GAT GCT GGC GCT GAG TAC GTC GTG GAG TCC ACT 286
Lys Ile Lys Trp Gly Asp Ala Gly Ala Glu Tyr Val Val Glu Ser Thr
80 85 90 95
GGC GTC TTC ACC ACC ATG GAG AAG GCT GGG GCT CAT TTG CAG GGG GGA 334
Gly Val Phe Thr Thr Met Glu Lys Ala Gly Ala His Leu Gln Gly Gly
100 105 110
GCC AAA AGG GTC ATC ATC TCT GCC CCC TCT GCT GAT GCC CCC ATG TTC 382
Ala Lys Arg Val Ile Ile Ser Ala Pro Ser Ala Asp Ala Pro Met Phe
115 120 125
GTC ATG GGT GTG AAC CAT GAG AAG TAT GAC AAC AGC CTC AAG ATC ATC 430
Val Met Gly Val Asn His Glu Lys Tyr Asp Asn Ser Leu Lys Ile Ile
130 135 140
AGC AAT GCC TCC TGC ACC ACC AAC TGC TTA GCA CCC CTG GCC AAG GTC 478
Ser Asn Ala Ser Cys Thr Thr Asn Cys Leu Ala Pro Leu Ala Lys Val
145 150 155
ATC CAT GAC AAC TTT GGT ATC GTG GAA GGA CTC ATG ACC ACA GTC CAT 526
Ile His Asp Asn Phe Gly Ile Val Glu Gly Leu Met Thr Thr Val His
160 165 170 175
GCC ATC ACT GCC ACC CAG AAG ACT GTG GAT GGC CCC TCC GGG AAA CTG 574
Ala Ile Thr Ala Thr Gln Lys Thr Val Asp Gly Pro Ser Gly Lys Leu
180 185 190
TGG CGT GAT GGC CGC GGG GCT CTC CAG AAC ATC ATC CCT GCC TCT ACT 622
Trp Arg Asp Gly Arg Gly Ala Leu Gln Asn Ile Ile Pro Ala Ser Thr
195 200 205
GGC GCT GCC AAG GCT GTG GGC AAG GTC ATC CCT GAG CTA GAC GGG AAG 670
Gly Ala Ala Lys Ala Val Gly Lys Val Ile Pro Glu Leu Asp Gly Lys
210 215 220
CTC ACT GGC ATG GCC TTC CGT GTC CCC ACT GCC AAC GTG TCA GTG GTG 718
Leu Thr Gly Met Ala Phe Arg Val Pro Thr Ala Asn Val Ser Val Val
225 230 235
GAC CTG ACC TGC CGT CTA GAA AAA CCT GCC AAA TAT GAT GAC ATC AAG 766
Asp Leu Thr Cys Arg Leu Glu Lys Pro Ala Lys Tyr Asp Asp Ile Lys
240 245 250 255
AAG GTG GTG AAG CAG GCG TCG GAG GGC CCC CTC AAA GGC ATC CTG GGC 814
Lys Val Val Lys Gln Ala Ser Glu Gly Pro Leu Lys Gly Ile Leu Gly
260 265 270
TAC ACT GAG CAC CAG GTG GTC TCC TCT GAC TTC AAC AGC GAC ACC CAC 862
Tyr Thr Glu His Gln Val Val Ser Ser Asp Phe Asn Ser Asp Thr His
275 280 285
TCC TCC ACC TTT GAC GCT GGG GCT GGC ATT GCC CTC AAC GAC CAC TTT 910
Ser Ser Thr Phe Asp Ala Gly Ala Gly Ile Ala Leu Asn Asp His Phe
290 295 300
GTC AAG CTC ATT TCC TGG TAT GAC AAC GAA TTT GGC TAC AGC AAC AGG 958
Val Lys Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr Ser Asn Arg
305 310 315
GTG GTG GAC CTC ATG GCC CAC ATG CTATAGTGAG TCGTATT 999
Val Val Asp Leu Met Ala His Met
320 325






1049 base pairs


nucleic acid


single


linear




cDNA



NO


NO



Homo sapiens




CDS


1..372


experimental



/partial
/codon_start= 1
/function= “tumor suppressor”
/product= “p53 (C-terminal portion)”
/evidence= EXPERIMENTAL
/gene= “HSP53G”
/standard_name= “p53”





3′UTR


373..1049


/citation= ([1])







P. A.
Barrett, J. C.
Wiseman, R. W.




Futreal






An Alu polymorphism intragenic to the TP53
gene




Nucleic Acids Res.


19


24


6977-


1991



39 FROM 1 TO 1049



39
GAG GTG CGT GTT TGT GCC TGT CCT GGG AGA GAC CGG CGC ACA GAG GAA 48
Glu Val Arg Val Cys Ala Cys Pro Gly Arg Asp Arg Arg Thr Glu Glu
1 5 10 15
GAG AAT CTC CGC AAG AAA GGG GAG CCT CAC CAC GAG CTG CCC CCA GGG 96
Glu Asn Leu Arg Lys Lys Gly Glu Pro His His Glu Leu Pro Pro Gly
20 25 30
AGC ACT AAG CGA GCA CTG CCC AAC AAC ACC AGC TCC TCT CCC CAG CCA 144
Ser Thr Lys Arg Ala Leu Pro Asn Asn Thr Ser Ser Ser Pro Gln Pro
35 40 45
AAG AAG AAA CCA CTG GAT GGA GAA TAT TTC ACC CTT CAG ATC CGT GGG 192
Lys Lys Lys Pro Leu Asp Gly Glu Tyr Phe Thr Leu Gln Ile Arg Gly
50 55 60
CGT GAG CGC TTC GAG ATG TTC CGA GAG CTG AAT GAG GCC TTG GAA CTC 240
Arg Glu Arg Phe Glu Met Phe Arg Glu Leu Asn Glu Ala Leu Glu Leu
65 70 75 80
AAG GAT GCC CAG GCT GGG AAG GAG CCA GGG GGG AGC AGG GCT CAC TCC 288
Lys Asp Ala Gln Ala Gly Lys Glu Pro Gly Gly Ser Arg Ala His Ser
85 90 95
AGC CAC CTG AAG TCC AAA AAG GGT CAG TCT ACC TCC CGC CAT AAA AAA 336
Ser His Leu Lys Ser Lys Lys Gly Gln Ser Thr Ser Arg His Lys Lys
100 105 110
CTC ATG TTC AAG ACA GAA GGG CCT GAC TCA GAC TGA CATTCTCCAC 382
Leu Met Phe Lys Thr Glu Gly Pro Asp Ser Asp *
115 120
TTCTTGTTCC CCACTGACAG CCTCCCTCCC CCATCTCTCC CTCCCCTGCC ATTTTGGGTT 442
TTGGGTCTTT GAACCCTTGC TTGCAATAGG TGTGCGTCAG AAGCACCCAG GACTTCCATT 502
TGCTTTGTCC CGGGGCTCCA CTGAACAAGT TGGCCTGCAC TGGTGTTTTG TTGTGGGGAG 562
GAGGATGGGG AGTAGGACAT ACCAGCTTAG ATTTTAAGGT TTTTACTGTG AGGGATGTTT 622
GGGAGATGTA AGAAATGTTC TTGCAGTTAA GGGTTAGTTT ACAATCAGCC ACATTCTAGG 682
TAGGTAGGGG CCCACTTCAC CGTACTAACC AGGGAAGCTG TCCCTCATGT TGAATTTTCT 742
CTAACTTCAA GGCCCATATC TGTGAAATGC TGGCATTTGC ACCTACCTCA CAGAGTGCAT 802
TGTGAGGGTT AATGAAATAA TGTACATCTG GCCTTGAAAC CACCTTTTAT TACATGGGGT 862
CTAAAACTTG ACCCCCTTGA GGGTGCCTGT TCCCTCTCCC TCTCCCTGTT GGCTGGTGGG 922
TTGGTAGTTT CTACAGTTGG GCAGCTGGTT AGGTAGAGGG AGTTGTCAAG TCTTGCTGGC 982
CCAGCCAAAC CCTGTCTGAC AACCTCTTGG TCGACCTTAG TACCTAAAAG GAAATCTCAC 1042
CCCATCC 1049






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



40
TTCTTCCACA TTCACCT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



41
TCTTCCACAT TCACCTT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



42
CTTCCACATT CACCTTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



43
TTCCACATTC ACCTTGC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



44
TCCACATTCA CCTTGCC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



45
CCACATTCAC CTTGCCC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



46
CACATTCACC TTGCCCC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



47
ACATTCACCT TGCCCCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



48
CATTCACCTT GCCCCAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



49
ATTCACCTTG CCCCACA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



50
TTCACCTTGC CCCACAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



51
TCACCTTGCC CCACAGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



52
CACCTTGCCC CACAGGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



53
ACCTTGCCCC ACAGGGC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



54
CCTTGCCCCA CAGGGCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



55
CTTGCCCCAC AGGGCAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



56
TTGCCCCACA GGGCAGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



57
TGCCCCACAG GGCAGTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



58
GCCCCACAGG GCAGTGA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



59
CCCCACAGGG CAGTGAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



60
CCCACAGGGC AGTGACC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



61
CCACAGGGCA GTGACCG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



62
CACAGGGCAG TGACCGC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



63
ACAGGGCAGT GACCGCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



64
CAGGGCAGTG ACCGCAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



65
AGGGCAGTGA CCGCAGA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



66
GGGCAGTGAC CGCAGAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



67
GGCAGTGACC GCAGACT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



68
GCAGTGACCG CAGACTT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



69
CAGTGACCGC AGACTTC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



70
AGTGACCGCA GACTTCT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



71
GTGACCGCAG ACTTCTC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



72
TGACCGCAGA CTTCTCC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



73
GACCGCAGAC TTCTCCT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



74
ACCGCAGACT TCTCCTC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



75
CCGCAGACTT CTCCTCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



76
CGCAGACTTC TCCTCAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



77
GCAGACTTCT CCTCACT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



78
CAGACTTCTC CTCACTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



79
AGACTTCTCC TCACTGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



80
GACTTCTCCT CACTGGA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



81
ACTTCTCCTC ACTGGAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



82
CTTCTCCTCA CTGGACA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



83
TTCTCCTCAC TGGACAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



84
TCTCCTCACT GGACAGA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



85
CTCCTCACTG GACAGAT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



86
TCCTCACTGG ACAGATG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



87
CCTCACTGGA CAGATGC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



88
CTCACTGGAC AGATGCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



89
TCACTGGACA GATGCAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



90
CACTGGACAG ATGCACC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



91
ACTGGACAGA TGCACCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



92
CTGGACAGAT GCACCAT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



93
TGGACAGATG CACCATT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



94
GGACAGATGC ACCATTC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



95
GACAGATGCA CCATTCT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



96
ACAGATGCAC CATTCTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



97
CAGATGCACC ATTCTGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



98
AGATGCACCA TTCTGTC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



99
GATGCACCAT TCTGTCT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



100
ATGCACCATT CTGTCTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



101
TGCACCATTC TGTCTGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



102
GCACCATTCT GTCTGTT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



103
CACCATTCTG TCTGTTT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



104
ACCATTCTGT CTGTTTT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



105
CCATTCTGTC TGTTTTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



106
CATTCTGTCT GTTTTGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



107
ATTCTGTCTG TTTTGGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



108
TTCTGTCTGT TTTGGGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



109
TCTGTCTGTT TTGGGGG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



110
CTGTCTGTTT TGGGGGA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



111
TGTCTGTTTT GGGGGAT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



112
GTCTGTTTTG GGGGATT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



113
TCTGTTTTGG GGGATTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



114
CTGTTTTGGG GGATTGC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



115
TGTTTTGGGG GATTGCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



116
GTTTTGGGGG ATTGCAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



117
TTTTGGGGGA TTGCAAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



118
TTTGGGGGAT TGCAAGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



119
TTGGGGGATT GCAAGTA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



120
TGGGGGATTG CAAGTAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



121
GGGGGATTGC AAGTAAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



122
GGGGATTGCA AGTAAAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



123
GGGATTGCAA GTAAACA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



124
GGATTGCAAG TAAACAC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



125
GATTGCAAGT AAACACA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



126
ATTGCAAGTA AACACAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



127
TTGCAAGTAA ACACAGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



128
TGCAAGTAAA CACAGTT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



129
GCAAGTAAAC ACAGTTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



130
CAAGTAAACA CAGTTGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



131
AAGTAAACAC AGTTGTG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



132
AGTAAACACA GTTGTGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



133
GTAAACACAG TTGTGTC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



134
TAAACACAGT TGTGTCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



135
AAACACAGTT GTGTCAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



136
AACACAGTTG TGTCAAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



137
ACACAGTTGT GTCAAAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



138
CACAGTTGTG TCAAAAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



139
ACAGTTGTGT CAAAAGC 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



140
CAGTTGTGTC AAAAGCA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



141
AGTTGTGTCA AAAGCAA 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



142
GTTGTGTCAA AAGCAAG 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



143
TTGTGTCAAA AGCAAGT 17






17 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



144
TGTGTCAAAA GCAAGTG 17






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



145
GTACTGTCCA TTTATCAGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



146
TACTGTCCAT TTATCAGGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



147
ACTGTCCATT TATCAGGATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



148
CTGTCCATTT ATCAGGATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



149
TGTCCATTTA TCAGGATGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



150
GTCCATTTAT CAGGATGGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



151
TCCATTTATC AGGATGGAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



152
CCATTTATCA GGATGGAGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



153
CATTTATCAG GATGGAGTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



154
ATTTATCAGG ATGGAGTTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



155
TTTATCAGGA TGGAGTTCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



156
TTATCAGGAT GGAGTTCATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



157
TATCAGGATG GAGTTCATAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



158
ATCAGGATGG AGTTCATAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



159
TCAGGATGGA GTTCATAACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



160
CAGGATGGAG TTCATAACCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



161
AGGATGGAGT TCATAACCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



162
GGATGGAGTT CATAACCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



163
GATGGAGTTC ATAACCCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



164
ATGGAGTTCA TAACCCATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



165
TGGAGTTCAT AACCCATCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



166
GGAGTTCATA ACCCATCCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



167
GAGTTCATAA CCCATCCCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



168
AGTTCATAAC CCATCCCAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



169
GTTCATAACC CATCCCAAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



170
TTCATAACCC ATCCCAAAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



171
TCATAACCCA TCCCAAAGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



172
CATAACCCAT CCCAAAGGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



173
ATAACCCATC CCAAAGGAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



174
TAACCCATCC CAAAGGAATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



175
AACCCATCCC AAAGGAATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



176
ACCCATCCCA AAGGAATGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



177
CCCATCCCAA AGGAATGGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



178
CCATCCCAAA GGAATGGAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



179
CATCCCAAAG GAATGGAGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



180
ATCCCAAAGG AATGGAGGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



181
TCCCAAAGGA ATGGAGGTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



182
CCCAAAGGAA TGGAGGTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



183
CCAAAGGAAT GGAGGTTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



184
CAAAGGAATG GAGGTTCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



185
AAAGGAATGG AGGTTCTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



186
AAGGAATGGA GGTTCTTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



187
AGGAATGGAG GTTCTTTCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



188
GGAATGGAGG TTCTTTCTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



189
GAATGGAGGT TCTTTCTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



190
AATGGAGGTT CTTTCTGATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



191
ATGGAGGTTC TTTCTGATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



192
TGGAGGTTCT TTCTGATGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



193
GGAGGTTCTT TCTGATGTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



194
GAGGTTCTTT CTGATGTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



195
AGGTTCTTTC TGATGTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



196
GGTTCTTTCT GATGTTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



197
GTTCTTTCTG ATGTTTTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



198
TTCTTTCTGA TGTTTTTTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



199
TCTTTCTGAT GTTTTTTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



200
CTTTCTGATG TTTTTTGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



201
TTTCTGATGT TTTTTGTCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



202
TTCTGATGTT TTTTGTCTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



203
TCTGATGTTT TTTGTCTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



204
CTGATGTTTT TTGTCTGGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



205
TGATGTTTTT TGTCTGGTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



206
GATGTTTTTT GTCTGGTGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



207
ATGTTTTTTG TCTGGTGTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



208
TGTTTTTTGT CTGGTGTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



209
GTTTTTTGTC TGGTGTGGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



210
TTTTTTGTCT GGTGTGGTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



211
TTTTTGTCTG GTGTGGTAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



212
TTTTGTCTGG TGTGGTAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



213
TTTGTCTGGT GTGGTAAGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



214
TTGTCTGGTG TGGTAAGTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



215
TGTCTGGTGT GGTAAGTCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



216
GTCTGGTGTG GTAAGTCCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



217
TCTGGTGTGG TAAGTCCCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



218
CTGGTGTGGT AAGTCCCCAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



219
TGGTGTGGTA AGTCCCCACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



220
GGTGTGGTAA GTCCCCACCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



221
GTGTGGTAAG TCCCCACCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



222
TGTGGTAAGT CCCCACCTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



223
GTGGTAAGTC CCCACCTCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



224
TGGTAAGTCC CCACCTCAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



225
GGTAAGTCCC CACCTCAACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



226
GTAAGTCCCC ACCTCAACAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



227
TAAGTCCCCA CCTCAACAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



228
AAGTCCCCAC CTCAACAGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



229
AGTCCCCACC TCAACAGATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



230
GTCCCCACCT CAACAGATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



231
TCCCCACCTC AACAGATGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



232
CCCCACCTCA ACAGATGTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



233
CCCACCTCAA CAGATGTTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



234
CCACCTCAAC AGATGTTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



235
CACCTCAACA GATGTTGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



236
ACCTCAACAG ATGTTGTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



237
CCTCAACAGA TGTTGTCTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



238
CTCAACAGAT GTTGTCTCAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



239
TCAACAGATG TTGTCTCAGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



240
CAACAGATGT TGTCTCAGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



241
AACAGATGTT GTCTCAGCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



242
ACAGATGTTG TCTCAGCTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



243
CAGATGTTGT CTCAGCTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



244
AGATGTTGTC TCAGCTCCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



245
GATGTTGTCT CAGCTCCTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



246
ATGTTGTCTC AGCTCCTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



247
TGTTGTCTCA GCTCCTCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



248
GTTGTCTCAG CTCCTCTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



249
TTGTCTCAGC TCCTCTATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



250
TGTCTCAGCT CCTCTATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



251
GTCTCAGCTC CTCTATTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



252
TCTCAGCTCC TCTATTTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



253
CTCAGCTCCT CTATTTTTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



254
TCAGCTCCTC TATTTTTGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



255
CAGCTCCTCT ATTTTTGTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



256
AGCTCCTCTA TTTTTGTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



257
GCTCCTCTAT TTTTGTTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



258
CTCCTCTATT TTTGTTCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



259
TCCTCTATTT TTGTTCTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



260
CCTCTATTTT TGTTCTATGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



261
CTCTATTTTT GTTCTATGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



262
TCTATTTTTG TTCTATGCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



263
CTATTTTTGT TCTATGCTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



264
TATTTTTGTT CTATGCTGCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



265
ATTTTTGTTC TATGCTGCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



266
TTTTTGTTCT ATGCTGCCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



267
TTTTGTTCTA TGCTGCCCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



268
TTTGTTCTAT GCTGCCCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



269
TTGTTCTATG CTGCCCTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



270
TGTTCTATGC TGCCCTATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



271
GTTCTATGCT GCCCTATTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



272
TTCTATGCTG CCCTATTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



273
TCTATGCTGC CCTATTTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



274
CTATGCTGCC CTATTTCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



275
TATGCTGCCC TATTTCTAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



276
ATGCTGCCCT ATTTCTAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



277
TGCTGCCCTA TTTCTAAGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



278
GCTGCCCTAT TTCTAAGTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



279
CTGCCCTATT TCTAAGTCAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



280
TGCCCTATTT CTAAGTCAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



281
GCCCTATTTC TAAGTCAGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



282
CCCTATTTCT AAGTCAGATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



283
CCTATTTCTA AGTCAGATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



284
CTATTTCTAA GTCAGATCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



285
TATTTCTAAG TCAGATCCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



286
ATTTCTAAGT CAGATCCTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



287
TTTCTAAGTC AGATCCTACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



288
TTCTAAGTCA GATCCTACAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



289
TCTAAGTCAG ATCCTACATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



290
CTAAGTCAGA TCCTACATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



291
TAAGTCAGAT CCTACATACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



292
AAGTCAGATC CTACATACAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



293
AGTCAGATCC TACATACAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



294
GTCAGATCCT ACATACAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



295
TCAGATCCTA CATACAAATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



296
CAGATCCTAC ATACAAATCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



297
AGATCCTACA TACAAATCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



298
GATCCTACAT ACAAATCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



299
ATCCTACATA CAAATCATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



300
TCCTACATAC AAATCATCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



301
CCTACATACA AATCATCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



302
CTACATACAA ATCATCCATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



303
TACATACAAA TCATCCATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



304
ACATACAAAT CATCCATGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



305
CATACAAATC ATCCATGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



306
ATACAAATCA TCCATGTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



307
TACAAATCAT CCATGTATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



308
ACAAATCATC CATGTATTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



309
CAAATCATCC ATGTATTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



310
AAATCATCCA TGTATTGATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



311
AATCATCCAT GTATTGATAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



312
ATCATCCATG TATTGATAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



313
TCATCCATGT ATTGATAGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



314
CATCCATGTA TTGATAGATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



315
ATCCATGTAT TGATAGATAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



316
TCCATGTATT GATAGATAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



317
CCATGTATTG ATAGATAACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



318
CATGTATTGA TAGATAACTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



319
ATGTATTGAT AGATAACTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



320
TGTATTGATA GATAACTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



321
GTATTGATAG ATAACTATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



322
TATTGATAGA TAACTATGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



323
ATTGATAGAT AACTATGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



324
TTGATAGATA ACTATGTCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



325
TGATAGATAA CTATGTCTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



326
GATAGATAAC TATGTCTGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



327
ATAGATAACT ATGTCTGGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



328
TAGATAACTA TGTCTGGATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



329
AGATAACTAT GTCTGGATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



330
GATAACTATG TCTGGATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



331
ATAACTATGT CTGGATTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



332
TAACTATGTC TGGATTTTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



333
AACTATGTCT GGATTTTGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



334
ACTATGTCTG GATTTTGTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



335
CTATGTCTGG ATTTTGTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



336
TATGTCTGGA TTTTGTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



337
ATGTCTGGAT TTTGTTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



338
TGTCTGGATT TTGTTTTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



339
GTCTGGATTT TGTTTTTTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



340
TCTGGATTTT GTTTTTTAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



341
CTGGATTTTG TTTTTTAAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



342
TGGATTTTGT TTTTTAAAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



343
GGATTTTGTT TTTTAAAAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



344
GATTTTGTTT TTTAAAAGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



345
ATTTTGTTTT TTAAAAGGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



346
TTTTGTTTTT TAAAAGGCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



347
TTTGTTTTTT AAAAGGCTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



348
TTGTTTTTTA AAAGGCTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



349
TGTTTTTTAA AAGGCTCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



350
GTTTTTTAAA AGGCTCTAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



351
TTTTTTAAAA GGCTCTAAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



352
TTTTTAAAAG GCTCTAAGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



353
TTTTAAAAGG CTCTAAGATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



354
TTTAAAAGGC TCTAAGATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



355
TTAAAAGGCT CTAAGATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



356
TAAAAGGCTC TAAGATTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



357
AAAAGGCTCT AAGATTTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



358
AAAGGCTCTA AGATTTTTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



359
AAGGCTCTAA GATTTTTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



360
AGGCTCTAAG ATTTTTGTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



361
GGCTCTAAGA TTTTTGTCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



362
GCTCTAAGAT TTTTGTCATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



363
CTCTAAGATT TTTGTCATGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



364
TCTAAGATTT TTGTCATGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



365
CTAAGATTTT TGTCATGCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



366
TAAGATTTTT GTCATGCTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



367
AAGATTTTTG TCATGCTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



368
AGATTTTTGT CATGCTACTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



369
GATTTTTGTC ATGCTACTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



370
ATTTTTGTCA TGCTACTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



371
TTTTTGTCAT GCTACTTTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



372
TTTTGTCATG CTACTTTGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



373
TTTGTCATGC TACTTTGGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



374
TTGTCATGCT ACTTTGGAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



375
TGTCATGCTA CTTTGGAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



376
GTCATGCTAC TTTGGAATAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



377
TCATGCTACT TTGGAATATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



378
CATGCTACTT TGGAATATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



379
ATGCTACTTT GGAATATTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



380
TGCTACTTTG GAATATTGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



381
GCTACTTTGG AATATTGCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



382
CTACTTTGGA ATATTGCTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



383
TACTTTGGAA TATTGCTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



384
ACTTTGGAAT ATTGCTGGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



385
CTTTGGAATA TTGCTGGTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



386
TTTGGAATAT TGCTGGTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



387
TTGGAATATT GCTGGTGATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



388
TGGAATATTG CTGGTGATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



389
GGAATATTGC TGGTGATCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



390
GAATATTGCT GGTGATCCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



391
AATATTGCTG GTGATCCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



392
ATATTGCTGG TGATCCTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



393
TATTGCTGGT GATCCTTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



394
ATTGCTGGTG ATCCTTTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



395
TTGCTGGTGA TCCTTTCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



396
TGCTGGTGAT CCTTTCCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



397
GCTGGTGATC CTTTCCATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



398
CTGGTGATCC TTTCCATCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



399
TGGTGATCCT TTCCATCCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



400
GGTGATCCTT TCCATCCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



401
GTGATCCTTT CCATCCCTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



402
TGATCCTTTC CATCCCTGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



403
GATCCTTTCC ATCCCTGTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



404
ATCCTTTCCA TCCCTGTGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



405
TCCTTTCCAT CCCTGTGGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



406
CCTTTCCATC CCTGTGGAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



407
CTTTCCATCC CTGTGGAAGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



408
TTTCCATCCC TGTGGAAGCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



409
TTCCATCCCT GTGGAAGCAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



410
TCCATCCCTG TGGAAGCACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



411
CCATCCCTGT GGAAGCACAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



412
CATCCCTGTG GAAGCACATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



413
ATCCCTGTGG AAGCACATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



414
TCCCTGTGGA AGCACATTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



415
CCCTGTGGAA GCACATTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



416
CCTGTGGAAG CACATTGTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



417
CTGTGGAAGC ACATTGTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



418
TGTGGAAGCA CATTGTACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



419
GTGGAAGCAC ATTGTACTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



420
TGGAAGCACA TTGTACTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



421
GGAAGCACAT TGTACTGATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



422
GAAGCACATT GTACTGATAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



423
AAGCACATTG TACTGATATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



424
AGCACATTGT ACTGATATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



425
GCACATTGTA CTGATATCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



426
CACATTGTAC TGATATCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



427
ACATTGTACT GATATCTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



428
CATTGTACTG ATATCTAATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



429
ATTGTACTGA TATCTAATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



430
TTGTACTGAT ATCTAATCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



431
TGTACTGATA TCTAATCCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



432
GTACTGATAT CTAATCCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



433
TACTGATATC TAATCCCTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



434
ACTGATATCT AATCCCTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



435
CTGATATCTA ATCCCTGGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



436
TGATATCTAA TCCCTGGTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



437
GATATCTAAT CCCTGGTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



438
ATATCTAATC CCTGGTGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



439
TATCTAATCC CTGGTGTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



440
ATCTAATCCC TGGTGTCTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



441
TCTAATCCCT GGTGTCTCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



442
CTAATCCCTG GTGTCTCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



443
TAATCCCTGG TGTCTCATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



444
AATCCCTGGT GTCTCATTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



445
ATCCCTGGTG TCTCATTGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



446
TCCCTGGTGT CTCATTGTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



447
CCCTGGTGTC TCATTGTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



448
CCTGGTGTCT CATTGTTTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



449
CTGGTGTCTC ATTGTTTATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



450
TGGTGTCTCA TTGTTTATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



451
GGTGTCTCAT TGTTTATACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



452
GTGTCTCATT GTTTATACTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



453
TGTCTCATTG TTTATACTAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



454
GTCTCATTGT TTATACTAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



455
TCTCATTGTT TATACTAGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



456
CTCATTGTTT ATACTAGGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



457
TCATTGTTTA TACTAGGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



458
CATTGTTTAT ACTAGGTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



459
ATTGTTTATA CTAGGTATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



460
TTGTTTATAC TAGGTATGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



461
TGTTTATACT AGGTATGGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



462
GTTTATACTA GGTATGGTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



463
TTTATACTAG GTATGGTAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



464
TTATACTAGG TATGGTAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



465
TATACTAGGT ATGGTAAATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



466
ATACTAGGTA TGGTAAATGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



467
TACTAGGTAT GGTAAATGCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



468
ACTAGGTATG GTAAATGCAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



469
CTAGGTATGG TAAATGCAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



470
TAGGTATGGT AAATGCAGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



471
AGGTATGGTA AATGCAGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



472
GGTATGGTAA ATGCAGTATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



473
GTATGGTAAA TGCAGTATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



474
TATGGTAAAT GCAGTATACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



475
ATGGTAAATG CAGTATACTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



476
TGGTAAATGC AGTATACTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



477
GGTAAATGCA GTATACTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



478
GTAAATGCAG TATACTTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



479
TAAATGCAGT ATACTTCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



480
AAATGCAGTA TACTTCCTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



481
AATGCAGTAT ACTTCCTGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



482
ATGCAGTATA CTTCCTGAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



483
TGCAGTATAC TTCCTGAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



484
GCAGTATACT TCCTGAAGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



485
CAGTATACTT CCTGAAGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



486
AGTATACTTC CTGAAGTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



487
GTATACTTCC TGAAGTCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



488
TATACTTCCT GAAGTCTTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



489
ATACTTCCTG AAGTCTTCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



490
TACTTCCTGA AGTCTTCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



491
ACTTCCTGAA GTCTTCATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



492
CTTCCTGAAG TCTTCATCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



493
TTCCTGAAGT CTTCATCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



494
TCCTGAAGTC TTCATCTAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



495
CCTGAAGTCT TCATCTAAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



496
CTGAAGTCTT CATCTAAGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



497
TGAAGTCTTC ATCTAAGGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



498
GAAGTCTTCA TCTAAGGGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



499
AAGTCTTCAT CTAAGGGAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



500
AGTCTTCATC TAAGGGAACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



501
GTCTTCATCT AAGGGAACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



502
TCTTCATCTA AGGGAACTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



503
CTTCATCTAA GGGAACTGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



504
TTCATCTAAG GGAACTGAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



505
TCATCTAAGG GAACTGAAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



506
CATCTAAGGG AACTGAAAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



507
ATCTAAGGGA ACTGAAAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



508
TCTAAGGGAA CTGAAAAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



509
CTAAGGGAAC TGAAAAATAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



510
TAAGGGAACT GAAAAATATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



511
AAGGGAACTG AAAAATATGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



512
AGGGAACTGA AAAATATGCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



513
GGGAACTGAA AAATATGCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



514
GGAACTGAAA AATATGCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



515
GAACTGAAAA ATATGCATCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



516
AACTGAAAAA TATGCATCAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



517
ACTGAAAAAT ATGCATCACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



518
CTGAAAAATA TGCATCACCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



519
TGAAAAATAT GCATCACCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



520
GAAAAATATG CATCACCCAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



521
AAAAATATGC ATCACCCACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



522
AAAATATGCA TCACCCACAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



523
AAATATGCAT CACCCACATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



524
AATATGCATC ACCCACATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



525
ATATGCATCA CCCACATCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



526
TATGCATCAC CCACATCCAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



527
ATGCATCACC CACATCCAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



528
TGCATCACCC ACATCCAGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



529
GCATCACCCA CATCCAGTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



530
CATCACCCAC ATCCAGTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



531
ATCACCCACA TCCAGTACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



532
TCACCCACAT CCAGTACTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



533
CACCCACATC CAGTACTGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



534
ACCCACATCC AGTACTGTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



535
CCCACATCCA GTACTGTTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



536
CCACATCCAG TACTGTTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



537
CACATCCAGT ACTGTTACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



538
ACATCCAGTA CTGTTACTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



539
CATCCAGTAC TGTTACTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



540
ATCCAGTACT GTTACTGATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



541
TCCAGTACTG TTACTGATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



542
CCAGTACTGT TACTGATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



543
CAGTACTGTT ACTGATTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



544
AGTACTGTTA CTGATTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



545
GTACTGTTAC TGATTTTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



546
TACTGTTACT GATTTTTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



547
ACTGTTACTG ATTTTTTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



548
CTGTTACTGA TTTTTTCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



549
TGTTACTGAT TTTTTCTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



550
GTTACTGATT TTTTCTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



551
TTACTGATTT TTTCTTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



552
TACTGATTTT TTCTTTTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



553
ACTGATTTTT TCTTTTTTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



554
CTGATTTTTT CTTTTTTAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



555
TGATTTTTTC TTTTTTAACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



556
GATTTTTTCT TTTTTAACCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



557
ATTTTTTCTT TTTTAACCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



558
TTTTTTCTTT TTTAACCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



559
TTTTTCTTTT TTAACCCTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



560
TTTTCTTTTT TAACCCTGCG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



561
TTTCTTTTTT AACCCTGCGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



562
TTCTTTTTTA ACCCTGCGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



563
TCTTTTTTAA CCCTGCGGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



564
CTTTTTTAAC CCTGCGGGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



565
TTTTTTAACC CTGCGGGATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



566
TTTTTAACCC TGCGGGATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



567
TTTTAACCCT GCGGGATGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



568
TTTAACCCTG CGGGATGTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



569
TTAACCCTGC GGGATGTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



570
TAACCCTGCG GGATGTGGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



571
AACCCTGCGG GATGTGGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



572
ACCCTGCGGG ATGTGGTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



573
CCCTGCGGGA TGTGGTATTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



574
CCTGCGGGAT GTGGTATTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



575
CTGCGGGATG TGGTATTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



576
TGCGGGATGT GGTATTCCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



577
GCGGGATGTG GTATTCCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



578
CGGGATGTGG TATTCCTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



579
GGGATGTGGT ATTCCTAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



580
GGATGTGGTA TTCCTAATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



581
GATGTGGTAT TCCTAATTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



582
ATGTGGTATT CCTAATTGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



583
TGTGGTATTC CTAATTGAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



584
GTGGTATTCC TAATTGAACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



585
TGGTATTCCT AATTGAACTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



586
GGTATTCCTA ATTGAACTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



587
GTATTCCTAA TTGAACTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



588
TATTCCTAAT TGAACTTCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



589
ATTCCTAATT GAACTTCCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



590
TTCCTAATTG AACTTCCCAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



591
TCCTAATTGA ACTTCCCAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



592
CCTAATTGAA CTTCCCAGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



593
CTAATTGAAC TTCCCAGAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



594
TAATTGAACT TCCCAGAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



595
AATTGAACTT CCCAGAAGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



596
ATTGAACTTC CCAGAAGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



597
TTGAACTTCC CAGAAGTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



598
TGAACTTCCC AGAAGTCTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



599
GAACTTCCCA GAAGTCTTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



600
AACTTCCCAG AAGTCTTGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



601
ACTTCCCAGA AGTCTTGAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



602
CTTCCCAGAA GTCTTGAGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



603
TTCCCAGAAG TCTTGAGTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



604
TCCCAGAAGT CTTGAGTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



605
CCCAGAAGTC TTGAGTTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



606
CCAGAAGTCT TGAGTTCTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



607
CAGAAGTCTT GAGTTCTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



608
AGAAGTCTTG AGTTCTCTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



609
GAAGTCTTGA GTTCTCTTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



610
AAGTCTTGAG TTCTCTTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



611
AGTCTTGAGT TCTCTTATTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



612
GTCTTGAGTT CTCTTATTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



613
TCTTGAGTTC TCTTATTAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



614
CTTGAGTTCT CTTATTAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



615
TTGAGTTCTC TTATTAAGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



616
TGAGTTCTCT TATTAAGTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



617
GAGTTCTCTT ATTAAGTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



618
AGTTCTCTTA TTAAGTTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



619
GTTCTCTTAT TAAGTTCTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



620
TTCTCTTATT AAGTTCTCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



621
TCTCTTATTA AGTTCTCTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



622
CTCTTATTAA GTTCTCTGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



623
TCTTATTAAG TTCTCTGAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



624
CTTATTAAGT TCTCTGAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



625
TTATTAAGTT CTCTGAAATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



626
TATTAAGTTC TCTGAAATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



627
ATTAAGTTCT CTGAAATCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



628
TTAAGTTCTC TGAAATCTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



629
TAAGTTCTCT GAAATCTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



630
AAGTTCTCTG AAATCTACTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



631
AGTTCTCTGA AATCTACTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



632
GTTCTCTGAA ATCTACTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



633
TTCTCTGAAA TCTACTAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



634
TCTCTGAAAT CTACTAATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



635
CTCTGAAATC TACTAATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



636
TCTGAAATCT ACTAATTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



637
CTGAAATCTA CTAATTTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



638
TGAAATCTAC TAATTTTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



639
GAAATCTACT AATTTTCTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



640
AAATCTACTA ATTTTCTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



641
AATCTACTAA TTTTCTCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



642
ATCTACTAAT TTTCTCCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



643
TCTACTAATT TTCTCCATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



644
CTACTAATTT TCTCCATTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



645
TACTAATTTT CTCCATTTAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



646
ACTAATTTTC TCCATTTAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



647
CTAATTTTCT CCATTTAGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



648
TAATTTTCTC CATTTAGTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



649
AATTTTCTCC ATTTAGTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



650
ATTTTCTCCA TTTAGTACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



651
TTTTCTCCAT TTAGTACTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



652
TTTCTCCATT TAGTACTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



653
TTCTCCATTT AGTACTGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



654
TCTCCATTTA GTACTGTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



655
CTCCATTTAG TACTGTCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



656
TCCATTTAGT ACTGTCTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



657
CCATTTAGTA CTGTCTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



658
CATTTAGTAC TGTCTTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



659
ATTTAGTACT GTCTTTTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



660
TTTAGTACTG TCTTTTTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



661
TTAGTACTGT CTTTTTTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



662
TAGTACTGTC TTTTTTCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



663
AGTACTGTCT TTTTTCTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



664
GTACTGTCTT TTTTCTTTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



665
TACTGTCTTT TTTCTTTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



666
ACTGTCTTTT TTCTTTATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



667
CTGTCTTTTT TCTTTATGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



668
TGTCTTTTTT CTTTATGGCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



669
GTCTTTTTTC TTTATGGCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



670
TCTTTTTTCT TTATGGCAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



671
CTTTTTTCTT TATGGCAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



672
TTTTTTCTTT ATGGCAAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



673
TTTTTCTTTA TGGCAAATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



674
TTTTCTTTAT GGCAAATACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



675
TTTCTTTATG GCAAATACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



676
TTCTTTATGG CAAATACTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



677
TCTTTATGGC AAATACTGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



678
CTTTATGGCA AATACTGGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



679
TTTATGGCAA ATACTGGAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



680
TTATGGCAAA TACTGGAGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



681
TATGGCAAAT ACTGGAGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



682
ATGGCAAATA CTGGAGTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



683
TGGCAAATAC TGGAGTATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



684
GGCAAATACT GGAGTATTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



685
GCAAATACTG GAGTATTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



686
CAAATACTGG AGTATTGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



687
AAATACTGGA GTATTGTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



688
AATACTGGAG TATTGTATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



689
ATACTGGAGT ATTGTATGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



690
TACTGGAGTA TTGTATGGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



691
ACTGGAGTAT TGTATGGATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



692
CTGGAGTATT GTATGGATTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



693
TGGAGTATTG TATGGATTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



694
GGAGTATTGT ATGGATTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



695
GAGTATTGTA TGGATTCTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



696
AGTATTGTAT GGATTCTCAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



697
GTATTGTATG GATTCTCAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



698
TATTGTATGG ATTCTCAGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



699
ATTGTATGGA TTCTCAGGCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



700
TTGTATGGAT TCTCAGGCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



701
TGTATGGATT CTCAGGCCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



702
GTATGGATTC TCAGGCCCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



703
TATGGATTCT CAGGCCCAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



704
ATGGATTCTC AGGCCCAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



705
TGGATTCTCA GGCCCAATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



706
GGATTCTCAG GCCCAATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



707
GATTCTCAGG CCCAATTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



708
ATTCTCAGGC CCAATTTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



709
TTCTCAGGCC CAATTTTTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



710
TCTCAGGCCC AATTTTTGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



711
CTCAGGCCCA ATTTTTGAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



712
TCAGGCCCAA TTTTTGAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



713
CAGGCCCAAT TTTTGAAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



714
AGGCCCAATT TTTGAAATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



715
GGCCCAATTT TTGAAATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



716
GCCCAATTTT TGAAATTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



717
CCCAATTTTT GAAATTTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



718
CCAATTTTTG AAATTTTCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



719
CAATTTTTGA AATTTTCCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



720
AATTTTTGAA ATTTTCCCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



721
ATTTTTGAAA TTTTCCCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



722
TTTTTGAAAT TTTCCCTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



723
TTTTGAAATT TTCCCTTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



724
TTTGAAATTT TCCCTTCCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



725
TTGAAATTTT CCCTTCCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



726
TGAAATTTTC CCTTCCTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



727
GAAATTTTCC CTTCCTTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



728
AAATTTTCCC TTCCTTTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



729
AATTTTCCCT TCCTTTTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



730
ATTTTCCCTT CCTTTTCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



731
TTTTCCCTTC CTTTTCCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



732
TTTCCCTTCC TTTTCCATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



733
TTCCCTTCCT TTTCCATTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



734
TCCCTTCCTT TTCCATTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



735
CCCTTCCTTT TCCATTTCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



736
CCTTCCTTTT CCATTTCTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



737
CTTCCTTTTC CATTTCTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



738
TTCCTTTTCC ATTTCTGTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



739
TCCTTTTCCA TTTCTGTACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



740
CCTTTTCCAT TTCTGTACAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



741
CTTTTCCATT TCTGTACAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



742
TTTTCCATTT CTGTACAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



743
TTTCCATTTC TGTACAAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



744
TTCCATTTCT GTACAAATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



745
TCCATTTCTG TACAAATTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



746
CCATTTCTGT ACAAATTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



747
CATTTCTGTA CAAATTTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



748
ATTTCTGTAC AAATTTCTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



749
TTTCTGTACA AATTTCTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



750
TTCTGTACAA ATTTCTACTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



751
TCTGTACAAA TTTCTACTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



752
CTGTACAAAT TTCTACTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



753
TGTACAAATT TCTACTAATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



754
GTACAAATTT CTACTAATGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



755
TACAAATTTC TACTAATGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



756
ACAAATTTCT ACTAATGCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



757
CAAATTTCTA CTAATGCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



758
AAATTTCTAC TAATGCTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



759
AATTTCTACT AATGCTTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



760
ATTTCTACTA ATGCTTTTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



761
TTTCTACTAA TGCTTTTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



762
TTCTACTAAT GCTTTTATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



763
TCTACTAATG CTTTTATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



764
CTACTAATGC TTTTATTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



765
TACTAATGCT TTTATTTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



766
ACTAATGCTT TTATTTTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



767
CTAATGCTTT TATTTTTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



768
TAATGCTTTT ATTTTTTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



769
AATGCTTTTA TTTTTTCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



770
ATGCTTTTAT TTTTTCTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



771
TGCTTTTATT TTTTCTTCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



772
GCTTTTATTT TTTCTTCTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



773
CTTTTATTTT TTCTTCTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



774
TTTTATTTTT TCTTCTGTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



775
TTTATTTTTT CTTCTGTCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



776
TTATTTTTTC TTCTGTCAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



777
TATTTTTTCT TCTGTCAATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



778
ATTTTTTCTT CTGTCAATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



779
TTTTTTCTTC TGTCAATGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



780
TTTTTCTTCT GTCAATGGCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



781
TTTTCTTCTG TCAATGGCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



782
TTTCTTCTGT CAATGGCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



783
TTCTTCTGTC AATGGCCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



784
TCTTCTGTCA ATGGCCATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



785
CTTCTGTCAA TGGCCATTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



786
TTCTGTCAAT GGCCATTGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



787
TCTGTCAATG GCCATTGTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



788
CTGTCAATGG CCATTGTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



789
TGTCAATGGC CATTGTTTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



790
GTCAATGGCC ATTGTTTAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



791
TCAATGGCCA TTGTTTAACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



792
CAATGGCCAT TGTTTAACTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



793
AATGGCCATT GTTTAACTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



794
ATGGCCATTG TTTAACTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



795
TGGCCATTGT TTAACTTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



796
GGCCATTGTT TAACTTTTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



797
GCCATTGTTT AACTTTTGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



798
CCATTGTTTA ACTTTTGGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



799
CATTGTTTAA CTTTTGGGCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



800
ATTGTTTAAC TTTTGGGCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



801
TTGTTTAACT TTTGGGCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



802
TGTTTAACTT TTGGGCCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



803
GTTTAACTTT TGGGCCATCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



804
TTTAACTTTT GGGCCATCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



805
TTAACTTTTG GGCCATCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



806
TAACTTTTGG GCCATCCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



807
AACTTTTGGG CCATCCATTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



808
ACTTTTGGGC CATCCATTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



809
CTTTTGGGCC ATCCATTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



810
TTTTGGGCCA TCCATTCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



811
TTTGGGCCAT CCATTCCTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



812
TTGGGCCATC CATTCCTGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



813
TGGGCCATCC ATTCCTGGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



814
GGGCCATCCA TTCCTGGCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



815
GGCCATCCAT TCCTGGCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



816
GCCATCCATT CCTGGCTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



817
CCATCCATTC CTGGCTTTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



818
CATCCATTCC TGGCTTTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



819
ATCCATTCCT GGCTTTAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



820
TCCATTCCTG GCTTTAATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



821
CCATTCCTGG CTTTAATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



822
CATTCCTGGC TTTAATTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



823
ATTCCTGGCT TTAATTTTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



824
TTCCTGGCTT TAATTTTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



825
TCCTGGCTTT AATTTTACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



826
CCTGGCTTTA ATTTTACTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



827
CTGGCTTTAA TTTTACTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



828
TGGCTTTAAT TTTACTGGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



829
GGCTTTAATT TTACTGGTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



830
GCTTTAATTT TACTGGTACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



831
CTTTAATTTT ACTGGTACAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



832
TTTAATTTTA CTGGTACAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



833
TTAATTTTAC TGGTACAGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



834
TAATTTTACT GGTACAGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



835
AATTTTACTG GTACAGTCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



836
ATTTTACTGG TACAGTCTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



837
TTTTACTGGT ACAGTCTCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



838
TTTACTGGTA CAGTCTCAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



839
TTACTGGTAC AGTCTCAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



840
TACTGGTACA GTCTCAATAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



841
ACTGGTACAG TCTCAATAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



842
CTGGTACAGT CTCAATAGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



843
TGGTACAGTC TCAATAGGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



844
GGTACAGTCT CAATAGGGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



845
GTACAGTCTC AATAGGGCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



846
TACAGTCTCA ATAGGGCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



847
ACAGTCTCAA TAGGGCTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



848
CAGTCTCAAT AGGGCTAATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



849
AGTCTCAATA GGGCTAATGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



850
GTCTCAATAG GGCTAATGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



851
TCTCAATAGG GCTAATGGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



852
CTCAATAGGG CTAATGGGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



853
TCAATAGGGC TAATGGGAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



854
CAATAGGGCT AATGGGAAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



855
AATAGGGCTA ATGGGAAAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



856
ATAGGGCTAA TGGGAAAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



857
TAGGGCTAAT GGGAAAATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



858
AGGGCTAATG GGAAAATTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



859
GGGCTAATGG GAAAATTTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



860
GGCTAATGGG AAAATTTAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



861
GCTAATGGGA AAATTTAAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



862
CTAATGGGAA AATTTAAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



863
TAATGGGAAA ATTTAAAGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



864
AATGGGAAAA TTTAAAGTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



865
ATGGGAAAAT TTAAAGTGCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



866
TGGGAAAATT TAAAGTGCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



867
GGGAAAATTT AAAGTGCAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



868
GGAAAATTTA AAGTGCAACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



869
GAAAATTTAA AGTGCAACCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



870
AAAATTTAAA GTGCAACCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



871
AAATTTAAAG TGCAACCAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



872
AATTTAAAGT GCAACCAATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



873
ATTTAAAGTG CAACCAATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



874
TTTAAAGTGC AACCAATCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



875
TTAAAGTGCA ACCAATCTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



876
TAAAGTGCAA CCAATCTGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



877
AAAGTGCAAC CAATCTGAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



878
AAGTGCAACC AATCTGAGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



879
AGTGCAACCA ATCTGAGTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



880
GTGCAACCAA TCTGAGTCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



881
TGCAACCAAT CTGAGTCAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



882
GCAACCAATC TGAGTCAACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



883
CAACCAATCT GAGTCAACAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



884
AACCAATCTG AGTCAACAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



885
ACCAATCTGA GTCAACAGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



886
CCAATCTGAG TCAACAGATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



887
CAATCTGAGT CAACAGATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



888
AATCTGAGTC AACAGATTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



889
ATCTGAGTCA ACAGATTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



890
TCTGAGTCAA CAGATTTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



891
CTGAGTCAAC AGATTTCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



892
TGAGTCAACA GATTTCTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



893
GAGTCAACAG ATTTCTTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



894
AGTCAACAGA TTTCTTCCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



895
GTCAACAGAT TTCTTCCAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



896
TCAACAGATT TCTTCCAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



897
CAACAGATTT CTTCCAATTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



898
AACAGATTTC TTCCAATTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



899
ACAGATTTCT TCCAATTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



900
CAGATTTCTT CCAATTATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



901
AGATTTCTTC CAATTATGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



902
GATTTCTTCC AATTATGTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



903
ATTTCTTCCA ATTATGTTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



904
TTTCTTCCAA TTATGTTGAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



905
TTCTTCCAAT TATGTTGACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



906
TCTTCCAATT ATGTTGACAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



907
CTTCCAATTA TGTTGACAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



908
TTCCAATTAT GTTGACAGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



909
TCCAATTATG TTGACAGGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



910
CCAATTATGT TGACAGGTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



911
CAATTATGTT GACAGGTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



912
AATTATGTTG ACAGGTGTAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



913
ATTATGTTGA CAGGTGTAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



914
TTATGTTGAC AGGTGTAGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



915
TATGTTGACA GGTGTAGGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



916
ATGTTGACAG GTGTAGGTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



917
TGTTGACAGG TGTAGGTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



918
GTTGACAGGT GTAGGTCCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



919
TTGACAGGTG TAGGTCCTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



920
TGACAGGTGT AGGTCCTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



921
GACAGGTGTA GGTCCTACTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



922
ACAGGTGTAG GTCCTACTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



923
CAGGTGTAGG TCCTACTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



924
AGGTGTAGGT CCTACTAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



925
GGTGTAGGTC CTACTAATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



926
GTGTAGGTCC TACTAATACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



927
TGTAGGTCCT ACTAATACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



928
GTAGGTCCTA CTAATACTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



929
TAGGTCCTAC TAATACTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



930
AGGTCCTACT AATACTGTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



931
GGTCCTACTA ATACTGTACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



932
GTCCTACTAA TACTGTACCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



933
TCCTACTAAT ACTGTACCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



934
CCTACTAATA CTGTACCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



935
CTACTAATAC TGTACCTATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



936
TACTAATACT GTACCTATAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



937
ACTAATACTG TACCTATAGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



938
CTAATACTGT ACCTATAGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



939
TAATACTGTA CCTATAGCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



940
AATACTGTAC CTATAGCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



941
ATACTGTACC TATAGCTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



942
TACTGTACCT ATAGCTTTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



943
ACTGTACCTA TAGCTTTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



944
CTGTACCTAT AGCTTTATGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



945
TGTACCTATA GCTTTATGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



946
GTACCTATAG CTTTATGTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



947
TACCTATAGC TTTATGTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



948
ACCTATAGCT TTATGTCCAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



949
CCTATAGCTT TATGTCCACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



950
CTATAGCTTT ATGTCCACAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



951
TATAGCTTTA TGTCCACAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



952
ATAGCTTTAT GTCCACAGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



953
TAGCTTTATG TCCACAGATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



954
AGCTTTATGT CCACAGATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



955
GCTTTATGTC CACAGATTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



956
CTTTATGTCC ACAGATTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



957
TTTATGTCCA CAGATTTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



958
TTATGTCCAC AGATTTCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



959
TATGTCCACA GATTTCTATG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



960
ATGTCCACAG ATTTCTATGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



961
TGTCCACAGA TTTCTATGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



962
GTCCACAGAT TTCTATGAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



963
TCCACAGATT TCTATGAGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



964
CCACAGATTT CTATGAGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



965
CACAGATTTC TATGAGTATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



966
ACAGATTTCT ATGAGTATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



967
CAGATTTCTA TGAGTATCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



968
AGATTTCTAT GAGTATCTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



969
GATTTCTATG AGTATCTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



970
ATTTCTATGA GTATCTGATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



971
TTTCTATGAG TATCTGATCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



972
TTCTATGAGT ATCTGATCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



973
TCTATGAGTA TCTGATCATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



974
CTATGAGTAT CTGATCATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



975
TATGAGTATC TGATCATACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



976
ATGAGTATCT GATCATACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



977
TGAGTATCTG ATCATACTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



978
GAGTATCTGA TCATACTGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



979
AGTATCTGAT CATACTGTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



980
GTATCTGATC ATACTGTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



981
TATCTGATCA TACTGTCTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



982
ATCTGATCAT ACTGTCTTAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



983
TCTGATCATA CTGTCTTACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



984
CTGATCATAC TGTCTTACTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



985
TGATCATACT GTCTTACTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



986
GATCATACTG TCTTACTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



987
ATCATACTGT CTTACTTTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



988
TCATACTGTC TTACTTTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



989
CATACTGTCT TACTTTGATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



990
ATACTGTCTT ACTTTGATAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



991
TACTGTCTTA CTTTGATAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



992
ACTGTCTTAC TTTGATAAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



993
CTGTCTTACT TTGATAAAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



994
TGTCTTACTT TGATAAAACC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



995
GTCTTACTTT GATAAAACCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



996
TCTTACTTTG ATAAAACCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



997
CTTACTTTGA TAAAACCTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



998
TTACTTTGAT AAAACCTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



999
TACTTTGATA AAACCTCCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1000
ACTTTGATAA AACCTCCAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1001
CTTTGATAAA ACCTCCAATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1002
TTTGATAAAA CCTCCAATTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1003
TTGATAAAAC CTCCAATTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1004
TGATAAAACC TCCAATTCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1005
GATAAAACCT CCAATTCCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1006
ATAAAACCTC CAATTCCCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1007
TAAAACCTCC AATTCCCCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1008
AAAACCTCCA ATTCCCCCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1009
AAACCTCCAA TTCCCCCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1010
AACCTCCAAT TCCCCCTATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1011
ACCTCCAATT CCCCCTATCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1012
CCTCCAATTC CCCCTATCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1013
CTCCAATTCC CCCTATCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1014
TCCAATTCCC CCTATCATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1015
CCAATTCCCC CTATCATTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1016
CAATTCCCCC TATCATTTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1017
AATTCCCCCT ATCATTTTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1018
ATTCCCCCTA TCATTTTTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1019
TTCCCCCTAT CATTTTTGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1020
TCCCCCTATC ATTTTTGGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1021
CCCCCTATCA TTTTTGGTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1022
CCCCTATCAT TTTTGGTTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1023
CCCTATCATT TTTGGTTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1024
CCTATCATTT TTGGTTTCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1025
CTATCATTTT TGGTTTCCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1026
TATCATTTTT GGTTTCCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1027
ATCATTTTTG GTTTCCATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1028
TCATTTTTGG TTTCCATCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1029
CATTTTTGGT TTCCATCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1030
ATTTTTGGTT TCCATCTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1031
TTTTTGGTTT CCATCTTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1032
TTTTGGTTTC CATCTTCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1033
TTTGGTTTCC ATCTTCCTGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1034
TTGGTTTCCA TCTTCCTGGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1035
TGGTTTCCAT CTTCCTGGCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1036
GGTTTCCATC TTCCTGGCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1037
GTTTCCATCT TCCTGGCAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1038
TTTCCATCTT CCTGGCAAAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1039
TTCCATCTTC CTGGCAAACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1040
TCCATCTTCC TGGCAAACTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1041
CCATCTTCCT GGCAAACTCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1042
CATCTTCCTG GCAAACTCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1043
ATCTTCCTGG CAAACTCATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1044
TCTTCCTGGC AAACTCATTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1045
CTTCCTGGCA AACTCATTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1046
TTCCTGGCAA ACTCATTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1047
TCCTGGCAAA CTCATTTCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1048
CCTGGCAAAC TCATTTCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1049
CTGGCAAACT CATTTCTTCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1050
TGGCAAACTC ATTTCTTCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1051
GGCAAACTCA TTTCTTCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1052
GCAAACTCAT TTCTTCTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1053
CAAACTCATT TCTTCTAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1054
AAACTCATTT CTTCTAATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1055
AACTCATTTC TTCTAATACT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1056
ACTCATTTCT TCTAATACTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1057
CTCATTTCTT CTAATACTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1058
TCATTTCTTC TAATACTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1059
CATTTCTTCT AATACTGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1060
ATTTCTTCTA ATACTGTATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1061
TTTCTTCTAA TACTGTATCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1062
TTCTTCTAAT ACTGTATCAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1063
TCTTCTAATA CTGTATCATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1064
CTTCTAATAC TGTATCATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1065
TTCTAATACT GTATCATCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1066
TCTAATACTG TATCATCTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1067
CTAATACTGT ATCATCTGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1068
TAATACTGTA TCATCTGCTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1069
AATACTGTAT CATCTGCTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1070
ATACTGTATC ATCTGCTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1071
TACTGTATCA TCTGCTCCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1072
ACTGTATCAT CTGCTCCTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1073
CTGTATCATC TGCTCCTGTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1074
TGTATCATCT GCTCCTGTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1075
GTATCATCTG CTCCTGTATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1076
TATCATCTGC TCCTGTATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1077
ATCATCTGCT CCTGTATCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1078
TCATCTGCTC CTGTATCTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1079
CATCTGCTCC TGTATCTAAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1080
ATCTGCTCCT GTATCTAATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1081
TCTGCTCCTG TATCTAATAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1082
CTGCTCCTGT ATCTAATAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1083
TGCTCCTGTA TCTAATAGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1084
GCTCCTGTAT CTAATAGAGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1085
CTCCTGTATC TAATAGAGCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1086
TCCTGTATCT AATAGAGCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1087
CCTGTATCTA ATAGAGCTTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1088
CTGTATCTAA TAGAGCTTCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1089
TGTATCTAAT AGAGCTTCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1090
GTATCTAATA GAGCTTCCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1091
TATCTAATAG AGCTTCCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1092
ATCTAATAGA GCTTCCTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1093
TCTAATAGAG CTTCCTTTAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1094
CTAATAGAGC TTCCTTTAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1095
TAATAGAGCT TCCTTTAGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1096
AATAGAGCTT CCTTTAGTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1097
ATAGAGCTTC CTTTAGTTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1098
TAGAGCTTCC TTTAGTTGCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1099
AGAGCTTCCT TTAGTTGCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1100
GAGCTTCCTT TAGTTGCCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1101
AGCTTCCTTT AGTTGCCCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1102
GCTTCCTTTA GTTGCCCCCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1103
CTTCCTTTAG TTGCCCCCCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1104
TTCCTTTAGT TGCCCCCCTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1105
TCCTTTAGTT GCCCCCCTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1106
CCTTTAGTTG CCCCCCTATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1107
CTTTAGTTGC CCCCCTATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1108
TTTAGTTGCC CCCCTATCTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1109
TTAGTTGCCC CCCTATCTTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1110
TAGTTGCCCC CCTATCTTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1111
AGTTGCCCCC CTATCTTTAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1112
GTTGCCCCCC TATCTTTATT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1113
TTGCCCCCCT ATCTTTATTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1114
TGCCCCCCTA TCTTTATTGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1115
GCCCCCCTAT CTTTATTGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1116
CCCCCCTATC TTTATTGTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1117
CCCCCTATCT TTATTGTGAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1118
CCCCTATCTT TATTGTGACG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1119
CCCTATCTTT ATTGTGACGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1120
CCTATCTTTA TTGTGACGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1121
CTATCTTTAT TGTGACGAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1122
TATCTTTATT GTGACGAGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1123
ATCTTTATTG TGACGAGGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1124
TCTTTATTGT GACGAGGGGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1125
CTTTATTGTG ACGAGGGGTC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1126
TTTATTGTGA CGAGGGGTCG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1127
TTATTGTGAC GAGGGGTCGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1128
TATTGTGACG AGGGGTCGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1129
ATTGTGACGA GGGGTCGTTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1130
TTGTGACGAG GGGTCGTTGC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1131
TGTGACGAGG GGTCGTTGCC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1132
GTGACGAGGG GTCGTTGCCA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1133
TGACGAGGGG TCGTTGCCAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1134
GACGAGGGGT CGTTGCCAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1135
ACGAGGGGTC GTTGCCAAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1136
CGAGGGGTCG TTGCCAAAGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1137
GAGGGGTCGT TGCCAAAGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1138
AGGGGTCGTT GCCAAAGAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1139
GGGGTCGTTG CCAAAGAGTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1140
GGGTCGTTGC CAAAGAGTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1141
GGTCGTTGCC AAAGAGTGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1142
GTCGTTGCCA AAGAGTGATC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1143
TCGTTGCCAA AGAGTGATCT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1144
CGTTGCCAAA GAGTGATCTG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1145
GTTGCCAAAG AGTGATCTGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1146
TTGCCAAAGA GTGATCTGAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1147
TGCCAAAGAG TGATCTGAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1148
GCCAAAGAGT GATCTGAGGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1149
CCAAAGAGTG ATCTGAGGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1150
CAAAGAGTGA TCTGAGGGAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1151
AAAGAGTGAT CTGAGGGAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1152
AAGAGTGATC TGAGGGAAGT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1153
AGAGTGATCT GAGGGAAGTT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1154
GAGTGATCTG AGGGAAGTTA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1155
AGTGATCTGA GGGAAGTTAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1156
GTGATCTGAG GGAAGTTAAA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1157
TGATCTGAGG GAAGTTAAAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1158
GATCTGAGGG AAGTTAAAGG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1159
ATCTGAGGGA AGTTAAAGGA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1160
TCTGAGGGAA GTTAAAGGAT 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1161
CTGAGGGAAG TTAAAGGATA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1162
TGAGGGAAGT TAAAGGATAC 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1163
GAGGGAAGTT AAAGGATACA 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1164
AGGGAAGTTA AAGGATACAG 20






20 base pairs


nucleic acid


single


linear




cDNA



NO


NO



not provided



1165
GGGAAGTTAA AGGATACAGT 20







Claims
  • 1. A method for predicting the potential of an oligonucleotide to hybridze to a target nucleotide sequence, said method comprising:(a) identifying a predetermined number of unique oligonucleotides of at least 5 nucleotides in length within a nucleotide sequence of at least 30 nucleotides in length that is hybridizable with said target nucleotide sequence, said oligonucleotides being chosen to sample the entire length of said nucleotide sequence, (b) determining and evaluating for each of said oligonucleotides at least one parameter that is independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence, (c) selecting a subset of oligonucleotides within said predetermined number of unique oligonucleotides based on an examination of said parameter and application of a rule that rejects some of said oligonucleotides of step (b), (d) identifying oligonucleotides in said selected subset, viewed according to order of position along said nucleotide sequence, that are clustered along a region of said nucleotide sequence, and, (e) selecting, from said oliaonucleotides identified in step (d), oligonucleotides of higher hybridization potential for said target nucleotide sequence wherein the larger the size of said clusters, the higher said hybridization potential.
  • 2. A method according to claim 1 which comprises ranking said oligonucleotides of step (e) based on the size of said clusters of oligonucleotides.
  • 3. A method according to claim 1 wherein said unique oligonucleotides are of identical length N.
  • 4. A method according to claim 3 wherein said unique oligonucleotides are spaced one nucleotide apart, said predetermined number comprising L−N+1 oligonucleotides, where L is the length of the hybridizable sequence.
  • 5. A method according to claim 1 wherein said parameter is selected from the group consisting of composition factors, thermodynamic factors, chemosynthetic efficiencies and kinetic factors.
  • 6. A method according to claim 1 wherein said parameter is a composition factor selected from the group consisting of mole fraction (G+C) and percent (G+C).
  • 7. A method according to claim 1 wherein said parameter is a thermodynamic factor selected from the group consisting of predicted duplex melting temperature, predicted enthalpy of duplex formation, predicted entropy of duplex formation, predicted free energy of duplex formation, predicted melting temperature of the most stable intramolecular structure of the oligonucleotide or its complement, predicted enthalpy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted entropy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted free energy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted melting temperature of the most stable hairpin structure of the oligonucleotide or its complement, predicted enthalpy of the most stable hairpin structure of the oligonucleotide or its complement, predicted entropy of the most stable hairpin structure of the oligonucleotide or its complement, predicted free energy of the most stable hairpin structure of the oligonucleotide or its complement, thermodynamic partition function for intramolecular structure of the oligonucleotide or its complement.
  • 8. A method according to claim 1 wherein said parameter is a chemosynthetic efficiency selected from the group consisting of coupling efficiencies and efficiency of the synthesis of a target nucleotide sequence or an oligonucleotide probe.
  • 9. A method according to claim 1 wherein said parameter is a kinetic factor selected from the group consisting of steric factors calculated via molecular modeling, rate constants calculated via molecular dynamics simulations, rate constants calculated via semi-empirical kinetic modeling, associative rate constants, dissociative rate constants, enthalpies of activation, entropies of activation, and free energies of activation.
  • 10. A method according to claim 1 wherein said parameter is derived from a factor by mathematical transformation of said factor.
  • 11. A method according to claim 1 which comprises ranking said clustered oligonucleotides of step (e) based on the size of said clusters of oligonucleotides and selecting a subset of said clustered oligonucleotides.
  • 12. A method according to claim 11 wherein said subset consists of any number of oligonucleotides within said cluster of oligonucleotides.
  • 13. A method according to claim 11 wherein the subset of said clustered oligonucleotides are selected to statistically sample the cluster.
  • 14. A method according to claim 13 wherein said statistical sample consists of oligonucleotides spaced at the first quartile, median and third quartile of the cluster of oligonucleotides.
  • 15. A method according to claim 1 wherein said parameters are determined for said oligonucleotides by means of a computer program.
  • 16. A method according to claim 1 wherein said oligonucleotides are attached to a surface.
  • 17. A method according to claim 1 wherein said oligonucleotides are DNA.
  • 18. A method according to claim 1 wherein said oligonucleotides are RNA.
  • 19. A method according to claim 1 wherein said oligonucleotides contain chemically modified nucleotides.
  • 20. A method according to claim 1 wherein said target nucleotide sequence is RNA.
  • 21. A method according to claim 1 wherein said target nucleotide sequence is DNA.
  • 22. A method according to claim 1 wherein said target nucleotide sequence contains chemically modified nucleotides.
  • 23. A method according to claim 1 wherein said parameter is, for each oligonucleotide/target nucleotide sequence duplex, the difference between the predicted duplex melting temperature corrected for salt concentration and the temperature of hybridization of each of said oligonucleotides with said target nucleotide sequence.
  • 24. A method according to claim 1 wherein step (c) comprises identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides by establishing cut-off values for said parameter.
  • 25. A method according to claim 1 wherein said step (c) comprises identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides by converting the values of said parameters into a dimensionless number wherein the following equations are used for converting the values of said parameters into a dimensionless number: si,x=xi-⟨x⟩σ{x},where Si,x is the dimensionless score derived from parameter x calculated for oligonucleotide i, xi is the value of parameter x calculated for oligonucleotide i, <x> is the average of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and σ{x}is the standard deviation of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and is given by the equation σ{x}=∑j=1L-N+1⁢(xj-⟨x⟩)2L-N,where the target sequence is of length L and the oligonucleotides are of length N.
  • 26. A method according to claim 25 wherein said value is converted into a dimensionless number by determining a dimensionless score for each parameter resulting in a distribution of scores having a mean value of zero and a standard deviation of one.
  • 27. A method according to claim 26 which comprises optimizing a method according to calculation for said parameter based on said individual scores.
  • 28. A method according to claim 1 wherein step (b) comprises determining at least two parameters wherein said parameters are poorly correlated with respect to one another.
  • 29. A method according to claim 28 wherein said parameters are derived from a combination of factors by mathematical transformation of those factors.
  • 30. A method according to claim 1 wherein step (b) comprises determining two parameters at least one of said parameters being the association free energy between a subsequence within each of said oligonucleotides and its complementary sequence on said target nucleotide sequence.
  • 31. A method according to claim 30 wherein said subsequence is 3 to 9 nucleotides in length.
  • 32. A method according to claim 30 wherein said subsequence is 5 to 7 nucleotides in length.
  • 33. A method according to claim 30 wherein said subsequence is at least three nucleotides from the terminus of said oligonucleotides.
  • 34. A method according to claim 30 wherein said subsequence is at least three nucleotides from a surface to which said oligonucleotides are attached.
  • 35. A method according to claim 30 wherein said oligonucleotides are attached to a surface and said subsequence is at least five nucleotides from the terminus of said oligonucleotides that is attached to said surface and at least three nucleotides from the free end of said oligonucleotides.
  • 36. A method according to claim 30 wherein the association free energy of the members of a set of subsequences within each of said oligonucleotides is determined and said subsequence having the minimum value is identified.
  • 37. A method according to claim 1 which comprises including oligonucleotides that are adjacent to said oligonucleotides in said subset that are clustered along a region of said target nucleotide sequence.
  • 38. A method according to claim 1 which comprises (i) identifying a subset of oligonucleotides within said predetermined number of unique oligonucleotides establishing by cut-off values for each of said parameters.
  • 39. A method according to claim 1 which comprises determining the sizes of said clusters of step (d) by counting the number of contiguous oligonucleotides in said region of said hybridizable sequence.
  • 40. A method according to claim 1 which comprises determining the sizes of said clusters of step (d) by counting the number of oligonucleotides in said subset that begin in a region of predetermined length in said hybridizable sequence.
  • 41. A method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence, said method comprising:(a) identifying a set of overlapping oligonucleotides of at least 5 nucleotides in length from a nucleotide sequence of at least 30 nucleotides in length that is complementary to said target nucleotide sequence, (b) determining and evaluating for each of said oligonucleotides at least two parameters that are independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence wherein said parameters are poorly correlated with respect to one another, (c) selecting a subset of oligonucleotides within said set of oligonucleotides based on an examination of said parameters and application of a rule that rejects some of said oligonucleotides of step (b), (d) identifying oligonucleotides in said selected subset, viewed according to order of position along said nucleotide sequence, that are clustered along a region of said complementary nucleotide sequence, and (e) selecting, from said oligonucleotides identified in step (d), oligonucleotides of higher hybridization potential for said target nucleotide sequence wherein the larger the size of said clusters, the higher said hybridization potential.
  • 42. A method according to claim 41 which comprises ranking said oligonucleotides of step (e) based on the size of said clusters of oligonucleotides.
  • 43. A method according to claim 41 which comprises determining the sizes of said clusters of step (e) by counting the number of contiguous oligonucleotides in said region of said complementary sequence.
  • 44. A method according to claim 41 which comprises determining the sizes of said clusters of step (e) by counting the number of oligonucleotides in said subset that begin in a region of set length in said complementary sequence.
  • 45. A method according to claim 41 wherein said overlapping oligonucleotides are of identical length N.
  • 46. A method according to claim 45 wherein said overlapping oligonucleotides are spaced one nucleotide apart, said set comprising L−N+1 oligonucleotides, where L is the length of the complementary sequence.
  • 47. A method according to claim 41 wherein said parameters are each independently selected from the group consisting of composition factors, thermodynamic factors, chemosynthetic efficiencies and kinetic factors.
  • 48. A method according to claim 41 wherein said parameters are composition factors selected from the group consisting of mole fraction (G+C) and percent (G+C).
  • 49. A method according to claim 41 wherein said parameters are thermodynamic factors selected from the group consisting of predicted duplex melting temperature, predicted enthalpy of duplex formation, predicted entropy of duplex formation, predicted free energy of duplex formation, predicted melting temperature of the most stable intramolecular structure of the oligonucleotide or its complement, predicted enthalpy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted entropy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted free energy of the most stable intramolecular structure of the oligonucleotide or its complement, predicted melting temperature of the most stable hairpin structure of the oligonucleotide or its complement, predicted enthalpy of the most stable hairpin structure of the oligonucleotide or its complement, predicted entropy of the most stable hairpin structure of the oligonucleotide or its complement, predicted free energy of the most stable hairpin structure of the oligonucleotide or its complement, thermodynamic partition function for intramolecular structure of the oligonucleotide or its complement.
  • 50. A method according to claim 41 wherein any of said parameters is derived from a factor by mathematical transformation of said factor.
  • 51. A method according to claim 49 wherein any of said parameters is derived from a combination of factors by mathematical transformation of those factors.
  • 52. A method according to claim 41 wherein said parameters are chemosynthetic efficiencies selected from the group consisting of coupling efficiencies and efficiencies of the syntheses of a target nucleotide sequence or an oligonucleotide probe.
  • 53. method according to claim 41 wherein said parameters are kinetic factors selected from the group consisting of steric factors calculated via molecular modeling, rate constants calculated via molecular dynamics simulations, rate constants calculated via semi-empirical kinetic modeling, associative rate constants, dissociative rate constants, enthalpies of activation, entropies of activation, and free energies of activation.
  • 54. A method according to claim 41 which comprises ranking said clustered oligonucleotides of step (e) based on the size of said clusters of oligonucleotides and selecting a subset of said clustered oligonucleotides.
  • 55. A method according to claim 54 wherein said subset consists of any number of oligonucleotides within said cluster of oligonucleotides.
  • 56. A method according to claim 54 wherein the subset of said clustered oligonucleotides are selected to statistically sample the cluster.
  • 57. A method according to claim 54 wherein said statistical sample consists of oligonucleotides spaced at the first quartile, median and third quartile of the cluster of oligonucleotides.
  • 58. A method according to claim 41 wherein said parameters are determined for said oligonucleotides by means of a computer program.
  • 59. A method according to claim 41 wherein said oligonucleotides are attached to a surface.
  • 60. A method according to claim 41 wherein said oligonucleotides are DNA.
  • 61. A method according to claim 41 wherein said oligonucleotides are RNA.
  • 62. A method according to claim 41 wherein said oligonucleotides contain chemically modified nucleotides.
  • 63. A method according to claim 41 wherein said target nucleotide sequence is RNA.
  • 64. A method according to claim 41 wherein said target nucleotide sequence is DNA.
  • 65. A method according to claim 41 wherein said target nucleotide sequence contains chemically modified nucleotides.
  • 66. A method according to claim 41 wherein said parameter is, for each oligonucloetide/target nucleotide sequence duplex, the difference between the predicted duplex melting temperature corrected for salt concentration and the temperature of hybridization of each of said oligonucleotides with said target nucleotide sequence.
  • 67. method according to claim 41 wherein step (c) comprises identifying a subset of oligonucleotides within said set of oligonucleotides by establishing cut-off values for each set of parameters.
  • 68. A method according to claim 41 wherein said step (c) comprises identifying a subset of oligonucleotides within said set of oligonucleotides by converting the values of said parameters into a dimensionless number wherein the following equations are used for converting the values of said parameters into a dimensionless number: si,x=xi-⟨x⟩σ{x},where Si,x is the dimensionless score derived from parameter x calculated for oligonucleotide i, xi is the value of parameter x calculated for oligonucleotide i, <x> is the average of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and σ{x}is the standard deviation of parameter x calculated for all of the oligonucleotides under consideration for a given nucleotide sequence target, and is given by the equation σ{x}=∑j=1L-N+1⁢(xj-⟨x⟩)2L-N,where the target sequence is of length L and the oligonucleotides are of length N.
  • 69. A method according to claim 66 wherein said values are converted into dimensionless numbers by (a) determining a dimensionless score for each parameter resulting in a distribution of scores having a mean value of zero and a standard deviation of one and (b) calculating a combination score by evaluating a weighted average of the individual scores.
  • 70. A method according to claim 69 wherein step (b) comprises optimizing the weighting factors based on comparison of said individual scores to a calibration data set.
  • 71. A method according to claim 41 wherein step (b) comprises determining two parameters at least one of said parameters being the association free energy between a subsequence within each of said oligonucleotides and its complementary sequence on said target nucleotide sequence.
  • 72. A method according to claim 71 wherein said subsequence is 3 to 9 nucleotides in length.
  • 73. A method according to claim 71 wherein said subsequence is 5 to 7 nucleotides in length.
  • 74. A method according to claim 71 wherein said subsequence is at least three nucleotides from the terminus of said oligonucleotides.
  • 75. A method according to claim 71 wherein said oligonucleotides are attached to a surface and said subsequence is at least five nucleotides from the terminus of said oligonucleotides that is attached to said surface and at least three nucleotides from the free end of said oligonucleotides.
  • 76. A method according to claim 71 wherein the association free energy of the members of a set of subsequences within each of said oligonucleotides is determined and said subsequence having the minimum value is identified.
  • 77. A method according to claim 41 which comprises including in said evaluation oligonucleotides that are adjacent to said oligonucleotides in said subset that are clustered along a region of said target nucleotide sequence.
  • 78. A method for predicting the potential of an oligonucleotide to hybridize to a complementary target nucleotide sequence, said method comprising:(a) obtaining, from a nucleotide sequence of at least 30 nucleotides in length complementary to said target nucleotide sequence, a set of overlapping oligonucleotides of at least 5 nucleotides in length and of identical length N and spaced one nucleotide apart, said set comprising L−N+1 oligonucleotides, (b) determining and evaluating for each of said oligonucleotides the parameters: (i) the predicted melt temperature of the duplex of said oligonucleotide and said target nucleotide sequence corrected for salt concentration and (ii) predicted free energy of the most stable intramolecular structure of the oligonucleotide at the temperature of hybridization of each of said oligonucleotides with said target nucleotide sequence, (c) identifying a subset of oligonucleotides within said set of oligonucleotides based on an examination of said parameters by establishing cut-off values for each of said parameters, (d) ranking oligonucleotides in said subset of step (c), viewed according to order of position along said nucleotide sequence, that are clustered along a region of said complementary nucleotide sequence based on the size of said clusters of oligonucleotides, and (e) selecting, based on said ranking, a subset of said clustered oligonucleotides identified in step (d) having higher hybridization potential for said target nucleotide sequence wherein the larger the size of said clusters, the higher said hybridization potential.
  • 79. A method according to claim 78 wherein said subset consists of any number of oligonucleotides within said cluster of oligonucleotides.
  • 80. A method according to claim 78 wherein the subset of said clustered oligonucleotides are selected to statistically sample the cluster.
  • 81. A method according to claim 78 wherein said parameters are derived from a factor by mathematical transformation of said factor.
  • 82. A method according to claim 78 wherein the melting temperature of step (b) is transform by subtracting the temperature of hybridization.
  • 83. A method according to claim 78 which comprises determining the sizes of said clusters of step (d) by counting the number of contiguous oligonucleotides in said region of said complementary sequence.
  • 84. A method according to claim 78 wherein said statistical sample consists of oligonucleotides spaced at the first quartile, median and third quartile of the cluster of oligonucleotides.
  • 85. A method according to claim 78 wherein said parameters are determined for said oligonucleotides by means of a computer program.
  • 86. A method according to claim 78 wherein said oligonucleotides are attached to a surface.
  • 87. A method according to claim 78 wherein said oligonucleotides are DNA.
  • 88. A method according to claim 78 wherein said oligonucleotides are RNA.
  • 89. A method according to claim 78 wherein said oligonucleotides contain chemically modified nucleotides.
  • 90. A method according to claim 78 wherein said target nucleotide sequence is RNA.
  • 91. A method according to claim 78 wherein said target nucleotide sequence is DNA.
  • 92. A method according to claim 78 wherein said target nucleotide sequence contains chemically modified nucleotides.
  • 93. A method according to claim 68 wherein a combination score Si is calculated by evaluating a weighted average of the individual values of the dimensionless scores Si,x by the equation: Si=∑{x}⁢qx⁢si,x,where qx is the weight assigned to the score derived from parameter x, the individual values of qx are always greater than zero, and the sum of the weights qx is unity.
  • 94. A method according to claim 78 where clustering is determined by calculating a moving window-averaged combination score <Si> for the ith probe by the equation: ⟨Si⟩=1w⁢∑j=i-w-12i+w-12⁢Sj, ⁢w=an⁢ ⁢odd⁢ ⁢integer,where w is the length of the window for averaging, and then applying a cutoff filter to the value of <Si>.
  • 95. A method according to claim 93 wherein optimization of the weights qx is performed by varying the values of the weights so that the correlation coefficient ρ{<Si>}, {Vi}between the set of window-averaged combination scores {<Si>} and a set of calibration experimental measurements {Vi} is maximized wherein the correlation coefficient ρ{<Si>},{Vi}is calculated from the equation ρx,y=Covariance⁢ ⁢(x,y)Variance⁢ ⁢(x)⁢Variance⁢ ⁢(y),where x=<Si>, y=Vi and the Covariance (x,y) is defined by Covariance⁢ ⁢(x,y)=1N⁢∑i=1N⁢(xi-μx)⁢(yi-μy)wherein the quantities μx and μy are the averages of the quantities x and y, while the variances are the squares of the standard deviations.
  • 96. A method according to claim 95 wherein the cutoff filter selects the lowest values of the window-averaged combination score <Si> and the clustered probes so identified are predicted to exhibit low hybridization efficiency.
  • 97. A computer based method for predicting the potential of an oligonucleotide to hybridize to a target nucleotide sequence, said method comprising:(a) identifying under computer control a predetermined number of unique oligonucleotides of at least 5 nucleotides in length within a nucleotide sequence of at least 30 nucleotides in length that is hybridizable with said target nucleotide sequence, said oligonucleotides being chosen to sample the entire length of said nucleotide sequence, (b) under computer control, determining and evaluating for each of said oligonucleotides a value for at least one parameter that is independently predictive of the ability of each of said oligonucleotides to hybridize to said target nucleotide sequence and storing said parameter values, (c) selecting under computer control, from said stored parameter values, a subset of oligonucleotides within said predetermined number of unique oligonucleotides based on an examination of said parameter and application of a rule that rejects some of said oligonucleotides of step (b), (d) identifying under computer control oligonucleotides in said selected subset, viewed according to order of position along said nucleotide sequence, that are clustered along a region of said nucleotide sequence that is hybridizable to said target nucleotide sequence, and (e) under computer control selecting, from said oligonucleotides identified in step (d), oligonucleotides of higher hybridization potential for said target nucleotide sequence wherein the larger the size of said clusters, the higher said hybridization potential.
  • 98. A method according to claim 97 wherein the identified subset of oligonucleotide sequences is electronically transferred to an oligonucleotide array manufacturing system.
US Referenced Citations (6)
Number Name Date Kind
5081584 Omichiniski et al. Jan 1992
5512438 Ecker Apr 1996
5556749 Mitsuhashi et al. Sep 1996
5582986 Monia et al. Dec 1996
5593834 Lane et al. Jan 1997
5670633 Cook et al. Sep 1997
Non-Patent Literature Citations (23)
Entry
Southern et al. “Analysing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models” Genomics vol. 13, pp. 1008-1017, 1992.*
Handbook of chemistry and physics. The chemicla Rubber CO. 44th edition pp. 9-10, 1961.*
Kress et al. Journal of biomechanical Engineering, 109 (3), pp. 218-225, 1987.*
D. J. Lockhart, et al., Nature Biotech. 14: 1675-1684 (1996); “Expression Monitoring by Hybridization to High-Density Oligonucleotide Arrays”.
M. Mitsuhashi, et al., Nature, 367: 759-761 (1994); “Olignonucleotide Probe Design: A New Approach”.
R. A. Stull, et al., Nuc. Acids Res., 20(13): 3501-3508 (1992); “Predicting Antisense Olignucleotide Inhibitory Efficacy: A Computational Approach Using Histograms and Thermodynamic Indices”.
L. Wodicka, et al., Nature Biotechnology, 15: 1359-1367 (1997); “Genome-wide Expression Monitoring in Saccaromyces cerevisiae”.
J. SantaLucia Jr., et al., Biochemistry, 35: 3555 (1996); “Improved Nearest-Neighbor Parameter for Predicting DNA Duplex Stability”.
N. Sugimoto, et al., Biochemistry, 34: 11211 (1995); “Thermodynamic Parameters to Predict Stability of RNA/DNA Hybrid Duplexes”.
A. Kunitsyn, et al., J. of Biomolecular Structure & Dynamics, 14(2): 239-244 (1996); “Partial Thermodynamic Parameters for Prediction Stability and Washing Behavior of DNA Duplexes Immobilized on Gel Matrix”.
H. Chen, et al., BioTechniques, 22(6): 1158-1160 (1997); “Computer Program for Calculating the Melting Temperature of Degenerate Oligonucleotides Used in PCR of Hybridization”.
N. Eberhardt, BioTechniques, 13(6): 914-917 (1992); “A Shell Program for the Design of PCR Primers Using Genetics Computer Group (GCG) Software (7.1) on VAX/VMS™ Systems”.
D. Hyndman, et al., BioTechniques, 20(6): 1090-1094 (1996); “Software to Determine Optimal Oligonucleotide Sequence Based on Hybridization Simulation Data”.
M. Mitsuhashi, et al., J. of Clinical Laboratory Analysis, 10(5): 277-284 (1996); “Technical Report: Part 1. Basic Requirements for Designing Optimal Oligonucleotide Probe Sequences”.
M. Mitsuhashi, et al., J. of Clinical Laboratory Analysis, 10(5): 285-293 (1996); “Technical Report: Part 2. Basic Requirements for Designing Optimal PCR Primers”.
M. Mitsuhashi, et al., J. of Gastroenterology, 32(2): 282-287 (1997); “Strategy for Designing Specific Antisense Oligonucleotide Sequences”.
W. Rychlik, et al., Nucleic Acids Research, 17(21): 8543-8551 (1989); “A Computer Program for Choosing Optimal Oligonucleotides for Filter Hybridization, Sequencing and in vitro Amplification of DNA”.
J.A. Jaeger, et al., Proc. Natl. Acad. Sci. USA, 86: 7706 (1989); “Improved Predictions of Secondary Structures for RNA”.
S. F. Altschul, et al., Nature Genetics, 6: 119-129 (1994); “Issues in Searching Molecular Sequence Databases”.
V. Patzel, et al., Nature Biotechnology, 16: 64-68 (1998); “Theorectical Design of Antisense RNA Structures Substantially Improves Annealing Kinetics and Efficacy in Human Cells”.
N. Milner, et al., Nature Biotechnology, 15: 537-541 (1997); Selecting Effective Antisense Reagents on Combinatorial Oligonucleotide Arrays.
A. Pease, et al., Proc. Natl. Acad. Sic. USA, 91: 5022-5026 (1994); “Light-generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis”.
Weber, et al., J. Chem Phys., 71(11): 4760-4762 (1979); “Molecular Dynamics Simulation of Polymers. I. Structure”.