The present disclosure relates in general to semiconductor fabrication processes and more particularly to a method for fabricating a transistor device with a tuned dopant profile.
Cost effective semiconductor electronic manufacturing requires transistor structures and manufacturing processes that are reliable at nanometer scales and that do not require expensive or unavailable tools or process control conditions for the design or manufacture. While it is difficult to balance the many variables that control transistor electrical performance, finding suitable transistor dopant structures with an associated manufacturing technique that results in acceptable electrical characteristics such as charge carrier mobility, threshold voltage levels, and junction leakage are a key aspect of such commercially useful transistors.
For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:
A Deeply Depleted Channel (DDC) transistor can use, among other things, dopants in preselected concentrations and located specific areas a distance below the top surface of the substrate to define a depletion zone and establish a threshold voltage during transistor operation. This can result in a transistor having improved electrical parameters including threshold voltage variation among transistors and reduced power requirements. One quality goal of a DDC transistor is to form the doped regions in such a manner as to inhibit the migration of the dopants outside of the desired locations.
A DDC transistor typically includes both a highly doped region formed in a semiconductor substrate below a gate, called the screening layer, that functions to define the extent of the depletion region below the gate in operation, and an undoped epitaxially grown channel on the highly doped region extending between a source and a drain of the transistor. In addition, a threshold voltage set layer may be positioned between the undoped channel and the screening layer and may alternatively contact or be separated from the screening layer and/or the undoped channel. This threshold voltage set layer is used to finely adjust or tune the threshold voltage of individual or blocks of transistors. The screening layer and/or the threshold voltage set layer can be implanted into the semiconductor substrate, separately grown as a blanket or as selective epitaxial layers on the semiconductor substrate and doped by controlled implants, or by substitutional doped deposition. The threshold voltage set layer may also be formed by performing a controlled diffusion from the screening layer. An anti-punchthrough layer may also underlie the screening layer and may be formed by implantation into the semiconductor substrate or by diffusion from the screening layer. As compared to conventional doped channel transistors, such DDC transistors can be more closely matched in device characteristics, in part because they have reduced channel random dopant fluctuations that can result in variable threshold voltage set points. Other embodiments of DDC transistors may include a slightly doped channel, whether by way of channel dopants distributed throughout or halo implants or other forms of channel doping. Further examples of a DDC transistor structure and manufacture are disclosed in U.S. Pat. No. 8,273,617 titled ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME by Scott E. Thompson et al., as well as U.S. patent application Ser. No. 12/971,884, filed on Dec. 17, 2010 titled LOW POWER SEMICONDUCTOR TRANSISTOR STRUCTURE AND METHOD OF FABRICATION THEREOF and U.S. patent application Ser. No. 12/971,955 filed on Dec. 17, 2010 titled TRANSISTOR WITH THRESHOLD VOLTAGE SET NOTCH AND METHOD OF FABRICATION THEREOF, the respective contents of which are incorporated by reference herein.
Thermal cycles in the fabrication process can lead to diffusion of the screening and threshold voltage set layer materials particularly when the materials used tend to be mobile. It is desirable to prevent screening layer and threshold voltage set layer materials from unwanted diffusion into the undoped channel layer. A method of reducing dopant migration is to introduce a dopant migration resistant material, such as carbon, to further limit unwanted dopant migration.
As an example, boron is preferably used for NMOS transistor fabrication. For a DDC NMOS transistor, a boron implant may be used for a screening layer and for the optional threshold voltage set layer. Implanted boron is widely known to diffuse during device fabrication, especially in thermal cycles of 900° C. or more. To avoid unwanted diffusion of boron, carbon may be added to the crystalline lattice. It is thought that carbon takes substitutional positions in the crystalline structure to limit available pathways for the movement of boron. There may be a pre-amorphization implant using germanium followed by a recrystallization anneal to enhance the effectiveness of the added carbon. The use of carbon addition to inhibit migration of dopants works effectively in a silicon crystalline substrate, and can be effective in other semiconducting substrates as well. Another benefit to using carbon implant is in its ability to tune the dopant profile of the boron.
As shown in
The example of
In
In
After the germanium and carbon implants, transistor structure 300 is usually subjected to one or more annealing processes. Example annealing processes include baking transistor structure 300 at a temperature of 600 to 700° C. for 80 to 200 seconds. A spike anneal may also be performed at an example temperature of 900 to 1100° C. for a duration of less than 1 second. The anneal processes are selected and performed to recrystallize the semiconductor substrate while suppressing diffusion of implanted dopants.
In
In
In
The above embodiments for using a diffusion-mitigating material in the context of DDC transistors is applicable for both NMOS and PMOS transistors, though typically, such methods may be used more commonly for NMOS and less commonly for PMOS. For PMOS, other materials which in themselves tend to be less diffusive may be used. For instance, antimony may be used for the highly doped regions of the PMOS transistor, thus making potentially unnecessary the use of further diffusion-mitigation measures. For PMOS, energy and dose levels for ion implantation of the dopant material (for instance, antimony) are selected to effect a targeted placement of the profile peak as well as thickness and concentration of the doped region, all of which can affect resultant electrical parameters for the transistor including threshold voltage, junction leakage, drive current, drain-induced barrier lowering, and other parameters. However, an alternative embodiment may be to deposit a blanket epitaxial carbon-infused silicon on the substrate surface in advance of or after the doping of the highly doped regions (for instance, the screen layer and the threshold voltage setting layer). Such a blanket epitaxial carbon-infused silicon may serve as an overall dopant migration inhibitor for all devices. Implanted dopant migration mitigation material (for instance, carbon) may be used to augment in-situ epitaxially grown material as needed. Adjacent transistor structures 300 may be separated by isolation regions 326, with the isolation regions being preferably formed after the epitaxial layer is formed. Further conventional process steps can then be performed to complete the fabrication to form an integrated circuit.
As a further note, as shown in
There may not be an undoped epitaxially grown channel as preferably used for DDC transistor structures. Carbon addition 430 may be made by ion implantation directly into substrate 428 which may be previously doped with wells (not shown) or the wells may be formed after the carbon implants. Instead of implanted carbon, carbon addition 430 may be epitaxially introduced by way of an epitaxial material growth over substrate 428 that includes carbon, resulting in carbon addition 430 appearing in the channel. A benefit of using carbon-added epitaxially grown silicon is the avoidance of using germanium pre-amorphization implants. If instead, carbon is put into the substrate by way of ion implantation, then germanium pre-amorphization may be typically followed by recrystallization anneal to secure the carbon into the substitutional lattice locations. Germanium pre-amorphization implant may, however, be avoided with the selection of an appropriate ion implantation process for the carbon, for instance through use of low-temperature ion implantation methods.
Preselected carbon implants (the process shall be referred to herein as “implants” though in-situ epitaxially introduced carbon alone or in combination with ion implantation of carbon may be used) may be used in the context of a DDC transistor, with conventional channel doping implementations or halo doping implementations, or both. The carbon is introduced into substrate 428 so that the carbon concentration and, as applicable, the profile may be matched to those areas of the source 420, drain 422, source extension 410, and drain extension 412 tending to produce unwanted out-diffusion. Typically, carbon may be added to substrate 428 uniformly in the deep source 420/drain 422 area with the concentration being modulated at the source extension 410/drain extension 412 area to fine-tune the electrical parameters of the transistor device which may be affected by tolerance for more or less out-diffusion of material from the doped areas 410, 412, 420 and 422.
Preselected carbon implants may be used with the isolation structures formed first or right after placement of carbon addition 430, or sometime later in the fabrication process sequence. Preferably, the isolation structures are formed after the carbon implants.
Energy for implanting the carbon implants may range from 0.5 to 10 keV for a dose of 8×1013 to 2×1015 atoms/cm2 or other dose to result in a sufficient concentration of carbon to effect a stop for potential diffusion of the later formed source 420, drain 422, source extension 410, and drain extension 412. Concentration of the carbon in the semiconductor lattice may be, for instance, 1×1018 atoms/cm3 to 8×1020 atoms/cm3 where the concentrations may be more precisely located to be in the vicinity of the source extension 410/drain extension 412 or source 420/drain 422. The carbon concentration and location of concentration profile peaks can be tuned with the selection of energies and dose, as can be seen in the examples of
A benefit of using carbon implants in the channel is multi-fold. In the case of DDC transistors, carbon helps to mitigate against unwanted diffusion doped regions to effect a desired and specific dopant profile. In the case of conventional transistors, there is usually a greater problem of out-diffusion from the source and drain structures due to high temperature anneals that take place later in the process sequence. The high temperature anneals may cause excessive out-diffusion of material, for instance boron or phosphorous, from the source and drain structures. By introducing carbon into the channel prior to the initiation of the anneals that may cause excessive out-diffusion of the source and drain into the channel region, the otherwise occurring out-diffusion of material from the source and drain structures can be mitigated. Though the carbon implants may be formed at any time prior to the problematic anneals, the carbon implants are preferably formed together with, before, or right after the formation of the wells.
Note that although a well-known structure for a MOSFET is shown in
Different process conditions for doping may be implemented across a plurality of transistors in a die. Through selective use of doping conditions across a plurality of transistors, transistor structures may be fabricated with variations in location and height of the peak of the dopant profile so as to effect differing electrical transistor behaviors. Doping conditions within the channel may directly affect certain electrical properties such as threshold voltage. Doping profile of other parts of the transistor, for instance the source and drain, should also be controlled, though out-diffusion that results in a modification of the shape of the source and drain can create problems with transistors not meeting parametric targets. The use of carbon or other dopant migration mitigation materials is effective to hold a dopant material that would otherwise travel through a semiconductor lattice in place to effect a dopant desired profile. More specifically, the use of preselected carbon process conditions to effect a placement of carbon into the substrate has beneficial effects on keeping the target shape for the doped areas. If ion implantation is used for introducing the carbon, the modulation of energy of the implant results in a certain shape of a dopant profile peak. To insert carbon into the substrate, ion implantation, in-situ epitaxial growth, or other methods or combinations thereof may be used to effect a placement of a concentration of carbon species in desired locations.
Although the present disclosure has been described in detail with reference to a particular embodiment, it should be understood that various other changes, substitutions, and alterations may be made hereto without departing from the spirit and scope of the appended claims. For example, although the present disclosure includes a description with reference to a specific ordering of processes, other process sequencing may be followed to achieve the end result discussed herein. Though discussed using specific examples, different materials and process conditions may be used at each point of the fabrication process to create a desired transistor structure. As but one example, the carbon implants may be intermixed with the various boron implants.
Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained by those skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the spirit and scope of the appended claims. Moreover, the present disclosure is not intended to be limited in any way by any statement in the specification that is not otherwise reflected in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh et al. | May 1977 | A |
4242691 | Kotani et al. | Dec 1980 | A |
4276095 | Beilstein, Jr. et al. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4518926 | Swanson | May 1985 | A |
4559091 | Allen et al. | Dec 1985 | A |
4578128 | Mundt et al. | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4662061 | Malhi | May 1987 | A |
4761384 | Neppl et al. | Aug 1988 | A |
4780748 | Cunningham et al. | Oct 1988 | A |
4819043 | Yazawa et al. | Apr 1989 | A |
4885477 | Bird et al. | Dec 1989 | A |
4908681 | Nishida et al. | Mar 1990 | A |
4945254 | Robbins | Jul 1990 | A |
4956311 | Liou et al. | Sep 1990 | A |
5034337 | Mosher et al. | Jul 1991 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee et al. | Nov 1992 | A |
5208473 | Komori et al. | May 1993 | A |
5294821 | Iwamatsu | Mar 1994 | A |
5298763 | Shen et al. | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5373186 | Schubert et al. | Dec 1994 | A |
5384476 | Nishizawa et al. | Jan 1995 | A |
5426328 | Yilmaz et al. | Jun 1995 | A |
5444008 | Han et al. | Aug 1995 | A |
5552332 | Tseng et al. | Sep 1996 | A |
5559368 | Hu et al. | Sep 1996 | A |
5608253 | Liu et al. | Mar 1997 | A |
5622880 | Burr et al. | Apr 1997 | A |
5624863 | Helm et al. | Apr 1997 | A |
5625568 | Edwards et al. | Apr 1997 | A |
5641980 | Yamaguchi et al. | Jun 1997 | A |
5663583 | Matloubian et al. | Sep 1997 | A |
5712501 | Davies et al. | Jan 1998 | A |
5719422 | Burr et al. | Feb 1998 | A |
5726488 | Watanabe et al. | Mar 1998 | A |
5726562 | Mizuno | Mar 1998 | A |
5731626 | Eaglesham et al. | Mar 1998 | A |
5736419 | Naem | Apr 1998 | A |
5753555 | Hada | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5756365 | Kakumu | May 1998 | A |
5763921 | Okumura et al. | Jun 1998 | A |
5780899 | Hu et al. | Jul 1998 | A |
5847419 | Imai et al. | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu et al. | Mar 1999 | A |
5885876 | Dennen | Mar 1999 | A |
5889315 | Farrenkopf et al. | Mar 1999 | A |
5895954 | Yasumura et al. | Apr 1999 | A |
5899714 | Farremkopf et al. | May 1999 | A |
5918129 | Fulford, Jr. et al. | Jun 1999 | A |
5923067 | Voldman | Jul 1999 | A |
5923987 | Burr | Jul 1999 | A |
5936868 | Hall | Aug 1999 | A |
5946214 | Heavlin et al. | Aug 1999 | A |
5985705 | Seliskar | Nov 1999 | A |
5989963 | Luning et al. | Nov 1999 | A |
6001695 | Wu | Dec 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6043139 | Eaglesham et al. | Mar 2000 | A |
6060345 | Hause et al. | May 2000 | A |
6060364 | Maszara et al. | May 2000 | A |
6066533 | Yu | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6088518 | Hsu | Jul 2000 | A |
6091286 | Blauschild | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son et al. | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
1515920 | Gossmann et al. | Nov 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito et al. | Jan 2001 | B1 |
6184112 | Maszara et al. | Feb 2001 | B1 |
6190979 | Radens et al. | Feb 2001 | B1 |
6194259 | Nayak et al. | Feb 2001 | B1 |
6198157 | Ishida et al. | Mar 2001 | B1 |
6218892 | Soumyanath et al. | Apr 2001 | B1 |
6218895 | De et al. | Apr 2001 | B1 |
6221724 | Yu et al. | Apr 2001 | B1 |
6229188 | Aoki et al. | May 2001 | B1 |
6232164 | Tsai et al. | May 2001 | B1 |
6235597 | Miles | May 2001 | B1 |
6245618 | An et al. | Jun 2001 | B1 |
6268640 | Park et al. | Jul 2001 | B1 |
6271070 | Kotani et al. | Aug 2001 | B2 |
6271551 | Schmitz et al. | Aug 2001 | B1 |
6288429 | Iwata et al. | Sep 2001 | B1 |
6297132 | Zhang et al. | Oct 2001 | B1 |
6300177 | Sundaresan et al. | Oct 2001 | B1 |
6313489 | Letavic et al. | Nov 2001 | B1 |
6319799 | Ouyang et al. | Nov 2001 | B1 |
6320222 | Forbes et al. | Nov 2001 | B1 |
6323525 | Noguchi et al. | Nov 2001 | B1 |
6326666 | Bernstein et al. | Dec 2001 | B1 |
6335233 | Cho et al. | Jan 2002 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu et al. | Apr 2002 | B1 |
6391752 | Colinge et al. | May 2002 | B1 |
6426260 | Hshieh | Jul 2002 | B1 |
6426279 | Huster et al. | Jul 2002 | B1 |
6432754 | Assaderaghi et al. | Aug 2002 | B1 |
6444550 | Hao et al. | Sep 2002 | B1 |
6444551 | Ku et al. | Sep 2002 | B1 |
6449749 | Stine | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall et al. | Oct 2002 | B1 |
6482714 | Hieda et al. | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang et al. | Dec 2002 | B1 |
6500739 | Wang et al. | Dec 2002 | B1 |
6503801 | Rouse et al. | Jan 2003 | B1 |
6503805 | Wang et al. | Jan 2003 | B2 |
6506640 | Ishida et al. | Jan 2003 | B1 |
6518623 | Oda et al. | Feb 2003 | B1 |
6521470 | Lin et al. | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541328 | Whang et al. | Apr 2003 | B2 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6548842 | Bulucea et al. | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6552377 | Yu | Apr 2003 | B1 |
6573129 | Hoke et al. | Jun 2003 | B2 |
6576535 | Drobny et al. | Jun 2003 | B2 |
6600200 | Lustig et al. | Jul 2003 | B1 |
6620671 | Wang et al. | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6627473 | Oikawa et al. | Sep 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6662350 | Fried et al. | Dec 2003 | B2 |
6667200 | Sohn et al. | Dec 2003 | B2 |
6670260 | Yu et al. | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda et al. | May 2004 | B2 |
6743291 | Ang et al. | Jun 2004 | B2 |
6743684 | Liu | Jun 2004 | B2 |
6751519 | Satya et al. | Jun 2004 | B1 |
6753230 | Sohn et al. | Jun 2004 | B2 |
6760900 | Rategh et al. | Jul 2004 | B2 |
6770944 | Nishinohara et al. | Aug 2004 | B2 |
6787424 | Yu | Sep 2004 | B1 |
6797553 | Adkisson et al. | Sep 2004 | B2 |
6797602 | Kluth et al. | Sep 2004 | B1 |
6797994 | Hoke et al. | Sep 2004 | B1 |
6808004 | Kamm et al. | Oct 2004 | B2 |
6808994 | Wang | Oct 2004 | B1 |
6813750 | Usami et al. | Nov 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6821852 | Rhodes | Nov 2004 | B2 |
6822297 | Nandakumar et al. | Nov 2004 | B2 |
6831292 | Currie et al. | Dec 2004 | B2 |
6835639 | Rotondaro et al. | Dec 2004 | B2 |
6852602 | Kanzawa et al. | Feb 2005 | B2 |
6852603 | Chakravarthi et al. | Feb 2005 | B2 |
6881641 | Wieczorek et al. | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6891439 | Jachne et al. | May 2005 | B2 |
6893947 | Martinez et al. | May 2005 | B2 |
6900519 | Cantell et al. | May 2005 | B2 |
6901564 | Stine et al. | May 2005 | B2 |
6916698 | Mocuta et al. | Jul 2005 | B2 |
6917237 | Tschanz et al. | Jul 2005 | B1 |
6927463 | Iwata et al. | Aug 2005 | B2 |
6928128 | Sidiropoulos | Aug 2005 | B1 |
6930007 | Bu et al. | Aug 2005 | B2 |
6930360 | Yamauchi et al. | Aug 2005 | B2 |
6957163 | Ando | Oct 2005 | B2 |
6963090 | Passlack et al. | Nov 2005 | B2 |
6972223 | Weimer et al. | Dec 2005 | B2 |
6995397 | Yamashita et al. | Feb 2006 | B2 |
7002214 | Boyd et al. | Feb 2006 | B1 |
7008836 | Algotsson et al. | Mar 2006 | B2 |
7013359 | Li | Mar 2006 | B1 |
7015546 | Herr et al. | Mar 2006 | B2 |
7015741 | Tschanz et al. | Mar 2006 | B2 |
7022559 | Barnak et al. | Apr 2006 | B2 |
7036098 | Eleyan et al. | Apr 2006 | B2 |
7038258 | Liu et al. | May 2006 | B2 |
7039881 | Regan | May 2006 | B2 |
7045456 | Murto et al. | May 2006 | B2 |
7057216 | Ouyang et al. | Jun 2006 | B2 |
7061058 | Chakravarthi et al. | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock et al. | Jun 2006 | B2 |
7071103 | Chan et al. | Jul 2006 | B2 |
7078325 | Curello et al. | Jul 2006 | B2 |
7078776 | Nishinohara et al. | Jul 2006 | B2 |
7089513 | Bard et al. | Aug 2006 | B2 |
7089515 | Hanafi et al. | Aug 2006 | B2 |
7091093 | Noda et al. | Aug 2006 | B1 |
7105399 | Dakshina-Murthy et al. | Sep 2006 | B1 |
7109099 | Tan et al. | Sep 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7122411 | Mouli | Oct 2006 | B2 |
7127687 | Signore | Oct 2006 | B1 |
7132323 | Haensch et al. | Nov 2006 | B2 |
7169675 | Tan et al. | Jan 2007 | B2 |
7170120 | Datta et al. | Jan 2007 | B2 |
7176137 | Perng et al. | Feb 2007 | B2 |
7186598 | Yamauchi et al. | Mar 2007 | B2 |
7189627 | Wu et al. | Mar 2007 | B2 |
7199430 | Babcock et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7208354 | Bauer | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu et al. | May 2007 | B2 |
7223646 | Miyashita et al. | May 2007 | B2 |
7226833 | White et al. | Jun 2007 | B2 |
7226843 | Weber et al. | Jun 2007 | B2 |
7230680 | Fujisawa et al. | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7256639 | Koniaris et al. | Aug 2007 | B1 |
7259428 | Inaba | Aug 2007 | B2 |
7260562 | Czajkowski et al. | Aug 2007 | B2 |
7294877 | Rueckes et al. | Nov 2007 | B2 |
7297994 | Wieczorek et al. | Nov 2007 | B2 |
7301208 | Handa et al. | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7307471 | Gammie et al. | Dec 2007 | B2 |
7312500 | Miyashita et al. | Dec 2007 | B2 |
7323754 | Ema et al. | Jan 2008 | B2 |
7332439 | Lindert et al. | Feb 2008 | B2 |
7339215 | Chidambaram | Mar 2008 | B2 |
7348629 | Chu et al. | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7380225 | Joshi et al. | May 2008 | B2 |
7398497 | Sato et al. | Jul 2008 | B2 |
7402207 | Besser et al. | Jul 2008 | B1 |
7402872 | Murthy et al. | Jul 2008 | B2 |
7416605 | Zollner et al. | Aug 2008 | B2 |
7427788 | Li et al. | Sep 2008 | B2 |
7442971 | Wirbeleit et al. | Oct 2008 | B2 |
7449733 | Inaba et al. | Nov 2008 | B2 |
7462908 | Bol et al. | Dec 2008 | B2 |
7469164 | Du-Nour | Dec 2008 | B2 |
7470593 | Rouh et al. | Dec 2008 | B2 |
7485536 | Jin et al. | Feb 2009 | B2 |
7487474 | Ciplickas et al. | Feb 2009 | B2 |
7491988 | Tolchinsky et al. | Feb 2009 | B2 |
7494861 | Chu et al. | Feb 2009 | B2 |
7496862 | Chang et al. | Feb 2009 | B2 |
7496867 | Turner et al. | Feb 2009 | B2 |
7498637 | Yamaoka et al. | Mar 2009 | B2 |
7501324 | Babcock et al. | Mar 2009 | B2 |
7503020 | Allen et al. | Mar 2009 | B2 |
7507999 | Kusumoto et al. | Mar 2009 | B2 |
7514766 | Yoshida | Apr 2009 | B2 |
7521323 | Surdeanu et al. | Apr 2009 | B2 |
7524740 | Liu et al. | Apr 2009 | B1 |
7531393 | Doyle et al. | May 2009 | B2 |
7531836 | Liu et al. | May 2009 | B2 |
7538364 | Twynam | May 2009 | B2 |
7538412 | Schulze et al. | May 2009 | B2 |
7553717 | Chakravarthi et al. | Jun 2009 | B2 |
7562233 | Sheng et al. | Jul 2009 | B1 |
7564105 | Chi et al. | Jul 2009 | B2 |
7566600 | Mouli | Jul 2009 | B2 |
7569456 | Ko et al. | Aug 2009 | B2 |
7586322 | Xu et al. | Sep 2009 | B1 |
7592241 | Takao | Sep 2009 | B2 |
7595243 | Bulucea et al. | Sep 2009 | B1 |
7598142 | Ranade et al. | Oct 2009 | B2 |
7605041 | Ema et al. | Oct 2009 | B2 |
7605060 | Meunier-Beillard et al. | Oct 2009 | B2 |
7605429 | Bernstein et al. | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt et al. | Nov 2009 | B2 |
7622341 | Chudzik et al. | Nov 2009 | B2 |
7638380 | Pearce | Dec 2009 | B2 |
7642140 | Bae et al. | Jan 2010 | B2 |
7644377 | Saxe et al. | Jan 2010 | B1 |
7645665 | Kubo et al. | Jan 2010 | B2 |
7651920 | Siprak | Jan 2010 | B2 |
7655523 | Babcock et al. | Feb 2010 | B2 |
7673273 | Madurawe et al. | Mar 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7675317 | Perisetty | Mar 2010 | B2 |
7678631 | Murthy et al. | Mar 2010 | B2 |
7678638 | Chu et al. | Mar 2010 | B2 |
7681628 | Joshi et al. | Mar 2010 | B2 |
7682887 | Dokumaci et al. | Mar 2010 | B2 |
7683442 | Burr et al. | Mar 2010 | B1 |
7696000 | Liu et al. | Apr 2010 | B2 |
7704822 | Jeong | Apr 2010 | B2 |
7704844 | Zhu et al. | Apr 2010 | B2 |
7709828 | Braithwaite et al. | May 2010 | B2 |
7723750 | Zhu et al. | May 2010 | B2 |
7737472 | Kondo et al. | Jun 2010 | B2 |
7741138 | Cho | Jun 2010 | B2 |
7741200 | Cho et al. | Jun 2010 | B2 |
7745270 | Shah et al. | Jun 2010 | B2 |
7750374 | Capasso et al. | Jul 2010 | B2 |
7750381 | Hokazono et al. | Jul 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein et al. | Jul 2010 | B2 |
7755144 | Li et al. | Jul 2010 | B2 |
7755146 | Helm et al. | Jul 2010 | B2 |
7759206 | Luo et al. | Jul 2010 | B2 |
7759714 | Itoh et al. | Jul 2010 | B2 |
7761820 | Berger et al. | Jul 2010 | B2 |
7795677 | Bangsaruntip et al. | Sep 2010 | B2 |
7808045 | Kawahara et al. | Oct 2010 | B2 |
7808410 | Kim et al. | Oct 2010 | B2 |
7811873 | Mochizuki | Oct 2010 | B2 |
7811881 | Cheng et al. | Oct 2010 | B2 |
7818702 | Mandelman et al. | Oct 2010 | B2 |
7821066 | Lebby et al. | Oct 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
7831873 | Trimberger et al. | Nov 2010 | B1 |
7846822 | Seebauer et al. | Dec 2010 | B2 |
7855118 | Hoentschel et al. | Dec 2010 | B2 |
7859013 | Chen et al. | Dec 2010 | B2 |
7863163 | Bauer | Jan 2011 | B2 |
7867835 | Lee et al. | Jan 2011 | B2 |
7883977 | Babcock et al. | Feb 2011 | B2 |
7888205 | Herner et al. | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7895546 | Lahner et al. | Feb 2011 | B2 |
7897495 | Ye et al. | Mar 2011 | B2 |
7906413 | Cardone et al. | Mar 2011 | B2 |
7906813 | Kato | Mar 2011 | B2 |
7910419 | Fenouillet-Beranger et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7926018 | Moroz et al. | Apr 2011 | B2 |
7935984 | Nakano | May 2011 | B2 |
7941776 | Majumder et al. | May 2011 | B2 |
7945800 | Gomm et al. | May 2011 | B2 |
7948008 | Liu et al. | May 2011 | B2 |
7952147 | Ueno et al. | May 2011 | B2 |
7960232 | King et al. | Jun 2011 | B2 |
7960238 | Kohli et al. | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
7968440 | Seebauer | Jun 2011 | B2 |
7968459 | Bedell et al. | Jun 2011 | B2 |
7989900 | Haensch et al. | Aug 2011 | B2 |
7994573 | Pan | Aug 2011 | B2 |
8004024 | Furukawa et al. | Aug 2011 | B2 |
8012827 | Yu et al. | Sep 2011 | B2 |
8029620 | Kim et al. | Oct 2011 | B2 |
8039332 | Bernard et al. | Oct 2011 | B2 |
8046598 | Lee | Oct 2011 | B2 |
8048791 | Hargrove et al. | Nov 2011 | B2 |
8048810 | Tsai et al. | Nov 2011 | B2 |
8051340 | Cranford, Jr. et al. | Nov 2011 | B2 |
8053340 | Colombeau et al. | Nov 2011 | B2 |
8063466 | Kurita | Nov 2011 | B2 |
8067279 | Sadra et al. | Nov 2011 | B2 |
8067280 | Wang et al. | Nov 2011 | B2 |
8067302 | Li | Nov 2011 | B2 |
8076719 | Zeng et al. | Dec 2011 | B2 |
8097529 | Krull et al. | Jan 2012 | B2 |
8103983 | Agarwal et al. | Jan 2012 | B2 |
8105891 | Yeh et al. | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8110487 | Griebenow et al. | Feb 2012 | B2 |
8114761 | Mandrekar et al. | Feb 2012 | B2 |
8119482 | Bhalla et al. | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock et al. | Mar 2012 | B2 |
8129797 | Chen et al. | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr et al. | Mar 2012 | B2 |
8143124 | Challa et al. | Mar 2012 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8148774 | Mori et al. | Apr 2012 | B2 |
8163619 | Yang et al. | Apr 2012 | B2 |
8169002 | Chang et al. | May 2012 | B2 |
8170857 | Joshi et al. | May 2012 | B2 |
8173499 | Chung et al. | May 2012 | B2 |
8173502 | Yan et al. | May 2012 | B2 |
8176461 | Trimberger | May 2012 | B1 |
8178430 | Kim et al. | May 2012 | B2 |
8179530 | Levy et al. | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur et al. | May 2012 | B2 |
8185865 | Gupta et al. | May 2012 | B2 |
8187959 | Pawlak et al. | May 2012 | B2 |
8188542 | Yoo et al. | May 2012 | B2 |
8196545 | Kurosawa | Jun 2012 | B2 |
8201122 | Dewey, III et al. | Jun 2012 | B2 |
8214190 | Joshi et al. | Jul 2012 | B2 |
8217423 | Liu et al. | Jul 2012 | B2 |
8225255 | Ouyang et al. | Jul 2012 | B2 |
8227307 | Chen et al. | Jul 2012 | B2 |
8236661 | Dennard et al. | Aug 2012 | B2 |
8239803 | Kobayashi | Aug 2012 | B2 |
8247300 | Babcock et al. | Aug 2012 | B2 |
8255843 | Chen et al. | Aug 2012 | B2 |
8258026 | Bulucea | Sep 2012 | B2 |
8266567 | El Yahyaoui et al. | Sep 2012 | B2 |
8273617 | Thompson et al. | Sep 2012 | B2 |
8286180 | Foo | Oct 2012 | B2 |
8288798 | Passlack | Oct 2012 | B2 |
8299562 | Li et al. | Oct 2012 | B2 |
8324059 | Guo et al. | Dec 2012 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20020042184 | Nandakumar et al. | Apr 2002 | A1 |
20030006415 | Yokogawa et al. | Jan 2003 | A1 |
20030047763 | Hieda et al. | Mar 2003 | A1 |
20030122203 | Nishinohara et al. | Jul 2003 | A1 |
20030173626 | Burr | Sep 2003 | A1 |
20030183856 | Wieczorek et al. | Oct 2003 | A1 |
20030215992 | Sohn et al. | Nov 2003 | A1 |
20040075118 | Heinemann et al. | Apr 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040084731 | Matsuda et al. | May 2004 | A1 |
20040087090 | Grudowski et al. | May 2004 | A1 |
20040126947 | Sohn | Jul 2004 | A1 |
20040175893 | Vatus et al. | Sep 2004 | A1 |
20040180488 | Lee | Sep 2004 | A1 |
20050106824 | Alberto et al. | May 2005 | A1 |
20050116282 | Pattanayak et al. | Jun 2005 | A1 |
20050250289 | Babcock et al. | Nov 2005 | A1 |
20050280075 | Ema et al. | Dec 2005 | A1 |
20060022270 | Boyd et al. | Feb 2006 | A1 |
20060024876 | Chidambaram et al. | Feb 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068555 | Zhu et al. | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20060197158 | Babcock et al. | Sep 2006 | A1 |
20060203581 | Joshi et al. | Sep 2006 | A1 |
20060220114 | Miyashita et al. | Oct 2006 | A1 |
20060223248 | Venugopal et al. | Oct 2006 | A1 |
20070040222 | Van Camp et al. | Feb 2007 | A1 |
20070117326 | Tan et al. | May 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070212861 | Chidambarrao et al. | Sep 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20080067589 | Ito et al. | Mar 2008 | A1 |
20080108208 | Arevalo et al. | May 2008 | A1 |
20080169493 | Lee et al. | Jul 2008 | A1 |
20080169516 | Chung | Jul 2008 | A1 |
20080194069 | Surdeanu et al. | Aug 2008 | A1 |
20080197439 | Goerlach et al. | Aug 2008 | A1 |
20080199999 | Weijtmans et al. | Aug 2008 | A1 |
20080227250 | Ranade et al. | Sep 2008 | A1 |
20080237661 | Ranade et al. | Oct 2008 | A1 |
20080258198 | Bojarczuk et al. | Oct 2008 | A1 |
20080272409 | Sonkusale et al. | Nov 2008 | A1 |
20090057746 | Sugll et al. | Mar 2009 | A1 |
20090079008 | Nandakumar et al. | Mar 2009 | A1 |
20090081858 | Qin et al. | Mar 2009 | A1 |
20090108350 | Cai et al. | Apr 2009 | A1 |
20090134468 | Tsuchiya et al. | May 2009 | A1 |
20090179280 | Kohli et al. | Jul 2009 | A1 |
20090224319 | Kohli | Sep 2009 | A1 |
20090278209 | Noda | Nov 2009 | A1 |
20090286367 | Krull et al. | Nov 2009 | A1 |
20090302388 | Cai et al. | Dec 2009 | A1 |
20090309140 | Khamankar et al. | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20090321849 | Miyamura et al. | Dec 2009 | A1 |
20100012988 | Yang et al. | Jan 2010 | A1 |
20100038724 | Anderson et al. | Feb 2010 | A1 |
20100078729 | Fukutome et al. | Apr 2010 | A1 |
20100100856 | Mittal | Apr 2010 | A1 |
20100133624 | Nandakumar et al. | Jun 2010 | A1 |
20100148153 | Hudait et al. | Jun 2010 | A1 |
20100149854 | Vora | Jun 2010 | A1 |
20100187641 | Zhu et al. | Jul 2010 | A1 |
20100207182 | Paschal | Aug 2010 | A1 |
20100270600 | Inukai et al. | Oct 2010 | A1 |
20100276761 | Tung et al. | Nov 2010 | A1 |
20110059588 | Kang | Mar 2011 | A1 |
20110073961 | Dennard et al. | Mar 2011 | A1 |
20110074498 | Thompson et al. | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren et al. | Apr 2011 | A1 |
20110095811 | Chi et al. | Apr 2011 | A1 |
20110147828 | Murthy et al. | Jun 2011 | A1 |
20110169082 | Zhu et al. | Jul 2011 | A1 |
20110175140 | Taylor et al. | Jul 2011 | A1 |
20110175170 | Wang et al. | Jul 2011 | A1 |
20110180880 | Chudzik et al. | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20110212590 | Wu et al. | Sep 2011 | A1 |
20110230039 | Mowry et al. | Sep 2011 | A1 |
20110242921 | Tran et al. | Oct 2011 | A1 |
20110248352 | Shifren | Oct 2011 | A1 |
20110294278 | Eguchi et al. | Dec 2011 | A1 |
20110309447 | Arghavani et al. | Dec 2011 | A1 |
20120021594 | Gurtej et al. | Jan 2012 | A1 |
20120034745 | Colombeau et al. | Feb 2012 | A1 |
20120056275 | Cai et al. | Mar 2012 | A1 |
20120065920 | Nagumo et al. | Mar 2012 | A1 |
20120108050 | Chen et al. | May 2012 | A1 |
20120132998 | Kwon et al. | May 2012 | A1 |
20120138953 | Cai et al. | Jun 2012 | A1 |
20120146155 | Hoentschel et al. | Jun 2012 | A1 |
20120161210 | Heinrich et al. | Jun 2012 | A1 |
20120167025 | Gillespie et al. | Jun 2012 | A1 |
20120187491 | Zhu et al. | Jul 2012 | A1 |
20120190177 | Kim et al. | Jul 2012 | A1 |
20120223363 | Kronholz et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
0312237 | Apr 1989 | EP |
0531621 | Mar 1993 | EP |
0683515 | Nov 1995 | EP |
0889502 | Jan 1999 | EP |
1450394 | Aug 2004 | EP |
59193066 | Nov 1984 | JP |
4186774 | Jul 1992 | JP |
8153873 | Jun 1996 | JP |
8288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
794094 | Jan 2008 | KR |
WO 2005093831 | Oct 2005 | WO |
WO2011062788 | May 2011 | WO |
Entry |
---|
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μ n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995. |
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001. |
Ducroquet, F et al. “Fully Depleted Silicon-on-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1-yCy Channel”, ECS 210th Meeting, Abstract 1033, 2006. |
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961, 2006. |
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000. |
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008. |
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4, 2009. |
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001. |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996. |
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002. |
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998. |
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Aplications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999. |
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002. |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000. |
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998. |
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999. |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997. |
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19, 1998. |
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996. |
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998. |
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992. |
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009. |
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009. |
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213, 2009. |
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006. |
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951. |
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and in-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993. |
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996. |
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003, Nov. 2012. |
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798. |
Komaragiri, R. et al., “Depletion-Free Poly Gale Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004. |
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006. |
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999. |