The present invention relates to printing devices and more precisely to a method and apparatus for increasing the lifetime of a photoreceptor belt.
During operation of an electrophotographic printing device, the photoreceptor belt is highly tensioned to enable a flat belt in critical areas such as, for example, development and transfer. However, the high tension on the belt eventually causes the surface coating(s) to suffer defects such as micro cracking, especially during idle periods. The surface layer of a photoreceptor belt is important to the quality of the output images.
Belt lifetimes could be extended if they were suitably detensioned during periods of nonuse. However, the belt cannot be detensioned too much within an electrophotographic device as it may contact surrounding modules, thereby damaging its surface or the surrounding modules. Like many technologies, there is always a desire for printing devices that operate faster, have more features, and occupy less space. This can lead to the interior of the device becoming crowded.
To increase the lifetimes of photoreceptor belts, described embodiments include a method for extending the lifetime of a belt, comprising detensioning the belt during the period of time when the printer is idle.
Embodiments also include a tension control apparatus for detensioning a endless belt, wherein the belt is wrapped around a support apparatus including at least one support for the belt, a tensioning member, and a biasing means acting on the tensioning member. The tension control apparatus includes a frame connected to the support apparatus, a cam connected to the frame, and a first lever arm having first and second ends. The first lever arm is pivotally connected to the frame at a pivot point between the first and second ends of the first lever arm. The first end of the first lever arm is positioned such that when the cam is rotated, the cam causes the first lever arm to pivot about the pivot point such that the second end of the first lever arm engages the biasing means such that the biasing means no longer acts on the tensioning member.
Various exemplary embodiments will be described in detail, with reference to the following figures, wherein:
In the exemplary embodiment of the printing device 10, an image of an original document or set of documents 11 to be reproduced is projected or scanned onto a uniformly charged surface 13 of a photoreceptor belt 18 to form an electrostatic latent image thereon. Thereafter, the latent image is developed with an oppositely charged developing material called toner (not shown) to form a toner image, corresponding to the latent image on the photoreceptor surface. The toner image is then electrostatically transferred to a final support material or paper sheet 15, to which it may be permanently fixed by a fusing device 16.
In the illustrated device 10 of
The image signals are projected upon the uniformly charged surface of the photoreceptor at an imaging station 24 by a raster output system 25 to form a latent electrostatic image of the scanned informational areas of the original document thereon as the photoreceptor is moved passed the imaging station. The photoreceptor 18 is in the form of a flexible, endless belt 18 having a photoconductive outer surface 13 and is mounted on a photoreceptor module 38. A set of rollers 26A, 26B, 26C and a plurality of backing members located opposite various stations support the belt 18. At least one of the rollers 26A is driven to move the photoreceptor belt 18 in the direction indicated by arrow 21 at a constant rate of speed about the rollers and past the various xerographic processing stations. Before entering the imaging station 24, a charging station 28 uniformly charges the photoreceptor surface 13. Exposing the charged surface of the photoreceptor to the digital signals at the imaging station discharges the photoreceptor surface in the areas struck by the digital image signals. Thus, there remains on the photoreceptor surface a latent electrostatic image in image configuration corresponding to the informational areas on the original. As the photoreceptor continues its movement, the latent electrostatic image thereon passes through developing station 30 which deposits oppositely charged toner on the latent electrostatic image to form a toner image.
The photoreceptor movement continues transporting the toner image from the developer station to a transfer station 32. A paper supply 33 feeds a sheet 15 to a sheet transport 34 for travel to the transfer station. The sheet moves into aligned and registered contact with the toner image at a speed synchronistic with the moving photoreceptor. The toner image is transferred to the sheet is and the sheet with the toner image is stripped from the photoreceptor belt 18. The sheet is then conveyed to a fusing station 36 having fuser device 16, which fuses the toner image to fix permanently the toner image to the sheet. After the toner image is fixed to the sheet, the sheet is transported by sheet transporting mechanism 37 to a finishing station 12 where the sheets with the permanent images thereon may be compiled into sets of sheets and finished by being stapled, bound, or the like.
Suitable drive means (not shown) for the document creating apparatus are arranged to drive the photoreceptor in timed relationship to the scanning of the original document, to forming the latent electrostatic image on the photoreceptor, to effect development of the latent electrostatic image, to separate and feed sheets of paper, to transport same through the transfer station in time registration with the toner image, and to convey the sheet of paper with the toner image through the fusing station to fix the toner image thereto in a timed sequence to produce copies of the original documents.
The foregoing description is believed to be sufficient for the purposes of showing the general operation of a document creating apparatus.
In order to drive the endless photoreceptor belt 18 and keep it flat at various stations such as, for example, the development 30 and transfer 32 stations, the belt should be kept at a high level of tension. During idle times, the belt does not need to be kept at as high a tension. Keeping the belt at high tension level during idle times stretches the belt and causes minute cracks to appear. These in turn lead to copy quality defects and shorter belt lifetimes. In order to lengthen the lifetime of photoreceptor belts, it is proposed that photoreceptor belts be detensioned whenever the printer is idle.
Ideally, the tension in the belt would be reduced to zero. In the absence of other factors, this would generally lead to the longest lifetime for the belt. However, in many cases, the photoreceptor belt cannot be fully detensioned. The inside of most modern printing devices are fairly crowded with components. If the belt were fully detensioned, it would tend towards a more circular loop shape and very likely contact surrounding components within the printing device. This could cause damage to both the belt and to the surrounding components. Therefore, the tension is kept at a small but finite amount. In embodiments, the tension on the belt is approximately one-tenth of the normal operating tension.
In embodiments, whenever a printing device, such as the device 10 of
Depending on the structure of the particular photoreceptor module or printing device, various mechanisms or methods for detensioning could be used. In embodiments, the machine goes into an idle, lower power consumption mode a predetermined period of time after the last print job had completed. At this point, the tension of the belt is reduced to a lower level. When a new print job is started, the belt tension would be increased up to an operational level. In other embodiments, the user could manually cause the tension in the belt to reduce to its idle level, when the user was finished. If manual reduction is allowed, the printing device may be equipped with either an automatic retensioning device if a new print job is started, or it may be equipped with a failsafe so it will not restart until the user increases the tension of the belt to an operable level.
To accomplish the task of decreasing and increasing the tension in the belt, the photoreceptor module 38 can be equipped with a tension control mechanism. The tension control mechanism could be external to the photoreceptor module. However, in many devices, this design would be impractical if not impossible given the space constraints inside typical printing devices. The exemplary module 38 in
The mechanism 50 reduces the amount of tension supplied by the tension roller 26C by reducing the pressure the sleeves apply to the tension roller 26C. To reduce the tension in the belt 18 when printing device 10 is idle, the mechanism 50 engages and lifts sleeves 60, 62. When the sleeves are lifted, the only force contributing to tension in the belt 18 is gravity acting on the belt 18 and on the roller 26C.
The detensioning mechanism 50 includes first and second detensioning arms 52, 54. Each detensioning arm 52, 54 has an inner portion and an outer portion. The outer portion of each arm 52, 54 includes a small arm protrusion 56, 58 at an outer end. The mechanism 50 also interacts with the two sleeves 60, 62 that surround the tension roller mounting arms 48, 49. Each sleeve 60, 62 includes a small sleeve protrusion 64, 66. As noted above, the mounting arms 48, 49 are connected to edge guides 78, 80. In
Each detensioning arm 52, 54 is mounted to an arm support frame 70 at a point approximately one third its length from its inner end. Connection holes 72 and 74 are visible in
Referring to
Referring to
As illustrated, sleeve 62 does not lift pin 84. Instead, the tension roller 26C is permitted to essentially hang by its own weight. Reducing tension in the belt 18 to merely that of the weight of the tension roller 26C at its unbiased extension is usually sufficient to reduce wear on the belt. However, if the weight of the tension roller 26C were such that it still caused noticeable wear on the belt, embodiments can also include those where the mechanism 50 raises sleeves 60, 62 such that they apply upward force on pins 82, 84.
In the embodiment illustrated in
The methods described herein could also be used outside the context of photoreceptor belts. Tension on any belt while not in use will age the belt. If that tension could be substantially reduced during periods of nonuse, the lifetime of those belts could be extended as well.
While the present invention has been described with reference to specific embodiments thereof, it will be understood that it is not intended to limit the invention to these embodiments. It is intended to encompass alternatives, modifications, and equivalents, including substantial equivalents, similar equivalents, and the like, as may be included within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4416532 | Rosati | Nov 1983 | A |
5243384 | Everdyke et al. | Sep 1993 | A |
5282010 | Popvic | Jan 1994 | A |
6101353 | Yu et al. | Aug 2000 | A |
6185394 | Lee | Feb 2001 | B1 |
6249662 | Lee | Jun 2001 | B1 |
6269231 | Castelli et al. | Jul 2001 | B1 |
6560428 | Sanchez-Banos et al. | May 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050063731 A1 | Mar 2005 | US |