1. Field of the Invention
The present invention relates to a printhead, and, more particularly, to a method for fabricating an ink jetting device.
2. Description of the Related Art
A typical ink jet printhead includes a silicon chip to which a nozzle plate fabricated from a polymer material is attached. Also, some ink jet printheads include a silicon nozzle plate. However, typical methods of bonding the silicon nozzle plate to the silicon chip are anodic in nature, which is not compatible with some devices, such as for example, complementary metal-oxide-semiconductor (CMOS) devices.
The present invention provides a method for fabricating an ink jetting device that includes a silicon nozzle plate joined to a silicon chip, which may include, for example, CMOS components.
The terms “first” and “second” preceding an element name, e.g., first surface, second surface, etc., are used for identification purposes to distinguish between similar or related elements, results or concepts, and are not intended to necessarily imply order, nor are the terms “first” and “second” intended to preclude the inclusion of additional similar or related elements, results or concepts, unless otherwise indicated.
The invention, in one form thereof, is directed to a method for forming an ink jetting device. The method includes: providing a silicon chip including a silicon substrate having a first surface and a second surface opposite to the first surface, the first surface having formed thereon a plurality of electrical heater elements and a silicon oxide ink ejection chamber layer configured to define a plurality of ink ejection chambers, where each ink ejection chamber of the plurality of ink ejection chambers is associated with at least one respective electrical heater element of the plurality of electrical heater elements; providing a silicon nozzle plate having a silicon nozzle layer having a third surface and a fourth surface opposite to the third surface, the fourth surface having formed thereon a silicon oxide layer; aligning the silicon nozzle plate with the silicon chip; fusion bonding the silicon oxide layer of the silicon nozzle plate to the silicon oxide ink ejection chamber layer of the silicon chip; and forming a plurality of nozzle holes through the silicon nozzle plate respectively located over the plurality of electrical heater elements.
The invention in another form thereof, is directed to a method for forming an ink jetting device. The method includes: providing a silicon chip including a silicon substrate having a first surface and a second surface opposite to the first surface, the first surface having formed thereon a plurality of electrical heater elements, a plurality of CMOS components, and a silicon oxide ink ejection chamber layer configured to define a plurality of ink ejection chambers, where each ink ejection chamber of the plurality of ink ejection chambers is associated with at least one respective electrical heater element of the plurality of electrical heater elements, and having a central ink via formed through the second surface that is in fluid communication with the plurality of ink ejection chambers; providing a silicon nozzle plate having a silicon nozzle layer having a third surface and a fourth surface opposite to the third surface, the fourth surface having formed thereon a silicon oxide layer; aligning the silicon nozzle plate with the silicon chip; fusion bonding the silicon oxide layer of the nozzle plate to the silicon oxide ink ejection chamber layer of the silicon chip; applying a mask layer over the third surface of the silicon nozzle layer; patterning the mask layer to define locations for a plurality of nozzle holes respectively located over the plurality of electrical heater elements; and removing portions of the silicon nozzle layer and the silicon oxide layer of the silicon nozzle plate to form the plurality of nozzle holes through the silicon nozzle plate.
The invention, in another form thereof, is directed to a method for forming an ink jetting device. The method includes: providing a silicon chip including a silicon substrate having a first surface and a second surface opposite to the first surface, the first surface having formed thereon a plurality of electrical heater elements and a silicon oxide ink ejection chamber layer configured to define a plurality of ink ejection chambers, where each ink ejection chamber of the plurality of ink ejection chambers is associated with at least one respective electrical heater element of the plurality of electrical heater elements; thinning a silicon nozzle plate having a silicon nozzle layer having a third surface and a fourth surface opposite to the third surface to a predefined thickness in a range of about 0.01 to about 50 microns, the fourth surface having formed thereon a silicon oxide layer; aligning the silicon nozzle plate with the silicon chip; fusion bonding the silicon oxide layer of the nozzle plate to the silicon oxide ink ejection chamber layer of the silicon chip; and forming a plurality of nozzle holes through the silicon nozzle plate respectively located over the plurality of electrical heater elements.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings and particularly to
The various acts associated with the method for fabricating an ink jetting device 10 in accordance with the present invention are summarized in the flowchart of
At act S100, with reference to
First surface 14-1 also has formed thereon a silicon oxide ink ejection chamber layer 20 configured to define a plurality of ink ejection chambers 22, including ink ejection chambers 22-1 and 22-2 as shown in
A central ink via 24, i.e., an ink carrying passageway, is formed through the second surface 14-2 of silicon substrate 14, and is configured to be in fluid communication with the plurality of ink ejection chambers 22.
At act S102, referring to
In accordance to one aspect of the present invention, silicon nozzle layer 28 is thinned to a thickness 32 in a range of about 0.01 to about 50 microns. In one embodiment, for example, silicon nozzle layer 28 is thinned to a thickness 32 of about 25 microns. In the present embodiment, the thinning of silicon nozzle layer 28 is performed prior to the fusion bonding of silicon nozzle plate 26 to silicon chip 12 at act S106 below. However, it is contemplated that the thinning of silicon nozzle layer 28 may be performed after the fusion bonding of silicon nozzle plate 26 to silicon chip 12, as late as a final act in fabricating ink jetting device 10, if desired. Thinning may be performed, for example, by using a chemical mechanical polishing process or a machining process such as backgrinding.
At act S104, referring to
At act S106, referring to
Fusion bonding is a process by which silicon to silicon bonds, silicon oxide to silicon bonds, or silicon oxide to silicon oxide bonds, may be made. A typical fusion bonding process would begin by treating the surfaces to be bonded to insure cleanliness. Once cleanliness is insured, the two surfaces to be bonded are brought together and aligned. This may be accomplished, for example, through a silicon wafer by an infrared (IR) camera and fiducial. Once the alignment is carried out, the surfaced are put together and a pre-bond is made at room temperature using a slight pressure. Next, the pre-bond is inspected for voids. If voids are present, the surfaces are re-bonded by another pressure wave. After pre-bonding the bond strength is such that the resulting device may be handled in subsequent fabrication acts. The use of pressure bonding devices alleviates the need for atomic level planarity of the surfaces to be bonded. After the pressure bonding, a low temperature anneal completes the fusion bonding process.
At act S108, referring to
In the present embodiment, act S108 may be implemented as follows, with reference to the flowchart of
At act S108-1, referring to
At act S108-2, mask layer 36 is then patterned, as illustrated in
At act S108-3, referring to
At act S1084, as best shown in
At act S108-S, the remaining portion of mask layer 36 is removed, as illustrated in
While this invention has been described with respect to embodiments of the invention, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.