1. Field of the Disclosure
The present disclosure relates generally to an electrostatographic printing apparatus, and more particularly, concerns externally heating a photoreceptor used in such a machine.
2. Description of Related Art
Typically, in an electrostatographic printing process of printers, a photoconductive or photoreceptor member is charged by a charging device to a substantially uniform potential so as to sensitize the surface thereof. The charged portion of the photoreceptor member is exposed to selectively dissipate the charges thereon in the irradiated areas. This records an electrostatic latent image on the photoreceptor member. After the electrostatic latent image is recorded on the photoreceptor member, the latent image is developed by bringing a developer material into contact therewith. Generally, the developer material comprises toner particles adhering triboelectrically to carrier granules. The toner particles are attracted from the carrier granules either to a donor roll or to a latent image on the photoreceptor member. The toner attracted to the donor roll is then deposited on latent electrostatic images on a charge retentive surface, which is usually a photoreceptor. The toner powder image is then transferred from the photoreceptor member to a copy substrate.
In order to fix or fuse the toner material onto a support member permanently by heat, it is necessary to elevate the temperature of the toner material to a point at which constituents of the toner material coalesce and become tacky. This action causes the toner to flow, to some extent, onto fibers or pores of the support members or otherwise upon surfaces thereof. Thereafter, as the toner materials cool, solidification of the toner materials occurs causing the toner material to be bonded firmly to the support member.
Transfer is typically carried out by the creation of a “transfer-detack zone” (often abbreviated to just “transfer zone”) of AC and DC biases where the print sheet is in contact with, or otherwise proximate to, the photoreceptor member. A DC bias applied to the back (i.e., on the face away from the photoreceptor member) of the paper or other substrate in the transfer zone electrostatically transfers the toner from the photoreceptor member to the paper or other substrate presented to the transfer zone. The toner particles are heated to permanently affix the powder image to the copy substrate. Biased transfer rolls are also used to transfer an image from a photoreceptor member to media, for example, the segmented bias roll disclosed in U.S. Pat. No. 3,847,478.
In high humidity environments, such as, greater than 70% relative humidity, a problem is sometimes encountered in some machines when certain ionic species generated by corona combine with moisture on the photoreceptor surface to form conductive paths. The surface charge corresponding to the electrostatic latent image moves. This distorts the integrity of the latent image. The result is observed as image blur. Aggressively refreshing the photoreceptor surface (high wear rates typically in the range of 20 to 100 nm/k cycle) is the usual method used to avoid this problem. Well known in the art is the use of drum heaters that usually reside inside the photoreceptor drum to reduce surface moisture as shown, for example, in U.S. Pat. Nos. 4,161,357; 5,019,682; and 7,599,642 B2. Other techniques for controlling moisture on a photoreceptor are related to the addition of material additives in the photoreceptor composition to reduce this effect. Additionally, air circulation around the charging devices or the use of expensive coatings on charge devices has been tried. These traditional fixes have related drawbacks of added expense, additional power consumption, low photoreceptor life, or limitations on operating environment.
Thus, there is still a need for a method for controlling moisture on the surface of a photoreceptor that is inexpensive, low in power consumption and is not detrimental to the life of the photoreceptor.
In answer to this need, provided hereinafter is a method of externally heating a xerographic photoconductor without added power consumption or additional space/hardware requirements that includes providing a thick film charging device to simultaneously charge and heat a photoreceptor in order to mitigate image quality defects associated with the photoreceptor in high humidity conditions.
The disclosed system may be operated by and controlled by appropriate operation of conventional control systems. It is well known and preferable to program and execute imaging, printing, paper handling, and other control functions and logic with software instructions for conventional or general purpose microprocessors, as taught by numerous prior patents and commercial products. Such programming or software may, of course, vary depending on the particular functions, software type, and microprocessor or other computer system utilized, but will be available to, or readily programmable without undue experimentation from, functional descriptions, such as, those provided herein, and/or prior knowledge of functions which are conventional, together with general knowledge in the software of computer arts. Alternatively, any disclosed control system or method may be implemented partially or fully in hardware, using standard logic circuits or single chip VLSI designs.
The term ‘printer’ or ‘reproduction apparatus’ as used herein broadly encompasses various printers, copiers or multifunction machines or systems, xerographic or otherwise, unless otherwise defined in a claim. The term ‘sheet’ herein refers to any flimsy physical sheet or paper, plastic, media, or other useable physical substrate for printing images thereon, whether precut or initially web fed. A compiled collated set of printed output sheets may be alternatively referred to as a document, booklet, or the like. It is also known to use interposes or inserters to add covers or other inserts to the compiled sets.
As to specific components of the subject apparatus or methods, it will be appreciated that, as normally the case, some such components are known per se' in other apparatus or applications, which may be additionally or alternatively used herein, including those from art cited herein. For example, it will be appreciated by respective engineers and others that many of the particular components mountings, component actuations, or component drive systems illustrated herein are merely exemplary, and that the same novel motions and functions can be provided by many other known or readily available alternatives. All cited references, and their references, are incorporated by reference herein where appropriate for teachings of additional or alternative details, features, and/or technical background. What is well known to those skilled in the art need not be described herein.
Various of the above-mentioned and further features and advantages will be apparent to those skilled in the art from the specific apparatus and its operation or methods described in the example(s) below, and the claims. Thus, they will be better understood from this description of these specific embodiment(s), including the drawing figures (which are approximately to scale) wherein:
While the disclosure will be described hereinafter in connection with a preferred embodiment thereof, it will be understood that limiting the disclosure to that embodiment is not intended. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the disclosure as defined by the appended claims.
The disclosure will now be described by reference to a preferred embodiment xerographic printing apparatus that includes a method for removing moisture from the surface of a photoreceptor.
For a general understanding of the features of the disclosure, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to identify identical elements.
Referring now to
In
In accordance with the present disclosure, the heat generated by grid less, dual functioning scorotron or thick film charging device 200 is used to prevent image blurring by controlling moisture on photoreceptor 110 as shown in
The electrical schematic in
The charging device's selected materials allow for the thick film circuit to handle AC and DC voltages as high as 3000 volts pk-pk. The ceramic's rigidity permits the device to be suspended adjacent photoreceptor 110, while being supported at its ends.
Switch S-A controls the AC high voltage delivered to the first electrode while switch S-B delivers the AC high voltage to the second electrode. Operation of the charging device required the AC voltage to be greater than 1800 volts pk-pk in order to strike corona. The upper conductor is connected to the variable DC voltage supply.
Corona generation occurs when the electrodes are subjected to AC high voltage. The electrical fields that surround the electrodes cause the air molecules to ionize on the surface of the dielectric between the upper conductor fingers in slots 210 and 212 (
In the operational depiction of grid less scototron 200 shown in
As shown in the chart of
An advantage of the heretofore described method for removing moisture from the surface of a photoreceptor is that the photoreceptor surface thickness can be reduced allowing for faster heating because solid state charge device 200 does not transmit vibration to the photoreceptor which is typical in Bias Charge Roll (BCR) charging systems that touch the photoreceptor surface. BCR charging systems cause the photoreceptor to ‘sing’ at the AC current frequency and require additional mass added to the photoreceptor substrate to dampen the vibration. Reducing this additional mass that can exist as thicker aluminum or added plastic silencers represents an additional cost savings.
In recapitulation, the grid less, solid state charging scorotron embodiment of the present disclosure is configured to simultaneously heat a photoreceptor as it is being charged in order to mitigate image quality defects associated with the photoreceptor in high humidity conditions. Solid state charging is based on a DC-offset AC voltage waveform to generate an AC corona at a set of dielectric supported electrodes positioned on a substrate. The combination of the AC frequency and amplitude results in dielectric heating of the substrate. Proximity to the photoreceptor of the charge device results in mild heating of the photoreceptor which in turn reduces humidity induced lateral charge migration and image blur at high humidity. Thus, a benefit is realized in the use of heat generated by the charge device itself to mitigate image quality defect that sometimes occur at high humidity. It is contemplated that heating can be gated ON/OFF with the magnitude of the AC pk-pk voltage.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Cross-reference is hereby made to commonly assigned and co-pending U.S. application Ser. No. 13/030,220, filed Feb. 18, 2011, and entitled “Limited Ozone Generator Transfer Device” by Gerald F. Daloia, et al. (Attorney No. 20101273), and co-pending U.S. application Ser. No. ______, filed ______, and entitled “Photoreceptor Charging and Erasing System” by Gerald F. Daloia, et al. (Attorney No. 20101739). The disclosures of the heretofore-mentioned applications are incorporated herein by reference in their entirety.