The invention relates to the use of explosives to metallurgically weld a metal tube liner to the internal surface of a larger metal tube.
Explosive welding of metals has been in practice commercially since the mid 1960's and involves the use of explosives to accelerate metals into each other with sufficient velocity and at an angle to allow a metallurgical joint to be created. The process is well suited to bonding flat sheets and plates together. Initially, the industry focused on creating products involving flat materials such as composite metal plates used for stamping coins and corrosive resistant metal composites for the chemical process industries.
The process of explosive welding has been adapted for the purpose of bonding coaxial tubes, but typically has been limited to using explosives to implode a larger tube onto a smaller tube. The typical tube explosively bonded using this technique is 12 to 24 inches (30.5 to 61 cm) long. Lengths of 60 inches (152.4 cm) have been achieved, but with significant difficulty and added expense. Bonding longer length tubes is problematic due primarily to the difficulty in: 1) ensuring uniform density and detonation velocity of the explosive over the entire length of the tube; and 2) preventing excessive heat from accumulating at the surfaces that are being bonded as the air is pushed out between the two tubes during the explosive event. The added heat can create resolidified melt pockets and intermetallics at the bonded joint which are typically brittle and degrade the quality of the joint. In addition, variation in the forces at the detonation front of the explosives can create wrinkles and anomalies in the imploding larger tube as it collapses onto the smaller tube.
U.S. Pat. Nos. 5,261,591 and 5,259,547, both to Hardwick, disclose methods for producing explosively welded coaxial tubes of longer lengths comprising explosively welding tubes in short lengths, followed by mechanically working the tubes into longer lengths using techniques such as extrusion and drawing. Such techniques are expensive, time-consuming and require specialized equipment.
U.S. Pat. No. 4,879,890 also to Hardwick discloses a method of explosively expanding a tubular metal component into engagement with a surrounding metal component using an insert comprising a hollow cylindrical container and shock wave transmitting liquid such as water. Likewise, U.S. Pat. No. 4,708,280 to Bement discloses a tool to insert inside a metal tube for explosively joining tubes comprising an initiator, a tool form, and one or more bands of ribbon explosive wrapped around the tool to form the joining charge. Use of inserts or tools is expensive and requires a customized tool or insert to fit the size of metal tube involved. Techniques involving inserts also are associated with the uneven transfer of energy to the tube to be bonded. In addition, use of liquid environments requires fixturing to contain the liquids and liquid between the explosive and the tube decreases the pressure on the expanding tube.
Accordingly, there is a need in the art for a uniform, reliable, consistent, and cost-efficient method of welding metal tubes to the inside of larger metal tubes, including tubes of longer lengths, that does not require an insert, tool, liquid environment, extrusion or drawing, and which provides a uniform detonation front and dissipation of heat generated at the explosive front.
The inventive method comprises the initiation of a detonation front that travels uniformly along the length of the internal surface of a metal tube coaxially-oriented within a larger metal tube without requiring the use of inserts, tools, liquids, extrusion, drawing, or the like.
In the inventive method, a smaller metal tube is inserted into a larger metal tube. The outside diameter of the smaller metal tube is less than the inside diameter of the larger metal tube leaving a space between the overlapped tubes. One or more shims are inserted into the space between the internal surface of the larger tube and the external surface of the smaller tube to form a uniform annular gap between the tubes running the length of the tubes.
The tubes are positioned vertically through balancing of at least one of their ends, or fixturing of at least one of their ends, to a generally flat and horizontal surface. Once retained on a flat surface, the base of the smaller tube is covered. The smaller tube is then filled with explosive material coming into direct contact with the internal surface of the smaller tube. The explosive material is detonated from its top surface within the smaller tube.
The detonation initiates an explosive front traveling uniformly down the internal surface of the smaller tube expanding the internal surface of the smaller tube with sufficient velocity to weld the smaller tube to the internal surface of the larger tube. A vacuum may be formed within the annular gap and/or gas(es) introduced therein to prevent build-up of excessive heat at the explosive front.
The invention is described in more detail with reference to the attached drawings, in which:
The following detailed description illustrates the invention by way of example, not by way of limitation of the scope, equivalents or principles of the invention. This description will enable one skilled in the art to perform the invention, and describes several embodiments, adaptations, variations, and alternatives.
In this regard, the invention is illustrated in the figures, and is of sufficient complexity that the many parts, interrelationships, and sub-combinations thereof cannot be fully illustrated in a single patent-type drawing. For clarity and conciseness, the drawings show in schematic, or omit, parts that are not essential in that drawing to a description of a particular feature, aspect or principle of the invention being disclosed. Thus, the best mode embodiment of one feature may be shown in one drawing, and the best mode of another feature will be called out in another drawing.
All publications, patents and applications cited in this specification are herein incorporated by reference as if each individual publication, patent or application had been expressly stated to be incorporated by reference.
Prior to positioning smaller tube 2 coaxially inside larger tube 1, the tubes 1, 2 may be cleaned of scale, grit or oil. The object of the cleaning is to remove oxide films by grinding the tubes with a fine finish and wiping them with acetone, or any suitable solvent, to degrease them.
After cleaning, the tubes 1, 2 are positioned coaxially. Referring to
As shown in
The tubes 1, 2 are then retained in a vertical position. The tubes 1, 2 shown in
Referring to
Referring again to
In the preferred mode, the explosive 5 is ammonium nitrate based (Ammonium Nitrate-Fuel Oil) with a density of approximately 1.00 g/cc, having a detonation velocity between 1,800 and 2,800 m/s. Any suitable explosive 5 or combination of explosives 5 could be used. Once the explosive 5 has been poured into the smaller tube 2, the explosive material 5 will have a top surface 20 proximate the first end of the smaller tube 18.
The explosive 5 is detonated from its top surface 20. The explosive 5 can be detonated by any suitable means, including, as shown in
Alternately, the detonating cord 6 and plastic explosive 7 may be inserted and detonated at the base of the column of explosive material 5 proximate the second end 19 of the smaller tube 2.
If a vacuum has been formed in the annular gap 3, such as may be desired when bonding tubes of greater lengths, the vacuum would reduce the heat build up from compressed gases formed at the explosive front 10. Similar advantages are achieved through the introduction of gas(es) into the annular gap 3 that are less adiabatically compressible than air.
Without the use of inserts, the energy transferred to the smaller tube 2 is more uniform and predictable, and further allows for the detonation of tubes of smaller diameters down to approximately 0.75 inches (1.9 cm). The inventive method also does not require the use of liquids between the explosive and the tubes, thereby reducing the pressure on the expanding tube (in this case, the smaller tube 2) and allowing tubes of smaller diameter and wall thickness to be metalurgically joined. The inventive method also does not require fixturing to contain liquids.
In an alternate mode, the smaller tube may comprise a series of two or more smaller metal tubes of same or different types of metal, each having an outside diameter less than the inside diameter of the larger tube. Conversely, the method may be performed using a larger tube comprising a series of two or more metal tubes of same or different types of metal, each having an inside diameter greater than the outside diameter of the smaller tube.
It is clear that the inventive method for explosive bonding of tubular metal liners of this application has wide applicability to any industry requiring tubes or pipes with metal liners of desired qualities, such as a heat and corrosion resistant metal. Such industries include firearms, oil and gas. In addition, the inventive methods and processes enable coaxial welded pipes and tubes to be manufactured in longer lengths without the uncertainties and associated costs of subsequent drawing or extruding.
It should be understood that various modifications within the scope of this invention can be made by one of ordinary skill in the art without departing from the spirit thereof and without undue experimentation. For example, tubes of varying metals, diameters and thickness may be employed; the annular gap may be different for different types of metals; the type and nature of explosive and booster may vary, and whether a vacuum or replacement gas is introduced to the annular gap may vary depending on the metals involved and the thickness and/or length of the metal liners within the tubes desired. This invention is therefore to be defined as broadly as the prior art will permit, and in view of the specification if need be, including a full range of current and future equivalents thereof.
This application claims priority under 35 USC 119(e) of Provisional Patent Application Ser. No. 60/771,081 filed Feb. 7, 2006, entitled “Method for Explosive Bonding of Tubular Metal Liners,” which is hereby incorporated by reference in its entirety.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3562897 | Buchwald | Feb 1971 | A |
| 3590877 | Leopold et al. | Jul 1971 | A |
| 3728780 | Chang | Apr 1973 | A |
| 3740826 | Baba | Jun 1973 | A |
| 3761004 | Hanson et al. | Sep 1973 | A |
| 4099661 | Dick | Jul 1978 | A |
| 4162758 | Mikarai | Jul 1979 | A |
| 4193529 | Dick | Mar 1980 | A |
| 4527623 | Baird | Jul 1985 | A |
| 4564226 | Doherty, Jr. | Jan 1986 | A |
| 4708280 | Bement | Nov 1987 | A |
| 4860656 | Hardwick | Aug 1989 | A |
| 4879890 | Hardwick | Nov 1989 | A |
| 5104027 | Persson | Apr 1992 | A |
| 5242098 | Hardwick | Sep 1993 | A |
| 5259547 | Hardwick | Nov 1993 | A |
| 5261591 | Hardwick | Nov 1993 | A |
| Number | Date | Country |
|---|---|---|
| 2209978 | Jun 1989 | GB |
| 2209979 | Jun 1989 | GB |
| Number | Date | Country | |
|---|---|---|---|
| 60771081 | Feb 2006 | US |